JP2003265937A - Method for manufacturing hydrogen separation membrane - Google Patents

Method for manufacturing hydrogen separation membrane

Info

Publication number
JP2003265937A
JP2003265937A JP2002070807A JP2002070807A JP2003265937A JP 2003265937 A JP2003265937 A JP 2003265937A JP 2002070807 A JP2002070807 A JP 2002070807A JP 2002070807 A JP2002070807 A JP 2002070807A JP 2003265937 A JP2003265937 A JP 2003265937A
Authority
JP
Japan
Prior art keywords
hydrogen separation
separation membrane
hydrogen
material resin
dried
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002070807A
Other languages
Japanese (ja)
Other versions
JP3830838B2 (en
Inventor
Kazushi Okato
一志 岡登
Atsushi Ishida
敦之 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2002070807A priority Critical patent/JP3830838B2/en
Publication of JP2003265937A publication Critical patent/JP2003265937A/en
Application granted granted Critical
Publication of JP3830838B2 publication Critical patent/JP3830838B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Moulding By Coating Moulds (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a hydrogen separation membrane which is extremely thin and has excellent hydrogen separation performance. <P>SOLUTION: A solution of the source material resin for the hydrogen separation film is cast onto a first glass substrate 1a to form a thin film 2a. The solution of the source material resin is cast onto another glass substrate 1b to form a thin film 2b. The thin films 2a, 2b on the substrates 1a, 1b are laminated with the surfaces opposing to each other while the surfaces are not dried. After the thin films 2a, 2b on the substrates 1a, 1b are laminated with the surfaces opposing to each other while the surfaces are not dried, the films are pressed and dried. The thickness of the obtained hydrogen separation membrane 3 is in the range from 2 to 10 μm. The source material resin is sulfonated polyimide. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、水素分離膜の製造
方法に関するものである。
TECHNICAL FIELD The present invention relates to a method for manufacturing a hydrogen separation membrane.

【0002】[0002]

【従来の技術】近年、石油資源が枯渇化する一方、化石
燃料の消費による地球温暖化等の環境問題が深刻化して
いる。そこで、二酸化炭素の発生を伴わないクリーンな
電動機用電力源として燃料電池が注目され、広範に開発
されている。
2. Description of the Related Art In recent years, as petroleum resources have been depleted, environmental problems such as global warming due to consumption of fossil fuels have become serious. Therefore, fuel cells have been attracting attention as a clean electric power source for electric motors that does not generate carbon dioxide and have been extensively developed.

【0003】前記燃料電池の燃料として、例えば、イソ
プロパノール等の低級アルコールを分解して得られる水
素ガスを用いることが考えられる。前記イソプロパノー
ルは通常は液体であるが、触媒存在下で80℃程度に加
熱することにより、分解してアセトンと水素との混合気
体が得られる。また、液体の前記イソプロパノールを8
0℃未満の温度で加熱して気化させた後、イソプロパノ
ール蒸気に触媒を作用させて分解することによっても、
アセトンと水素との混合気体が得られる。前記混合気体
は、水素分離膜を透過させることにより、水素が富化さ
れた気体とすることができる。
As a fuel for the fuel cell, it is conceivable to use hydrogen gas obtained by decomposing a lower alcohol such as isopropanol. The isopropanol is usually a liquid, but when it is heated to about 80 ° C. in the presence of a catalyst, it decomposes to obtain a mixed gas of acetone and hydrogen. In addition, liquid isopropanol 8
By heating at a temperature lower than 0 ° C. to vaporize it, and then causing a catalyst to act on the isopropanol vapor to decompose it,
A mixed gas of acetone and hydrogen is obtained. The mixed gas can be a gas enriched with hydrogen by passing through the hydrogen separation membrane.

【0004】従来、前記水素分離膜の原料樹脂として、
例えばスルホン化ポリイミド、酸修飾ポリベンズイミダ
ゾール等が知られている。前記水素分離膜は、前記原料
樹脂の溶液をガラス基板上に流延した後、乾燥させるこ
とにより製造することができる。このとき、前記水素分
離膜は、高度の水素分離性能を得る上で、膜厚ができる
だけ薄いことが望まれる。
Conventionally, as a raw material resin for the hydrogen separation membrane,
For example, sulfonated polyimide, acid-modified polybenzimidazole and the like are known. The hydrogen separation membrane can be produced by casting a solution of the raw material resin on a glass substrate and then drying it. At this time, the hydrogen separation membrane is desired to be as thin as possible in order to obtain a high degree of hydrogen separation performance.

【0005】しかしながら、前記水素分離膜の膜厚を薄
くすると、得られた膜にピンホールができやすく、水素
分離膜として使用することができないことがあるとの不
都合がある。
However, when the film thickness of the hydrogen permeable membrane is reduced, there is a disadvantage that the obtained membrane is apt to have pinholes and cannot be used as a hydrogen permeable membrane.

【0006】[0006]

【発明が解決しようとする課題】本発明は、かかる不都
合を解消して、膜厚が極めて薄く優れた水素分離性能を
備える水素分離膜の製造方法を提供することを目的とす
る。
SUMMARY OF THE INVENTION It is an object of the present invention to solve the above problems and to provide a method for producing a hydrogen separation membrane having an extremely thin film thickness and excellent hydrogen separation performance.

【0007】[0007]

【課題を解決するための手段】かかる目的を達成するた
めに、本発明の水素分離膜の製造方法は、水素分離膜の
原料樹脂の溶液を一のガラス基板上に流延して薄膜を形
成する工程と、該原料樹脂の溶液を他のガラス基板上に
流延して薄膜を形成する工程と、両基板上に形成された
薄膜を、表面が未乾燥の状態で、該表面を相対向させて
積層する工程とを備えることを特徴とする。
In order to achieve the above object, a method for producing a hydrogen separation membrane according to the present invention comprises forming a thin film by casting a solution of a raw material resin for the hydrogen separation membrane onto one glass substrate. And a step of casting the solution of the raw material resin on another glass substrate to form a thin film, and the thin films formed on both substrates are opposed to each other with the surfaces not yet dried. And a step of stacking.

【0008】本発明の製造方法によれば、2枚のガラス
基板上に流延して形成された薄膜を、互いの表面が未乾
燥の状態で、該表面を相対向させて積層し、重ね合わせ
ることにより、容易に一体化させることができる。前記
のようにして2枚の薄膜を一体化することにより、たと
え一方の薄膜にピンホールが生じていたとしても、該ピ
ンホールを他方の薄膜で塞ぐことができる。
According to the manufacturing method of the present invention, thin films formed by casting on two glass substrates are laminated with the surfaces thereof facing each other while the surfaces thereof are undried. By combining them, they can be easily integrated. By integrating the two thin films as described above, even if one thin film has a pinhole, the other thin film can close the pinhole.

【0009】従って、本発明の製造方法によれば、前記
2枚の薄膜が互いに補完しあうことにより、極めて薄い
膜厚で優れた水素分離性能を備え、しかもピンホールが
無い水素分離膜を得ることができる。
Therefore, according to the manufacturing method of the present invention, the two thin films complement each other to obtain a hydrogen separation membrane having an extremely thin film thickness, excellent hydrogen separation performance, and no pinholes. be able to.

【0010】本発明の製造方法では、前記両基板上に形
成された薄膜を、表面が未乾燥の状態で、該表面を相対
向させて積層した後、加圧して乾燥させることにより、
2枚の薄膜が一体化された水素分離膜を得ることができ
る。前記水素分離膜は、例えば温水中で前記基板から剥
離された後、例えばガラス、不織布等の支持体上で真空
乾燥することにより完成される。
In the manufacturing method of the present invention, the thin films formed on both the substrates are laminated with the surfaces facing each other with the surfaces still undried, and then pressure is applied to dry the thin films.
It is possible to obtain a hydrogen separation membrane in which two thin films are integrated. The hydrogen separation membrane is completed, for example, by peeling it from the substrate in warm water and then vacuum-drying it on a support such as glass or nonwoven fabric.

【0011】本発明の製造方法は、形成された水素分離
膜の膜厚が2〜10μmの範囲にある場合に好適に用い
ることができる。前記水素分離膜の膜厚が2μm未満で
は、製膜すること自体が難しい。また、製膜できた場合
に、前記2枚の薄膜を積層して互いに補完しあうように
するとしても、ピンホールの発生を防ぐことが極めて難
しい。また、前記水素分離膜の膜厚が10μmを超える
ときには、本発明の製造方法によらなくても製造するこ
とができるが、優れた水素分離性能を得ることが難し
い。
The manufacturing method of the present invention can be suitably used when the thickness of the formed hydrogen separation membrane is in the range of 2 to 10 μm. If the thickness of the hydrogen separation membrane is less than 2 μm, it is difficult to form the membrane itself. Moreover, even if the two thin films are laminated and complement each other when the film is formed, it is extremely difficult to prevent the occurrence of pinholes. When the hydrogen separation membrane has a thickness of more than 10 μm, it can be produced without the production method of the present invention, but it is difficult to obtain excellent hydrogen separation performance.

【0012】本発明の製造方法において、前記原料樹脂
は、水素分離膜を形成できる樹脂であればどのようなも
のであってもよいが、例えばスルホン化ポリイミドを用
いることができる。前記スルホン化ポリイミドは、例え
ば、2,2’−ビス(3,4−ジカルボキシフェニル)
ヘキサフルオロプロパン二無水物と、スルホン酸基を有
する少なくとも1種の芳香族アミンとの共重合により得
ることができる。前記芳香族アミンとしては、例えば、
2,4,6−トリメチルフェニレンジアミンを挙げるこ
とができる。
In the manufacturing method of the present invention, the raw material resin may be any resin as long as it can form a hydrogen separation membrane, and for example, sulfonated polyimide can be used. The sulfonated polyimide is, for example, 2,2′-bis (3,4-dicarboxyphenyl).
It can be obtained by copolymerization of hexafluoropropane dianhydride and at least one aromatic amine having a sulfonic acid group. Examples of the aromatic amine include
Mention may be made of 2,4,6-trimethylphenylenediamine.

【0013】[0013]

【発明の実施の形態】次に、添付の図面を参照しながら
本発明の実施の形態についてさらに詳しく説明する。図
1は本実施形態の水素分離膜の製造方法の各工程を示す
工程図、図2は水素分離装置の構成を示す組立図、図3
は図2の装置の断面図である。
BEST MODE FOR CARRYING OUT THE INVENTION Next, embodiments of the present invention will be described in more detail with reference to the accompanying drawings. FIG. 1 is a process diagram showing each step of the method for producing a hydrogen separation membrane of the present embodiment, FIG. 2 is an assembly diagram showing the configuration of a hydrogen separation device, and FIG.
FIG. 3 is a cross-sectional view of the device of FIG.

【0014】次に、水素分離膜の原料樹脂として、2,
2’−ビス(3,4−ジカルボキシフェニル)ヘキサフ
ルオロプロパン二無水物と、スルホン酸基を有する2,
4,6−トリメチルフェニレンジアミンとの共重合によ
り得られるスルホン化ポリイミドを用いる場合を例とし
て、本実施形態の水素分離膜の製造方法について説明す
る。
Next, as a raw material resin for the hydrogen separation membrane, 2,
2′-bis (3,4-dicarboxyphenyl) hexafluoropropane dianhydride and sulfonic acid group-containing 2,
The method for producing the hydrogen separation membrane of the present embodiment will be described by taking as an example the case of using a sulfonated polyimide obtained by copolymerization with 4,6-trimethylphenylenediamine.

【0015】本実施形態の製造方法では、まず、前記ス
ルホン化ポリイミドと、溶媒としてのジメチルスルホキ
シド(以下、DIMSOと略記する)とを乾留器付きの
フラスコに入れる。前記スルホン化ポリイミドは、ジメ
チルスルホキシドとの合計量に対して5重量%の量とな
るようにする。前記フラスコを140℃のオイルバス中
で2時間加熱することにより、前記スルホン化ポリイミ
ドをDIMSOに溶解させた後、残渣を0.45μmミ
リポアフィルター(商品名)で濾別し、試料溶液を調製
する。
In the manufacturing method of this embodiment, first, the sulfonated polyimide and dimethyl sulfoxide (hereinafter abbreviated as DIMSO) as a solvent are placed in a flask equipped with a carbonizer. The amount of the sulfonated polyimide is 5% by weight based on the total amount of dimethylsulfoxide. The sulfonated polyimide is dissolved in DIMSO by heating the flask in an oil bath at 140 ° C. for 2 hours, and the residue is filtered with a 0.45 μm Millipore filter (trade name) to prepare a sample solution. .

【0016】次に、図1(a)に示すように、前記試料
溶液を2枚のガラス基板1a,1bに滴下し、例えばY
BA型ベーカリーアプリケーターを用いて所定の厚さに
流延する。前記流延後、前記試料溶液を乾燥させ、各ガ
ラス基板1a,1b上に薄膜2a,2bを形成させる。
前記試料溶液の乾燥は、ピンホールの発生を抑制するた
めに、前記DIMSOが急激に気化しないような条件で
行うことが好ましく、例えば、扁平なガラス容器で覆っ
たガラス基板1a,1bを、120〜140℃のホット
プレート上に載置して行う。前記試料溶液の乾燥は、薄
膜2a,2bがガラス基板1a,1bに接する面では固
化し、開放されれている側の表面が未乾燥の状態となる
まで行う。
Next, as shown in FIG. 1 (a), the sample solution is dropped on two glass substrates 1a and 1b, for example, Y
It is cast to a predetermined thickness using a BA type bakery applicator. After the casting, the sample solution is dried to form thin films 2a and 2b on the glass substrates 1a and 1b.
In order to suppress the generation of pinholes, it is preferable to dry the sample solution under the condition that the DIMSO does not vaporize rapidly. For example, the glass substrates 1a and 1b covered with a flat glass container are Place on a hot plate of ~ 140 ° C. The sample solution is dried until the thin films 2a and 2b are solidified on the surfaces in contact with the glass substrates 1a and 1b, and the surface on the open side is in an undried state.

【0017】次に、薄膜2a,2bのガラス基板1a,
1bに接する面が固化したならば、前記表面が未乾燥の
状態で、図1(b)に示すように、薄膜2a,2bを前
記表面で相対向させて積層し、重ね合わせる。前記積層
は、薄膜2a,2bがガラス基板1a,1bに付着した
ままの状態で行う。
Next, the glass substrates 1a of the thin films 2a and 2b,
When the surface in contact with 1b is solidified, the thin film 2a, 2b is laminated on the surface so as to face each other, as shown in FIG. 1 (b), while the surface is undried. The lamination is performed with the thin films 2a and 2b still attached to the glass substrates 1a and 1b.

【0018】次に、前記のように積層された薄膜2a,
2bを乾燥させ、図1(c)示のようにガラス基板1
a,1bに挟持された状態で、薄膜2a,2bが一体化
した水素分離膜3を形成する。前記のように積層された
薄膜2a,2bの乾燥は、例えば100〜300kg/
cm2の圧力でプレスしながら行ってもよい。また、前
記乾燥は、ピンホールの発生を抑制するために、真空乾
燥により行うことが好ましい。
Next, the thin films 2a laminated as described above,
2b is dried, and as shown in FIG. 1 (c), the glass substrate 1
The hydrogen separation membrane 3 in which the thin films 2a and 2b are integrated is formed while being sandwiched between a and 1b. Drying of the thin films 2a and 2b laminated as described above is, for example, 100 to 300 kg /
It may be performed while pressing at a pressure of cm 2 . Further, the drying is preferably performed by vacuum drying in order to suppress the generation of pinholes.

【0019】前記乾燥が完了したならば、次に、図1
(d)に示すように、ガラス基板1a,1bに挟持され
た水素分離膜3を60〜80℃の温水4に浸漬し、ガラ
ス基板1a,1bから剥離する。
When the drying is completed, the process shown in FIG.
As shown in (d), the hydrogen permeable membrane 3 sandwiched between the glass substrates 1a and 1b is immersed in warm water 4 at 60 to 80 ° C. and peeled from the glass substrates 1a and 1b.

【0020】剥離された水素分離膜3は、図1(e)に
示すように、支持体5上、105℃程度の温度で乾燥す
ることにより完成する。支持体5としては、ガラス、不
織布等を用いることができる。
The peeled hydrogen permeable membrane 3 is completed by drying it on the support 5 at a temperature of about 105 ° C., as shown in FIG. As the support 5, glass, non-woven fabric, or the like can be used.

【0021】次に、図1(a)に示す工程で前記試料溶
液を流延する厚さを変量して、厚さ2.0〜10.0μ
mの水素分離膜3を11種(実施例1〜11)形成し
た。各実施例の水素分離膜3について、ピンホールの有
無を目視試験と、ヘリウムガスのリーク試験とにより調
べ、両試験の結果から総合的に判定した。結果を表1に
示す。
Next, in the step shown in FIG. 1A, the thickness of the sample solution cast is varied to obtain a thickness of 2.0 to 10.0 μm.
11 kinds of hydrogen permeable membranes 3 of m (Examples 1 to 11) were formed. Regarding the hydrogen separation membrane 3 of each example, the presence or absence of pinholes was examined by a visual test and a helium gas leak test, and a comprehensive determination was made from the results of both tests. The results are shown in Table 1.

【0022】尚、ヘリウムガスのリーク試験は、各実施
例の水素分離膜3に0.04MPaの圧力でヘリウムガ
スの負荷をかけ、透過以外のリークを判定した。
In the helium gas leak test, the hydrogen separation membrane 3 of each example was loaded with helium gas at a pressure of 0.04 MPa, and leaks other than permeation were determined.

【0023】[0023]

【表1】 [Table 1]

【0024】次に、比較のために、前記試料溶液を1枚
のガラス基板に所定厚さに流延し、乾燥することにより
水素分離膜を形成した。前記水素分離膜は、前記試料溶
液を流延する厚さを変量して、厚さ1.5〜33.1μ
mの16種(比較例1〜16)を形成し、前記実施例と
同一の方法によりピンホールの有無を調べ、目視試験と
ヘリウムガスのリーク試験との結果から総合的に判定し
た。結果を表2に示す。
Next, for comparison, the sample solution was cast on one glass substrate to a predetermined thickness and dried to form a hydrogen separation membrane. The hydrogen separation membrane has a thickness of 1.5 to 33.1 μ, which varies depending on the thickness of the sample solution cast.
16 kinds of m (Comparative Examples 1 to 16) were formed, the presence or absence of pinholes was examined by the same method as in the above-mentioned Examples, and comprehensive judgment was made based on the results of the visual test and the helium gas leak test. The results are shown in Table 2.

【0025】[0025]

【表2】 [Table 2]

【0026】表1から、本実施形態の製造方法(実施例
1〜11)によれば、厚さ2.0〜10.0μmの範囲
でピンホールの無い水素分離膜を得ることができること
が明らかである。これに対して、表2から、前記試料溶
液を1枚のガラス基板に所定厚さに流延し乾燥する方法
(比較例1〜16)では、厚さが17μm以上にならな
ければピンホールの無い水素分離膜を得ることができな
いことが明らかである。
From Table 1, it is clear that according to the manufacturing method of this embodiment (Examples 1 to 11), a hydrogen separation membrane without pinholes can be obtained in a thickness range of 2.0 to 10.0 μm. Is. On the other hand, from Table 2, in the method of casting the sample solution on one glass substrate to a predetermined thickness and drying (Comparative Examples 1 to 16), if the thickness does not become 17 μm or more, pinholes It is clear that no hydrogen separation membrane can be obtained.

【0027】次に、水素分離装置(水素分離膜モジュー
ル)を用いて、実施例1,11、比較例15の3種の水
素分離膜について、水素分離性能を試験した。
Next, the hydrogen separation performance of the three kinds of hydrogen separation membranes of Examples 1 and 11 and Comparative Example 15 was tested using a hydrogen separation device (hydrogen separation membrane module).

【0028】図2に示すように、水素分離装置11は、
相対向する面に蛇行状に設けられたラビリンス溝12を
備えるセル13a,13bの間に、カーボンペーパーか
らなる支持体14に支持された水素分離膜3を挟持し、
支持体14と水素分離膜3との周囲はシール枠15によ
りシールされている。水素分離装置11では、図3示の
ように、セル13aの側のラビリンス溝12に水素含有
気体を供給すると、該気体がラビリンス溝12に沿って
流れながら、支持体14に支持された水素分離膜3を透
過し、セル13bの側のラビリンス溝12に水素が富化
された水素富化気体が得られる。
As shown in FIG. 2, the hydrogen separation device 11 has
A hydrogen separation membrane 3 supported by a support 14 made of carbon paper is sandwiched between cells 13a and 13b having labyrinth grooves 12 provided in a zigzag shape on opposite surfaces,
The periphery of the support 14 and the hydrogen separation membrane 3 is sealed by a seal frame 15. In the hydrogen separation device 11, as shown in FIG. 3, when a hydrogen-containing gas is supplied to the labyrinth groove 12 on the side of the cell 13a, the hydrogen separation gas supported by the support 14 flows along the labyrinth groove 12. A hydrogen-enriched gas enriched with hydrogen is obtained in the labyrinth groove 12 on the cell 13b side through the membrane 3.

【0029】次に、前記3種の水素分離膜のそれぞれに
ついて、セル13aの側のラビリンス溝12に、エタノ
ールを0.1ml/分、水素を10ml/分で同時に供
給し、水素分離装置11を80℃に加熱することによ
り、装置内でエタノール−水素混合気体を発生させた。
該混合気体は、約15重量%の水素を含有している。そ
して、供給開始から3分後に、セル13bの側のラビリ
ンス溝12から流出する気体を、窒素置換した25ml
の採気ビンに捕集し、ガスクロマトグラフィーにより該
流出気体の水素濃度を定量した。結果を表3に示す。
Next, for each of the three types of hydrogen separation membranes, ethanol was simultaneously supplied at 0.1 ml / min and hydrogen was supplied at 10 ml / min to the labyrinth groove 12 on the side of the cell 13a, and the hydrogen separation device 11 was supplied. By heating to 80 ° C., an ethanol-hydrogen mixed gas was generated in the device.
The gas mixture contains about 15% by weight hydrogen. Then, after 3 minutes from the start of the supply, the gas flowing out from the labyrinth groove 12 on the cell 13b side was replaced with nitrogen to 25 ml.
Was collected in an air sampling bottle and the hydrogen concentration of the outflow gas was quantified by gas chromatography. The results are shown in Table 3.

【0030】[0030]

【表3】 [Table 3]

【0031】表3から、水素分離膜は、樹脂の種類が同
一であれば、膜厚が薄いほど水素分離性能に優れてお
り、実施例1,11の水素分離膜は比較例15の水素分
離膜に比較して格段に優れた水素分離性能を備えている
ことが明らかである。
From Table 3, the hydrogen separation membranes are superior in hydrogen separation performance as the film thickness is smaller, as long as the resin types are the same, and the hydrogen separation membranes of Examples 1 and 11 are the hydrogen separation membranes of Comparative Example 15. It is clear that it has significantly better hydrogen separation performance than the membrane.

【0032】尚、本実施形態のスルホン化ポリイミドで
は、2,4,6−トリメチルフェニレンジアミンを用い
ているが、他の芳香族ジアミンを用いてもよい。また、
前記芳香族ジアミンは、複数の芳香族ジアミンを併用し
てもよく、芳香族以外のジアミンと併用してもよい。
In the sulfonated polyimide of this embodiment, 2,4,6-trimethylphenylenediamine is used, but other aromatic diamine may be used. Also,
As the aromatic diamine, a plurality of aromatic diamines may be used in combination, or a diamine other than aromatic may be used in combination.

【0033】また、本実施形態では前記原料樹脂とし
て、スルホン化ポリイミドを用いる場合について説明し
ているが、前記原料樹脂は水素分離膜を形成できるもの
であれば、どのようなものであってもよい。
In this embodiment, the case where sulfonated polyimide is used as the raw material resin has been described, but any raw material resin can be used as long as it can form a hydrogen separation membrane. Good.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の製造方法の各工程を示す工程図。FIG. 1 is a process drawing showing each process of a manufacturing method of the present invention.

【図2】水素分離装置の構成を示す組立図。FIG. 2 is an assembly diagram showing the configuration of a hydrogen separator.

【図3】図2の装置の断面図。3 is a cross-sectional view of the device of FIG.

【符号の説明】[Explanation of symbols]

1a,1b…ガラス基板、 2a,2b…薄膜、 3…
水素分離膜。
1a, 1b ... Glass substrate, 2a, 2b ... Thin film, 3 ...
Hydrogen separation membrane.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B29K 79:00 B29K 79:00 B29L 9:00 B29L 9:00 Fターム(参考) 4D006 GA41 HA41 MA03 MA31 MB04 MC58 MC74X NA05 NA10 NA64 PA01 PB18 PB66 PC80 4F205 AA40J AG03 AH03 AH81 GA07 GB01 GB22 GC06 GF24 GF37 GN04 5H027 BA16 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) B29K 79:00 B29K 79:00 B29L 9:00 B29L 9:00 F term (reference) 4D006 GA41 HA41 MA03 MA31 MB04 MC58 MC74X NA05 NA10 NA64 PA01 PB18 PB66 PC80 4F205 AA40J AG03 AH03 AH81 GA07 GB01 GB22 GC06 GF24 GF37 GN04 5H027 BA16

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】水素分離膜の原料樹脂の溶液を一のガラス
基板上に流延して薄膜を形成する工程と、 該原料樹脂の溶液を他のガラス基板上に流延して薄膜を
形成する工程と、 両基板上に形成された薄膜を、表面が未乾燥の状態で、
該表面を相対向させて積層する工程とを備えることを特
徴とする水素分離膜の製造方法。
1. A step of forming a thin film by casting a solution of a raw material resin for a hydrogen separation membrane on one glass substrate, and a step of casting the solution of the raw material resin on another glass substrate to form a thin film. And the thin film formed on both substrates with the surface not dried,
And a step of laminating the surfaces so as to face each other.
【請求項2】両基板上に形成された薄膜を、表面が未乾
燥の状態で、該表面を相対向させて積層した後、加圧し
て乾燥させることを特徴とする請求項1記載の水素分離
膜の製造方法。
2. The hydrogen according to claim 1, wherein the thin films formed on both substrates are laminated with the surfaces being undried, with the surfaces facing each other, and then pressurized and dried. Method for manufacturing separation membrane.
【請求項3】形成された水素分離膜の膜厚が2〜10μ
mの範囲にあることを特徴とする請求項1または請求項
2記載の水素分離膜の製造方法。
3. The formed hydrogen permeable membrane has a film thickness of 2 to 10 μm.
It is in the range of m, The manufacturing method of the hydrogen separation membrane of Claim 1 or Claim 2 characterized by the above-mentioned.
【請求項4】前記原料樹脂は、スルホン化ポリイミドで
あることを特徴とする請求項1乃至請求項3のいずれか
1項記載の水素分離膜の製造方法。
4. The method for producing a hydrogen separation membrane according to claim 1, wherein the raw material resin is sulfonated polyimide.
JP2002070807A 2002-03-14 2002-03-14 Method for producing hydrogen separation membrane Expired - Fee Related JP3830838B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002070807A JP3830838B2 (en) 2002-03-14 2002-03-14 Method for producing hydrogen separation membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002070807A JP3830838B2 (en) 2002-03-14 2002-03-14 Method for producing hydrogen separation membrane

Publications (2)

Publication Number Publication Date
JP2003265937A true JP2003265937A (en) 2003-09-24
JP3830838B2 JP3830838B2 (en) 2006-10-11

Family

ID=29201277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002070807A Expired - Fee Related JP3830838B2 (en) 2002-03-14 2002-03-14 Method for producing hydrogen separation membrane

Country Status (1)

Country Link
JP (1) JP3830838B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006011619A1 (en) * 2004-07-26 2006-02-02 Ngk Insulators, Ltd. Separator and membrane reactor
JP2007014892A (en) * 2005-07-08 2007-01-25 Dainippon Printing Co Ltd Hydrogen purification filter and production method of the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006011619A1 (en) * 2004-07-26 2006-02-02 Ngk Insulators, Ltd. Separator and membrane reactor
JP2007014892A (en) * 2005-07-08 2007-01-25 Dainippon Printing Co Ltd Hydrogen purification filter and production method of the same

Also Published As

Publication number Publication date
JP3830838B2 (en) 2006-10-11

Similar Documents

Publication Publication Date Title
US9314736B2 (en) Separation composite membrane and separating membrane module using the same
Han et al. Hydrophilic chitosan-modified polybenzoimidazole membranes for pervaporation dehydration of isopropanol aqueous solutions
Vanherck et al. Cross-linked polyimide membranes for solvent resistant nanofiltration in aprotic solvents
CA1241241A (en) Method of making membranes for gas separation and the composite membranes
EP2692421B1 (en) Composite membrane
Fuertes et al. Carbon composite membranes from Matrimid® and Kapton® polyimides for gas separation
US7344791B1 (en) Electrolytic membrane for fuel cell and its manufacturing method, and fuel cell and its manufacturing method
US8561812B2 (en) Blend polymer membranes comprising thermally rearranged polymers derived from aromatic polyimides containing ortho-positioned functional groups
US11684890B2 (en) Methane-selective mixed matrix membranes including nanoporous metal-organic framework materials to which a methane-selective functional group is introduced, the use thereof, and a method of preparing the same
US20040115489A1 (en) Water and energy management system for a fuel cell
WO2008076599A1 (en) Asymmetric gas separation membranes with superior capabilities for gas separation
US10367217B2 (en) Membrane electrode assembly manufacturing process
Wang et al. Ultrathin covalent organic framework membranes prepared by rapid electrophoretic deposition
Wang et al. Reducing active layer thickness of polyamide composite membranes using a covalent organic framework interlayer in interfacial polymerization
CN106139936A (en) Polyimide gas separating film and its preparation method and application
Kawakami et al. Gas transport properties of asymmetric polyimide membrane with an ultrathin surface skin layer
Hong et al. Integral PVA-PES composite membranes by surface segregation method for pervaporation dehydration of ethanol
CN112897484A (en) g-C without defect3N4Nanosheets, two-dimensional g-C3N4Nano sheet film, preparation method and application
Zhang et al. Vapor-liquid interfacial polymerization of covalent organic framework membranes for efficient alcohol dehydration
CN110585931A (en) High-flux organic solvent-resistant composite nanofiltration membrane containing metal skeleton compound intermediate layer and preparation method thereof
Lee et al. Effects of monomer rigidity on microstructures and properties of novel polyamide thin-film composite membranes prepared through interfacial polymerization for pervaporation dehydration
Liu et al. Fabrication of highly permeable PDMS@ ZIF‐8/PVDF hollow fiber composite membrane in module for ethanol‐water separation
JP2003265937A (en) Method for manufacturing hydrogen separation membrane
JP5821094B2 (en) Laminated film
WO2012060229A1 (en) Method for condensing carbon dioxide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060712

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20061106

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20070206

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100721

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100721

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120721

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees