JP3830483B2 - Optical configuration for reflection spectroscopy observation. - Google Patents

Optical configuration for reflection spectroscopy observation. Download PDF

Info

Publication number
JP3830483B2
JP3830483B2 JP2003357609A JP2003357609A JP3830483B2 JP 3830483 B2 JP3830483 B2 JP 3830483B2 JP 2003357609 A JP2003357609 A JP 2003357609A JP 2003357609 A JP2003357609 A JP 2003357609A JP 3830483 B2 JP3830483 B2 JP 3830483B2
Authority
JP
Japan
Prior art keywords
sample
optical
optical element
light
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003357609A
Other languages
Japanese (ja)
Other versions
JP2005121513A (en
Inventor
誠治 西澤
敏志 岩本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2003357609A priority Critical patent/JP3830483B2/en
Publication of JP2005121513A publication Critical patent/JP2005121513A/en
Application granted granted Critical
Publication of JP3830483B2 publication Critical patent/JP3830483B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、時系列変換パルス分光計測装置、特に、その反射分光スペクトル観測のための光学配置に関するものである。   The present invention relates to a time-series conversion pulse spectroscopic measurement apparatus, and more particularly to an optical arrangement for observing its reflection spectral spectrum.

近年、極短幅パルスレーザー技術の実用化により、パルス状のコヒーレントな遠赤外領域(特に、テラヘルツ帯域)の電磁波の放射技術及び検出技術が飛躍的に進歩した。それによって、このパルス状の遠赤外領域の電磁波を用いた時系列変換パルス分光が可能となり、日本においても時系列変換パルス分光計測装置の実用化装置の開発が先駆的に進められた。   In recent years, with the practical application of ultra-short pulse laser technology, the radiation technology and detection technology of pulsed coherent far-infrared radiation (especially in the terahertz band) have advanced dramatically. As a result, time-series conversion pulse spectroscopy using this pulsed far-infrared electromagnetic wave has become possible, and the development of a practical device for time-series conversion pulse spectroscopy has been pioneered in Japan.

時系列変換パルス分光とは、パルス状の電磁波の時間に依存した電場強度を測定し、その時間に依存したデータ(時系列データ)をフーリエ変換することにより、そのパルスを形成する各周波数成分の電場強度と位相とを得る分光法である。この分光法の特徴の一つは、測定波長領域が従来計測が困難であった光と電波の境界領域であることが挙げられる。そのため、この分光法により新規材料の性質や新しい現象の解明が期待されている。また、従来の分光法では電磁波の電場強度しか得られなかったが、この時系列変換パルス分光計測法では、電磁波の電場強度の時間変化を直接測定することから、電磁波の電場強度(振幅)だけでなく、その位相をも得ることができるというユニークな特徴を持っている。従って、試料がない場合と比較することによって、位相シフトスペクトルを得ることができる。位相シフトは波数ベクトルに比例することから、この分光法を用いて試料中の分散関係を決定することができ、この分散関係から誘電体材料の誘電率を知得することも可能となる(特開2002−277394号公報参照)。   Time-series conversion pulse spectroscopy is a technique for measuring the time-dependent electric field strength of a pulsed electromagnetic wave and Fourier-transforming the time-dependent data (time-series data) so that each frequency component forming the pulse This is a spectroscopic method for obtaining electric field strength and phase. One of the features of this spectroscopic method is that the measurement wavelength region is a boundary region between light and radio waves, which has conventionally been difficult to measure. Therefore, elucidation of the properties of new materials and new phenomena is expected by this spectroscopy. In addition, only the electric field strength of electromagnetic waves can be obtained with conventional spectroscopy, but with this time-series conversion pulse spectroscopy, only the electric field strength (amplitude) of electromagnetic waves is directly measured because the time variation of the electric field strength of electromagnetic waves is directly measured. Not only that, it has the unique feature of being able to obtain its phase. Therefore, a phase shift spectrum can be obtained by comparing with the case where there is no sample. Since the phase shift is proportional to the wave vector, the dispersion relationship in the sample can be determined using this spectroscopy, and the dielectric constant of the dielectric material can also be obtained from this dispersion relationship (Japanese Patent Laid-Open No. 2005-249867). 2002-277394 gazette).

図1に、従来の時系列変換パルス分光計測装置の一例を示す。   FIG. 1 shows an example of a conventional time-series conversion pulse spectrometer.

符号1はフェムト秒レーザーを放射する光源である。光源1から放射されたフェムト秒レーザー光L1は、ビームスプリッタ(分割手段)2で分割される。一方のフェムト秒レーザーは、励起用パルスレーザー光(ポンプパルス光)L2としてパルス光放射手段5に照射される。このとき、励起用パルスレーザー光L2は光チョッパ3により変調された後、対物レンズ4によって集光される。このパルス光放射手段5は例えば光伝導素子であり、励起用パルスレーザー光L2が照射されたときに瞬間的に電流が流れ、遠赤外電磁波パルスを放射する。この遠赤外電磁波パルスは、放物面鏡6、7により導光され測定試料8に照射される。その試料8の反射又は透過パルス電磁波(この例では透過パルス電磁波)は、放物面鏡9、10により検出手段12へ導光される。   Reference numeral 1 denotes a light source that emits a femtosecond laser. The femtosecond laser light L1 emitted from the light source 1 is split by a beam splitter (dividing means) 2. One femtosecond laser is applied to the pulsed light emitting means 5 as excitation pulsed laser light (pump pulsed light) L2. At this time, the excitation pulse laser light L2 is modulated by the optical chopper 3 and then condensed by the objective lens 4. The pulsed light radiating means 5 is, for example, a photoconductive element, and when the excitation pulse laser beam L2 is irradiated, a current flows instantaneously and radiates a far-infrared electromagnetic wave pulse. The far-infrared electromagnetic wave pulse is guided by the parabolic mirrors 6 and 7 and irradiated to the measurement sample 8. The reflected or transmitted pulsed electromagnetic wave of the sample 8 (transmitted pulse electromagnetic wave in this example) is guided to the detection means 12 by the parabolic mirrors 9 and 10.

ビームスプリッタ2で分割されたもう一方のレーザー光は、検出用パルスレーザー光(サンプリングパルス光)L3として検出手段12へ導光される。この検出手段12も例えば光伝導素子であり、検出用パルスレーザー光L3が照射されて、その瞬間だけ導電性となるので、その瞬間に到達した試料8からの反射又は透過パルス電磁波の電場強度を電流として検出することができる。試料8からの反射又は透過パルス電磁波の電場強度の時系列信号は、光学的遅延手段13(又は14)を用いて、励起用パルスレーザー光L2に対して検出用パルスレーザー光L3に所定の時間間隔づつ遅延時間差を付与することにより得ることができる。この例では、時系列信号測定用の光学的遅延手段13(又は14)の他に、時間原点調整用の光学的遅延手段14(又は13)も備えている。   The other laser light split by the beam splitter 2 is guided to the detection means 12 as a detection pulse laser light (sampling pulse light) L3. This detection means 12 is also a photoconductive element, for example, and is irradiated with the detection pulse laser beam L3 and becomes conductive only at that moment. Therefore, the electric field strength of the reflected or transmitted pulse electromagnetic wave from the sample 8 that reached that moment is obtained. It can be detected as a current. The time series signal of the electric field intensity of the reflected or transmitted pulsed electromagnetic wave from the sample 8 is transmitted to the detection pulse laser beam L3 for a predetermined time with respect to the excitation pulse laser beam L2 using the optical delay means 13 (or 14). It can be obtained by giving a delay time difference at intervals. In this example, in addition to the optical delay means 13 (or 14) for time series signal measurement, an optical delay means 14 (or 13) for time origin adjustment is also provided.

試料8の反射又は透過パルス電磁波の電場強度の各時間分解データは、信号処理手段によって処理される。すなわち、ロックインアンプ16を介してコンピュータ17に伝送され、順次、時系列データとして記憶され、一連の時系列データを、該コンピュータ17でフーリエ変換処理して振動数(周波数)空間に変換することにより、試料8の反射又は透過パルス電磁波の電場強度の振幅及び位相の分光スペクトルが得られる。
特開2003−131137号公報 特開2003−121355号公報 特開2003−83888号公報 特開2003−75251号公報 特開2003−14620号公報 特開2002−277393号公報 特開2002−277394号公報 特開2002−257629号公報 特開2002−243416号公報 特開2002−98634号公報 特開2001−141567号公報 特開2001−66375号公報 特開2001−21503号公報 特開2001−275103号公報 Q. Wu and X.-C.Zhang, Appl. Phys. Lett. 67 (1995) 3523) M. Tani, S. Matsuura, K. Sakai, and S. Nakashima, Appl. Opt. 36 (1997) 7853 阪井清美:分光研究、50 (2001) 261 小島誠治、西澤誠治、武田三男:分光研究、52 (2003) 69
Each time-resolved data of the electric field intensity of the reflected or transmitted pulse electromagnetic wave of the sample 8 is processed by the signal processing means. That is, it is transmitted to the computer 17 via the lock-in amplifier 16 and is sequentially stored as time-series data, and the series of time-series data is subjected to Fourier transform processing by the computer 17 and converted to a frequency (frequency) space. Thus, the spectrum of the amplitude and phase of the electric field intensity of the reflected or transmitted pulse electromagnetic wave of the sample 8 is obtained.
JP 2003-131137 A JP 2003-121355 A JP 2003-83888 A JP 2003-75251 A JP 2003-14620 A JP 2002-277393 A JP 2002-277394 A JP 2002-257629 A JP 2002-243416 A JP 2002-98634 A JP 2001-141567 A JP 2001-66375 A JP 2001-21503 A JP 2001-275103 A Q. Wu and X.-C. Zhang, Appl. Phys. Lett. 67 (1995) 3523) M. Tani, S. Matsuura, K. Sakai, and S. Nakashima, Appl. Opt. 36 (1997) 7853 Sakai Kiyomi: Spectroscopic Studies, 50 (2001) 261 Seiji Kojima, Seiji Nishizawa, Mio Takeda: Spectroscopic Studies, 52 (2003) 69

以上のように、時系列変換パルス分光計測装置では、従来の分光装置では困難であった遠赤外波長域を分光測定帯域に含むに留まらず、その測定スペクトルに強度分散のみならず位相分散を独立に計測することができる。さらに、ピコ秒領域の過渡現象を実時間で追跡する時間分解分光測定も可能である。このような特徴を備えているために、時系列変換パルス分光計測装置で測定でき又は測定したい試料の種類や状態(固体、液体、気体等)等は多岐にわたる。しかしながら、試料への入射光及び試料からの反射光の光束を構成する各光線は入射側光路上の各構成要素において異なる部分で反射されて(すなわち光線間で異なる経路を通過して)試料まで導光され、また、試料で反射された後、検出側光路上の各構成要素の異なる部分で反射されて検出手段側へ導光されるが、試料の試料面に垂直な光軸又は垂直な面に対して対称性を有しない光学配置の場合には、光線の異なる経路の通過に起因した“光線間の時間ずれ”が生じ、より高精度の分光計測を妨げているという問題があった。   As described above, in the time-series conversion pulse spectrometer, the far-infrared wavelength region, which was difficult with conventional spectrometers, is not only included in the spectrum measurement band, but not only intensity dispersion but also phase dispersion is included in the measurement spectrum. It can be measured independently. Furthermore, time-resolved spectroscopic measurement that tracks a transient phenomenon in the picosecond range in real time is also possible. Because of such characteristics, the types and states (solid, liquid, gas, etc.) of the sample that can be measured or are measured by the time-series conversion pulse spectroscopic measurement device are diverse. However, each light beam constituting the light beam of the incident light to the sample and the reflected light from the sample is reflected by different parts in each component on the incident side optical path (that is, through different paths between the light beams) to the sample. After being guided and reflected by the sample, it is reflected by different parts of each component on the detection-side optical path and guided to the detection means side, but the optical axis perpendicular to the sample surface of the sample or perpendicular to the sample surface In the case of an optical arrangement that does not have symmetry with respect to the surface, there is a problem that a “time shift between light beams” due to the passage of light beams through different paths has occurred, preventing more accurate spectroscopic measurement. .

従って、本発明は、上記事情に鑑みてなされたもので、時系列変換パルス分光計測に際して、試料の試料面に垂直な光軸又は垂直な面に対して対称性を有しない光学配置の場合の光線の異なる経路の通過に起因した“光線間の時間ずれ”を回避して、より高精度の分光計測ができる時系列変換パルス分光計測装置を提供することを目的とする。   Accordingly, the present invention has been made in view of the above circumstances, and in the case of an optical arrangement having no symmetry with respect to the optical axis perpendicular to the specimen surface or the perpendicular plane in the time series conversion pulse spectroscopic measurement. An object of the present invention is to provide a time-series conversion pulse spectroscopic measurement apparatus capable of performing spectroscopic measurement with higher accuracy by avoiding “time shift between light beams” caused by passage of light beams through different paths.

上記目的を達成するための本発明は、以下の構成を採用した。
請求項1に記載の時系列変換パルス分光計測装置は、光放射手段と、該光放射手段からの光が照射された試料からの反射光の電界強度の時系列信号を検出する検出手段と、試料を保持する試料保持部と、前記光放射手段側からの光を試料へ導光すると共に前記照射による試料からの反射光を前記検出手段側へ導光する試料部入出射光学系と、を備えた時系列変換パルス分光計測装置において、前記試料保持部と前記試料部入出射光学系とは当該装置に着脱交換可能な付属光学ユニット内に備えられ、前記光放射手段からの光を受けて付属光学ユニット内に送る少なくとも一の光学要素(入射側隣接光学要素)と、前記付属光学ユニット内から出てきた光を受けて前記検出手段へ送る少なくとも一の光学要素(検出側隣接光学要素)とを備え、前記付属光学ユニット内には、前記入射側隣接光学要素からの光を直接受けて試料側へ送る入射側試料部最遠光学要素と、前記試料側からの光を直接前記検出側隣接光学要素へ送る検出側試料部最遠光学要素とが備えられ、前記試料部入出射光学系は、前記試料の試料面に垂直なに対して180°回転対称な光学配置を有するとともに、前記入射側試料部最遠光学要素のFOVの値と前記入射側隣接光学要素のFOVの値とが一致し、かつ、前記検出側試料部最遠光学要素のFOVの値と前記検出側隣接光学要素のFOVの値とが一致することを特徴とする。
In order to achieve the above object, the present invention employs the following configuration.
The time-series conversion pulse spectroscopic measurement device according to claim 1 comprises: a light emitting means; a detecting means for detecting a time series signal of an electric field intensity of reflected light from a sample irradiated with light from the light emitting means; A sample holding unit for holding the sample, and a sample part entrance / exit optical system for guiding the light from the light emitting means side to the sample and guiding the reflected light from the sample by the irradiation to the detecting means side, In the provided time-series conversion pulse spectroscopic measurement device, the sample holder and the sample portion entrance / exit optical system are provided in an attached optical unit that can be attached to and detached from the device, and receive light from the light emitting means. At least one optical element (incident side adjacent optical element) to be sent into the attached optical unit, and at least one optical element (detection side adjacent optical element) to receive the light emitted from the attached optical unit and send it to the detection means And In the attached optical unit, an incident-side sample portion farthest optical element that directly receives light from the incident-side adjacent optical element and sends it to the sample side, and light from the sample side directly to the detection-side adjacent optical element provided a detection-side sample unit farthest optical element sent by the sample unit input and output optical system is configured to have a 180 ° rotationally symmetrical optical arrangement with respect to an axis perpendicular to the sample surface of the sample, the incident-side The FOV value of the sample portion farthest optical element matches the FOV value of the incident side adjacent optical element, and the FOV value of the detection side farthest optical element and the FOV of the detection side adjacent optical element It is characterized by the fact that the values match .

請求項2に記載の時系列変換パルス分光計測装置は、光放射手段と、該光放射手段からの光が照射された試料からの反射光の電界強度の時系列信号を検出する検出手段と、試料を保持する試料保持部と、前記光放射手段側からの光を試料へ導光すると共に前記照射による試料からの反射光を前記検出手段側へ導光する試料部入出射光学系と、を備えた時系列変換パルス分光計測装置において、前記試料保持部と前記試料部入出射光学系とは当該装置に着脱交換可能な付属光学ユニット内に備えられ、前記光放射手段からの光を受けて付属光学ユニット内に送る少なくとも一の光学要素(入射側隣接光学要素)と、前記付属光学ユニット内から出てきた光を受けて前記検出手段へ送る少なくとも一の光学要素(検出側隣接光学要素)とを備え、前記付属光学ユニット内には、前記入射側隣接光学要素からの光を直接受けて試料側へ送る入射側試料部最遠光学要素と、前記試料側からの光を直接前記検出側隣接光学要素へ送る検出側試料部最遠光学要素とが備えられ、前記試料部入出射光学系は、前記試料の試料面に垂直な面に対して面対称の光学配置を有するとともに、前記入射側試料部最遠光学要素のFOVの値と前記入射側隣接光学要素のFOVの値とが一致し、かつ、前記検出側試料部最遠光学要素のFOVの値と前記検出側隣接光学要素のFOVの値とが一致することを特徴とする。 The time-series conversion pulse spectroscopic measurement device according to claim 2 comprises: a light emitting means; a detecting means for detecting a time series signal of an electric field intensity of reflected light from a sample irradiated with light from the light emitting means; A sample holding unit for holding the sample, and a sample part entrance / exit optical system for guiding the light from the light emitting means side to the sample and guiding the reflected light from the sample by the irradiation to the detecting means side, In the provided time-series conversion pulse spectroscopic measurement device, the sample holder and the sample portion entrance / exit optical system are provided in an attached optical unit that can be attached to and detached from the device, and receive light from the light emitting means. At least one optical element (incident side adjacent optical element) to be sent into the attached optical unit, and at least one optical element (detection side adjacent optical element) to receive the light emitted from the attached optical unit and send it to the detection means And In the attached optical unit, an incident-side sample portion farthest optical element that directly receives light from the incident-side adjacent optical element and sends it to the sample side, and light from the sample side directly to the detection-side adjacent optical element a detection-side sample unit farthest optical element sending is provided, the sample unit input and output optical system is configured to have a optical arrangement of plane symmetry with respect to a plane perpendicular to the sample surface of the sample, the incident-side sample unit The FOV value of the farthest optical element matches the FOV value of the incident side adjacent optical element, and the FOV value of the detection side sample part farthest optical element and the FOV value of the detection side adjacent optical element And are consistent with each other.

ここで、請求項1又は2に記載の「試料部入出射光学系」とは、試料の種類や状態の変更に際して、光学系の交換・調整及び/又は光学配置の変更・調整が必要とされる、光路において試料(又は試料保持部)前後に配置された光学要素を含む光学系であって、前記光放射手段と前記検出手段との間に配置された光学系のうち、付属光学ユニット内に備えられている光学系をいう。 Here, the “sample part entrance / exit optical system” according to claim 1 or 2 requires replacement / adjustment of the optical system and / or change / adjustment of the optical arrangement when changing the type or state of the sample. An optical system including optical elements arranged in front of and behind the sample (or sample holder) in the optical path, the optical system disposed between the light emitting means and the detecting means in the attached optical unit. Refers to the optical system provided in

また、前記光放射手段側から前記試料部入出射光学系への入射光束」とは、前記光放射手段側から、前記試料部入出射光学系の複数の光学要素うちの入射側光路上で試料から最も遠い光学要素(以下、「入射側試料部最遠光学要素」と称する。)へ、その光学要素に光路上隣接する前記光放射手段側の光学要素(以下、「入射側隣接光学要素」と称する。)であって付属光学ユニットの外に配置した光学要素を介して入射する光束をいう。ここで、入射側光路とは、試料又は試料保持部から光放射手段側の光路をいう。また、入射側隣接光学要素とは例えば、反射ミラー等である。 In addition, incident light beam from the light emitting means side to the sample portion entrance / exit optical system” means that the light beam from the light emitting means side on the incident side optical path among the plurality of optical elements of the sample portion entrance / exit optical system. To the optical element farthest from the sample (hereinafter referred to as “incident side sample portion farthest optical element”), the optical element adjacent to the optical element on the optical path (hereinafter referred to as “incident side adjacent optical element”). And a light beam incident through an optical element arranged outside the attached optical unit . Here, the incident side optical path refers to an optical path from the sample or the sample holder to the light emitting means side. The incident side adjacent optical element is, for example, a reflection mirror.

また、前記試料部入出射光学系から前記検出手段側への出射光束」とは、前記試料部入出射光学系の複数の光学要素うちの検出側光路上で試料から最も遠い光学要素(以下、「検出側試料部最遠光学要素」と称する。)から前記検出手段側へ、その光学要素に光路上隣接する光学要素(以下、「検出側隣接光学要素」と称する。)であって付属光学ユニットの外に配置した光学要素を介して出射する光束をいう。ここで、検出側光路とは、試料又は試料保持部から検出手段側の光路をいう。また、検出側隣接光学要素は例えば、反射ミラー等である。 Further, the emitted light beam from the sample part entrance / exit optical system to the detection means side” means an optical element farthest from the sample on the detection side optical path among the plurality of optical elements of the sample part entrance / exit optical system (hereinafter referred to as the “exit beam”). , referred to as "detection-side sample unit farthest optical element".) to the detecting means side from the optical element on the optical path adjacent the optical element (hereinafter, referred to as "detection side adjacent optical elements".) comes a A light beam emitted through an optical element arranged outside the optical unit . Here, the detection side optical path refers to the optical path from the sample or the sample holder to the detection means side. The detection side adjacent optical element is, for example, a reflection mirror.

また、入射光束について光学的整合を有する」とは、前記入射側試料部最遠光学要素のFOV(Field of view)の値と前記入射側隣接光学要素のFOVの値とが一致することを意味する。出射光束について光学的整合を有する」とは、前記検出側試料部最遠光学要素のFOVの値と前記検出側隣接光学要素のFOVの値とが一致することを意味する。光学的整合は、試料部入出射光学系の光学要素間でも有していることが好ましい。 Further, having optical matching with respect to the incident light beam” means that the FOV (Field of view) value of the farthest optical element on the incident side and the FOV value of the adjacent optical element on the incident side coincide with each other. means. Having optical alignment with respect to the emitted light beam” means that the FOV value of the detection-side sample portion farthest optical element matches the FOV value of the detection-side adjacent optical element. It is preferable that the optical alignment is also provided between the optical elements of the sample portion entrance / exit optical system.

請求項に記載の時系列変換パルス分光計測装置はさらに、前記試料保持部と前記試料部入出射光学系とは前記時系列変換パルス分光計測装置に着脱交換可能な付属光学ユニット内に備えられていることを特徴とする。 The time-series conversion pulse spectroscopic measurement device according to claim 1 is further provided in an attached optical unit in which the sample holding unit and the sample unit entrance / exit optical system can be attached to and detached from the time-series conversion pulse spectroscopic measurement device. It is characterized by.

請求項に記載の時系列変換パルス分光計測装置は、前記前記試料部入出射光学系は、光路上の前記試料の前後においてカセグレン型の光学配置を有する光学系を含むことを特徴とする。 The time-series conversion pulse spectroscopic measurement apparatus according to claim 3 is characterized in that the sample portion entrance / exit optical system includes an optical system having a Cassegrain type optical arrangement before and after the sample on an optical path.

ここで、請求項に記載の「カセグレン型の光学配置を有する光学系」とは、主鏡に凹型放物面鏡、副鏡に凸型双曲面鏡を使う理想的なカセグレン型のもの限らず、凹面の主鏡と凸面の副鏡とを備えたものをすべて含む。また、そのようなカセグレン型の光学配置を有する光学系に限定するとの意ではなく、カセグレン型の光学配置の変形あるいは改良型も含むものである。従って、例えば、カセグレン型に補正板が付加されたシュミット・カセグレン型のもの等を含む。 Here, “an optical system having a Cassegrain-type optical arrangement” described in claim 3 is an ideal Cassegrain-type that uses a concave parabolic mirror as a primary mirror and a convex hyperboloidal mirror as a secondary mirror. All of them are provided with a concave primary mirror and a convex secondary mirror. In addition, the present invention is not limited to an optical system having such a Cassegrain type optical arrangement, but includes modifications or improvements of the Cassegrain type optical arrangement. Therefore, for example, a Schmidt-Cassegrain type with a correction plate added to the Cassegrain type is included.

請求項1に記載の時系列変換パルス分光計測装置によれば、試料の試料面に垂直なに対して180°回転対称な光学配置を有するので、光学配置の非対称に起因した“光線間の時間ずれ”を排除することができ、分光計測の時間分解能が向上するという効果を奏する。特に、時系列変換パルス分光計測装置は反射光の電界強度の時系列信号を検出するものであるから、光学配置の非対称に起因する光束の“時間のずれ”を排除できる構成であることは極めて有利なことである。また、入射光束及び出射光束について光学的整合を有する構成なので、光放射手段側から試料部入出射光学系へ送られた光は損失することなく試料部入出射光学系で受けることができ、また、試料から反射された光も損失することなく試料部入出射光学系から検出手段側へ送り出されるという効果を奏する。 According to the time-series conversion pulse spectroscopic measurement device according to claim 1, since the optical arrangement is 180 ° rotationally symmetric with respect to the axis perpendicular to the sample surface of the sample, The “time shift” can be eliminated, and the time resolution of spectroscopic measurement is improved. In particular, the time-series conversion pulse spectroscopic measurement device detects a time-series signal of the electric field intensity of the reflected light, so that it is extremely possible to eliminate the “time shift” of the light beam due to the asymmetry of the optical arrangement. It is advantageous. In addition, since it is configured to optically match the incident light beam and the outgoing light beam, the light sent from the light emitting means side to the sample part incident / exit optical system can be received by the sample part incident / exit optical system without loss, The light reflected from the sample is also sent out from the sample portion entrance / exit optical system to the detection means without loss.

請求項2に記載の時系列変換パルス分光計測装置によれば、試料の試料面に垂直な面に対して面対称の光学配置を有するので、光学配置の非対称に起因する光束の“時間ずれ”を排除することができ、分光計測の時間分解能が向上するという効果を奏する。特に、時系列変換パルス分光計測装置は反射光の電界強度の時系列信号を検出するものであるから、光学配置の非対称に起因する光束の“時間のずれ”を排除できる構成であることは極めて有利なことである。請求項1の“試料の試料面に垂直なに対して180°回転対称な光学配置”の場合は像平面上の各像点が形成する図形は物体平面上の各物点が形成する図形に対して正立であるのに対して、請求項2の場合は倒立であるとの相異はあるが、いずれの場合にも二つの図形は相似であり、光学配置の非対称に起因する光束の“時間ずれ”の排除に資する点は同様である。また、入射光束及び出射光束について光学的整合を有する構成なので、光放射手段側から試料部入出射光学系へ送られた光は損失することなく試料部入出射光学系で受けることができ、また、試料から反射された光も損失することなく試料部入出射光学系から検出手段側へ送り出されるという効果を奏する。 According to the time-series conversion pulse spectroscopic measurement apparatus according to claim 2, since the optical arrangement is plane-symmetric with respect to a surface perpendicular to the sample surface of the sample, the “time shift” of the light beam caused by the asymmetry of the optical arrangement. The time resolution of spectroscopic measurement is improved. In particular, the time-series conversion pulse spectroscopic measurement device detects a time-series signal of the electric field intensity of the reflected light, so that it is extremely possible to eliminate the “time shift” of the light beam due to the asymmetry of the optical arrangement. It is advantageous. In the case of the “optical arrangement rotationally symmetrical by 180 ° with respect to an axis perpendicular to the sample surface of the sample” according to claim 1, the figure formed by each image point on the image plane is a figure formed by each object point on the object plane In the case of claim 2, there is a difference that it is upside down, but in either case, the two figures are similar, and the luminous flux due to the asymmetry of the optical arrangement The point that contributes to the elimination of “time lag” is the same. In addition, since it is configured to optically match the incident light beam and the outgoing light beam, the light sent from the light emitting means side to the sample part incident / exit optical system can be received by the sample part incident / exit optical system without loss, The light reflected from the sample is also sent out from the sample portion entrance / exit optical system to the detection means without loss.

請求項1又は2に記載の時系列変換パルス分光計測装置によれば、各付属光学ユニットを試料の種類や状態(固体、液体、気体等)等に応じて適した光学系又は光学配置を有する構成とすることにより、多様な試料やその状態等の分光計測を容易に短時間に行うことができるという効果を奏する。また、入射光束及び出射光束について光学的整合を有する構成なので、付属光学ユニットの交換によっても、付属光学ユニットと装置との接続部分での光の損失を防止することができるという効果を奏する。 According to the time-series conversion pulse spectroscopic measurement device according to claim 1 or 2 , each attached optical unit has an optical system or an optical arrangement suitable for the type and state (solid, liquid, gas, etc.) of the sample. With the configuration, it is possible to easily perform spectroscopic measurement of various samples and their states in a short time. In addition, since the incident light beam and the outgoing light beam are optically matched, it is possible to prevent the loss of light at the connecting portion between the attached optical unit and the apparatus even by replacing the attached optical unit.

請求項に記載の時系列変換パルス分光計測装置によれば、を折り返して焦点を合わせる構成なので、焦点距離に対して全長を著しく短くできるという効果を奏する。また、種々の収差を低減し易いという効果を奏する。 According to the time-series conversion pulse spectroscopic measurement device of the third aspect , since the focal point is obtained by turning the axis , the entire length can be remarkably shortened with respect to the focal length. In addition, there is an effect that various aberrations can be easily reduced.

図2に、本発明に係る時系列変換パルス分光計測装置及びそれにおける反射分光スペクトル観測のための光学配置の一実施形態の概略構成を示す。図1と同様の構成要素については同じ符合を用いてその説明を省略する。   FIG. 2 shows a schematic configuration of an embodiment of an optical arrangement for observing a time-series conversion pulse spectroscopic measurement apparatus according to the present invention and a reflection spectroscopic spectrum in the apparatus. The same components as those in FIG. 1 are denoted by the same reference numerals and the description thereof is omitted.

この時系列変換パルス分光計測装置は、パルスレーザー光源1と、このパルスレーザー光源1からのパルスレーザー光L1を励起用パルスレーザー光L2と検出用パルスレーザー光L3とに分割する分割手段2と、励起用パルスレーザーL2の照射により遠赤外波長域の波長を含むパルス光を放射するパルス光放射手段(光放射手段)5と、このパルス光放射手段5からのパルス光が照射された試料8からの反射パルス光の電界強度の時系列信号を検出する検出手段12と、試料8を保持する試料保持部31と、パルス光放射手段側からのパルス光を試料へ導光する試料部入射光学系32、33、34とこの照射によって試料から反射したパルス光を検出手段側へ導光する試料部出射光学系35、36、37と、を備えた時系列変換パルス分光計測装置において、試料部入出射光学系32、33、34、35、36、37は、試料8の試料面に垂直な40に対して180°回転対称な光学配置を有し、かつ、光放射手段側から試料部入出射光学系32、33、34、35、36、37への入射光束及び試料部入出射光学系32、33、34、35、36、37から検出手段側への出射光束について光学的整合を有するものである。特に、この実施形態は、試料8を保持する試料保持部31と試料部入出射光学系32、33、34、35、36、37とは時系列変換パルス分光計測装置に着脱交換可能な付属光学ユニット30内に備えられている場合である。また、試料部入出射光学系32、33、34、35、36、37の光学配置は、試料8の試料面に垂直な面、すなわち、40を含み紙面に対して垂直な面に対して面対称でもある。 This time-series conversion pulse spectroscopic measurement apparatus includes a pulse laser light source 1 and a dividing unit 2 that divides the pulse laser light L1 from the pulse laser light source 1 into an excitation pulse laser light L2 and a detection pulse laser light L3. Pulsed light emitting means (light emitting means) 5 that emits pulsed light including wavelengths in the far-infrared wavelength region by irradiation with the excitation pulse laser L2, and a sample 8 irradiated with pulsed light from the pulsed light emitting means 5 Detecting means 12 for detecting a time-series signal of the electric field intensity of the reflected pulsed light from the sample, a sample holding part 31 for holding the sample 8, and sample part incident optics for guiding the pulsed light from the pulsed light emitting means side to the sample A time-series conversion pulse component comprising: a system 32, 33, 34; and a sample part emission optical system 35, 36, 37 for guiding the pulse light reflected from the sample by this irradiation to the detection means side. The measuring device, the sample unit input and output optics 32,33,34,35,36,37 has a 180 ° rotational symmetrical optical arrangement with respect to an axis perpendicular 40 to the sample surface of the sample 8, and the light Incident luminous flux to the sample part entrance / exit optical system 32, 33, 34, 35, 36, 37 from the radiation means side and exit from the sample part entrance / exit optical system 32, 33, 34, 35, 36, 37 to the detection means side The optical flux is optically matched. In particular, in this embodiment, the sample holder 31 for holding the sample 8 and the sample portion entrance / exit optical systems 32, 33, 34, 35, 36, and 37 are attached optics that can be attached to and detached from the time-series conversion pulse spectrometer. This is a case where the unit 30 is provided. Further, the optical arrangement of the sample portion entrance / exit optical systems 32, 33, 34, 35, 36, and 37 is relative to a surface perpendicular to the sample surface of the sample 8, that is, a surface that includes the axis 40 and is perpendicular to the paper surface. It is also plane symmetric.

概略以上のような構成を備えた本発明の時系列変換パルス分光計測装置において、試料の分光計測は以下のように行われる。   In the time-series conversion pulse spectroscopic measurement apparatus of the present invention having the above-described configuration, spectroscopic measurement of a sample is performed as follows.

すなわち、光源1から放射されたパルスレーザー光L1は、分割手段2によって励起用パルスレーザー光(ポンプパルス光)L2と検出用パルスレーザー光(サンプリングパルス光)L3とに分割される。励起用パルスレーザー光L2はレンズ4を介してパルス光放射手段5に照射される。この照射によってパルス光放射手段5は遠赤外電磁波パルスを放射する。この遠赤外電磁波パルスは、順に反射ミラー26及び反射ミラー(入射側隣接光学要素)27で反射されて、付属光学ユニット30内の入射側光試料部最遠光学要素(この場合、反射ミラー)32へ送られ、さらに試料部入射光学系の光学要素33、34を介して集光されて試料8を照射する。試料8の光学的情報を含んで試料8から反射された反射パルス電磁波は、試料部出射光学系の光学要素35、36で反射されさらに検出側試料部最遠光学要素37で反射されて付属光学ユニット30の外の反射ミラー(検出側隣接光学要素)28及び反射ミラー29へ導光され、さらに検出手段12へと導光される。他方、分割手段2で分割された検出用パルスレーザー光L3は検出手段12に照射されてその瞬間だけ検出手段12を導電性とする。それによって、その瞬間に到達した試料8からの反射パルス電磁波の電場強度を電流として検出することが可能となる。ここで、反射器42によって、励起用パルスレーザー光L2に対して検出用パルスレーザー光L3に所定の時間間隔づつ遅延時間差を付与することにより、試料8からの反射パルス電磁波の電場強度の時系列信号を得ることができる。ここでは、反射ミラー27及び28は非球面鏡(この場合、特に楕円鏡)であり、反射ミラー26及び29は平面鏡である。また、光学要素32、33、36及び37は平面鏡であり、光学要素34及び35は非球面鏡(この場合、特に楕円鏡)である。 That is, the pulse laser beam L1 emitted from the light source 1 is split by the splitting unit 2 into an excitation pulse laser beam (pump pulse beam) L2 and a detection pulse laser beam (sampling pulse beam) L3. The excitation pulse laser beam L2 is applied to the pulsed light emission means 5 through the lens 4. By this irradiation, the pulsed light radiation means 5 emits a far-infrared electromagnetic wave pulse. The far-infrared electromagnetic wave pulse is sequentially reflected by the reflection mirror 26 and the reflection mirror (incident-side adjacent optical element) 27, and the incident-side light sample portion farthest optical element (in this case, the reflection mirror) in the attached optical unit 30. 32 and further condensed through the optical elements 33 and 34 of the sample portion incidence optical system to irradiate the sample 8. The reflected pulse electromagnetic wave reflected from the sample 8 including the optical information of the sample 8 is reflected by the optical elements 35 and 36 of the sample part emission optical system, and further reflected by the detection-side sample part farthest optical element 37 and attached optics. The light is guided to the reflection mirror ( detection side adjacent optical element) 28 and the reflection mirror 29 outside the unit 30, and further guided to the detection means 12. On the other hand, the detection pulse laser beam L3 divided by the dividing means 2 is irradiated to the detecting means 12, and the detecting means 12 is made conductive only at that moment. As a result, the electric field strength of the reflected pulse electromagnetic wave from the sample 8 that has reached that moment can be detected as a current. Here, a time series of the electric field intensity of the reflected pulse electromagnetic wave from the sample 8 is provided by applying a delay time difference at predetermined time intervals to the detection pulse laser light L3 by the reflector 42 with respect to the excitation pulse laser light L2. A signal can be obtained. Here, the reflection mirrors 27 and 28 are aspherical mirrors (in this case, in particular, elliptical mirrors), and the reflection mirrors 26 and 29 are plane mirrors. The optical elements 32, 33, 36 and 37 are plane mirrors, and the optical elements 34 and 35 are aspherical mirrors (in this case, in particular, elliptical mirrors).

この図2で示した実施形態において、請求項1又は2に記載の「前記光放射手段側から前記試料部入出射光学系への入射光束」とは、入射側隣接光学要素27で反射されて入射側試料部最遠光学要素32へ入射する光束(模式的に代表的な光線A、B、Cを示す)をいう。同様に、「前記試料部入出射光学系から前記検出手段側への出射光束」とは、検出側試料部最遠光学要素37で反射されて検出側隣接光学要素28へ出射される光束(模式的に代表的な光線A’、B’、C’を示す)をいう。   In the embodiment shown in FIG. 2, the “incident light beam from the light emitting means side to the sample portion entrance / exit optical system” according to claim 1 or 2 is reflected by the incident side adjacent optical element 27. This refers to a light beam (typically representative rays A, B, and C) incident on the incident-side sample portion farthest optical element 32. Similarly, “the light beam emitted from the sample portion entrance / exit optical system toward the detection means” is a light beam reflected by the detection-side sample portion farthest optical element 37 and emitted to the detection-side adjacent optical element 28 (schematic model). Representative light rays A ′, B ′, C ′).

また、この図2で示した実施形態において、請求項1又は2に記載の「入射光束について光学的整合を有する」とは、入射側試料部最遠光学要素32のFOV(Field of view)の値と入射側隣接光学要素27のFOVの値とが一致することを意味し、同様に、「出射光束について光学的整合を有する」とは、検出側試料部最遠光学要素37のFOVの値と検出側隣接光学要素28のFOVの値とが一致することを意味する。   In the embodiment shown in FIG. 2, “having optical alignment with respect to the incident light beam” according to claim 1 or 2 refers to an FOV (Field of view) of the farthest optical element 32 on the incident side sample portion. Means that the value of the FOV of the incident side adjacent optical element 27 coincides. Similarly, “having optical alignment with respect to the emitted light beam” means the value of the FOV of the farthest optical element 37 on the detection side. Means that the FOV value of the detection-side adjacent optical element 28 matches.

図示した代表的な3本の光線の光路について述べる。例えば、光放射手段5から放射され順に反射ミラー26の点26a、反射ミラー27の点27aで反射された光線は、試料部入出射光学系に入り、まず、入射側試料部最遠光学要素32の点32aで反射され、さらに光学要素33の点33a、光学要素34の点34aで反射された後、試料8を照射して反射され、光学要素35の点35a、光学要素36の点36aで反射され、さらに検出側試料部最遠光学要素37の点37aで反射された後、試料部入出射光学系を出て、順に反射ミラー28の点28a、反射ミラー29の点29aで反射された後、検出手段12へ向かう。他の2本も同様に、26b、…、29b、又は、26c、…、29cという光路を通る。ここで、本実施形態の試料部入出射光学系は、試料の試料面に垂直な又は垂直な面に対して対称性を有する光学配置であるので、対称性を有しない光学配置の場合の光線の異なる経路の通過に起因したこれらの3本の光線間の“時間ずれ”が回避されている。従って、光学配置の対称性を考慮しなかった従来の時系列変換パルス分光計測装置に比べて、時間分解能が高い分光計測ができる。 The optical paths of the representative three rays shown in the figure will be described. For example, light rays emitted from the light emitting means 5 and sequentially reflected at the point 26a of the reflection mirror 26 and the point 27a of the reflection mirror 27 enter the sample portion entrance / exit optical system, and first, the incident side sample portion farthest optical element 32. After being reflected at the point 32a of the optical element 33 and further reflected at the point 33a of the optical element 33 and the point 34a of the optical element 34, the sample 8 is irradiated and reflected, and is reflected at the point 35a of the optical element 35 and the point 36a of the optical element 36. After being reflected and further reflected at the point 37a of the detection-side sample portion farthest optical element 37, it exits the sample portion entrance / exit optical system, and is sequentially reflected at the point 28a of the reflecting mirror 28 and the point 29a of the reflecting mirror 29. Then, it goes to the detection means 12. Similarly, the other two pass through the optical paths 26b,..., 29b, or 26c,. Here, the sample part entrance / exit optical system of the present embodiment is an optical arrangement having symmetry with respect to an axis perpendicular to the sample surface of the sample or a surface perpendicular to the sample surface. A “time shift” between these three rays due to the passage of the rays through different paths is avoided. Therefore, spectroscopic measurement with high time resolution can be performed as compared with a conventional time-series conversion pulse spectroscopic measurement apparatus that does not consider the symmetry of the optical arrangement.

図示した実施形態においては、試料部入出射光学系32、33、34、35、36、37はを折り返して試料に焦点を合わせる光学配置となっているで、焦点距離に対して全長が著しく短くされており、光学ユニットの小型化が実現されている。試料部入出射光学系又は光学ユニットは、他の折り返しの構成を採用することによって、本実施形態の場合よりさらに小型化が可能であることは言うまでもない。 In the illustrated embodiment, the sample portion entrance / exit optical systems 32, 33, 34, 35, 36, and 37 have an optical arrangement in which the axis is folded to focus on the sample. The length of the optical unit is shortened, and the miniaturization of the optical unit is realized. It goes without saying that the sample portion entrance / exit optical system or optical unit can be further miniaturized as compared with the case of this embodiment by adopting another axial folding configuration.

また、試料部入出射光学系が対称に配置されていることから、光学要素が温度や湿度等の周囲環境に起因して受ける微小変形も対称に生じ易いので、計測においてそれらの微小変形の影響が受けにくいという利点も有する。   In addition, since the sample part entrance / exit optical system is arranged symmetrically, the optical element is likely to undergo symmetrical deformation due to the surrounding environment such as temperature and humidity, so the influence of these micro deformations in the measurement There is also an advantage that it is difficult to receive.

図3に、本発明に係る時系列変換パルス分光計測装置における反射分光スペクトル観測のための光学配置の他の実施形態の概略構成を示す。図1及び図2と同様の構成要素については同じ符合を用いてその説明を省略する。   FIG. 3 shows a schematic configuration of another embodiment of an optical arrangement for reflection spectral spectrum observation in the time-series conversion pulse spectroscopic measurement apparatus according to the present invention. The same components as those in FIGS. 1 and 2 are denoted by the same reference numerals, and the description thereof is omitted.

この時系列変換パルス分光計測装置における試料部入出射光学系51−59は、光路上の試料8の前後においてカセグレン型の光学配置を有する光学系54、55、56を含むものである。また、試料部入出射光学系51−59は、試料8の試料面に垂直な80に対して180°回転対称であり、かつ、試料8の試料面に垂直な面かつ80を含み紙面に対して垂直な面に対して面対称な光学配置を有する。ここでは、光学要素54及び56は凹非球面を有する主鏡であり、また、光学要素55は凸非球面を有する副鏡である。また、光学要素51−53及び55−59は平面鏡である。この実施形態においては、入射側試料部最遠光学要素は符合51で示した光学要素であり、また、検出側試料部最遠光学要素は符合59で示した光学要素である。 The sample portion entrance / exit optical systems 51-59 in this time-series conversion pulse spectroscopic measurement apparatus include optical systems 54, 55, 56 having a Cassegrain type optical arrangement before and after the sample 8 on the optical path. The sample portion entrance / exit optical system 51-59 is rotationally symmetric by 180 ° with respect to the axis 80 perpendicular to the sample surface of the sample 8, and includes a surface perpendicular to the sample surface of the sample 8 and the axis 80. The optical arrangement is plane-symmetric with respect to a plane perpendicular to the plane. Here, the optical elements 54 and 56 are primary mirrors having concave aspheric surfaces, and the optical element 55 is a secondary mirror having convex aspheric surfaces. Optical elements 51-53 and 55-59 are plane mirrors. In this embodiment, the incident-side sample portion farthest optical element is an optical element indicated by reference numeral 51, and the detection-side sample portion farthest optical element is an optical element indicated by reference numeral 59.

図4に、本発明に係る時系列変換パルス分光計測装置における反射分光スペクトル観測のための光学配置の他の実施形態の概略構成を示す。図1から図3と同様の構成要素については同じ符合を用いてその説明を省略する。   FIG. 4 shows a schematic configuration of another embodiment of an optical arrangement for reflection spectral spectrum observation in the time-series conversion pulse spectroscopic measurement apparatus according to the present invention. The same components as those in FIGS. 1 to 3 are denoted by the same reference numerals and the description thereof is omitted.

本実施形態における試料部入出射光学系81−88もを折り返して試料に焦点を合わせる光学配置として、光学ユニットの小型化を実現しているものである。本実施形態の試料部入出射光学系81−88も、試料面に垂直な又は垂直な面に対して対称性を有する光学配置であるので、対称性を有しない光学配置の場合の光線の異なる経路の通過に起因したこれらの3本の光線間の“時間ずれ”が回避されている。 The sample portion entrance / exit optical system 81-88 in the present embodiment also realizes miniaturization of the optical unit as an optical arrangement for turning the axis and focusing on the sample. Since the sample portion entrance / exit optical system 81-88 of this embodiment is also an optical arrangement having symmetry with respect to an axis perpendicular to the sample surface or a surface perpendicular to the sample surface, the light beam in the case of an optical arrangement without symmetry is used. A “time shift” between these three rays due to the passage of different paths is avoided.

さらに、この実施形態において特徴的なのは、光放射手段5で放射された光を受けて光学ユニット内へ導光する光学系76、77の光学配置と、試料部入出射光学系81−88から外へ放射された光を検出手段12へ導光する光学系78、79の光学配置とが、試料面に垂直な90と入射側試料部最遠光学要素は符合81及び検出側試料部最遠光学要素88の中心同士を結ぶ線との交点Pに対して点対称を成す構成であることである。すなわち、光放射手段と検出手段との間に配置された光学系であってかつ試料部入出射光学系でない(すなわち、試料の種類や状態の変更に際して、光学系の交換・調整及び/又は光学配置の変更・調整が必要とされない)光学系に関して、前記交点Pについての点対称性を備えるものである。この対称性は、図2では、試料部入出射光学系の外側の光学系26及び27と28及び29とが試料面に垂直な又は垂直な面に対して対称性を有する光学配置であるのと相異するものである。従って、本実施形態では、試料部入出射光学系については180°回転対称又は面対称を有し、試料部入出射光学系の外側の光学系(光放射手段と検出手段との間に配置された光学系であってかつ試料部入出射光学系でない光学系)については点対称を有する構成である。図4で示すこの実施形態では、試料部入出射光学系の外側の光学系の全てが交点Pに対して点対称を有する構成であるが、試料部入出射光学系の外側の光学系のうちの、試料に近い側の一部の光学系が点対称を有する構成であってもよい。 Further, the present embodiment is characterized by the optical arrangement of the optical systems 76 and 77 for receiving the light emitted from the light emitting means 5 and guiding the light into the optical unit, and the outside of the sample portion entrance / exit optical system 81-88. The optical arrangement of the optical systems 78 and 79 for guiding the light radiated to the detection means 12 is the axis 90 perpendicular to the sample surface and the farthest optical element on the incident side sample part 81 and the farthest detection side sample part. This is a configuration that is point-symmetric with respect to an intersection point P with a line connecting the centers of the optical elements 88. That is, it is an optical system arranged between the light emitting means and the detecting means and not the sample portion entrance / exit optical system (that is, when changing the type or state of the sample, the optical system is exchanged and adjusted and / or optical With respect to the optical system that does not require any change or adjustment of the arrangement, it has point symmetry with respect to the intersection point P. In FIG. 2, this symmetry is an optical arrangement in which the optical systems 26, 27, 28, and 29 outside the sample portion entrance / exit optical system have symmetry with respect to an axis perpendicular to the sample surface or a perpendicular surface. It is different from Therefore, in the present embodiment, the sample portion entrance / exit optical system has 180 ° rotational symmetry or plane symmetry, and is disposed outside the sample portion entrance / exit optical system (between the light emitting means and the detection means). The optical system which is an optical system and is not a sample part entrance / exit optical system) has a point symmetry. In this embodiment shown in FIG. 4, all of the optical systems outside the sample portion entrance / exit optical system are configured to have point symmetry with respect to the intersection point P. Of the optical systems outside the sample portion entrance / exit optical system, A configuration in which a part of the optical system closer to the sample has point symmetry may be used.

本実施形態の点対称を有する試料部入出射光学系の外側の光学系を図2や図3の実施形態その他の実施形態の試料部入出射光学系の外側の光学系に適用することもできる。また、本実施形態の試料部入出射光学系に図2や図3の実施形態その他の実施形態の試料部入出射光学系を適用することもできる。   The optical system outside the sample portion entrance / exit optical system having the point symmetry of this embodiment can also be applied to the optical system outside the sample portion entrance / exit optical system of the embodiments of FIGS. 2 and 3 and other embodiments. . In addition, the sample portion entrance / exit optical system of the embodiment of FIGS. 2 and 3 and other embodiments can be applied to the sample portion entrance / exit optical system of the present embodiment.

以上のように、試料部入出射光学系の対称性とその外側の光学系の対称性とを任意に組み合わせて、対称性を有しない光学配置の場合の光線の異なる経路の通過に起因したこれらの3本の光線間の“時間ずれ”を回避することができる、それによって、光学配置の対称性を考慮しなかった従来の時系列変換パルス分光計測装置に比べて、時間分解能が高い分光計測が可能となる。   As described above, any combination of the symmetry of the sample entrance / exit optical system and the symmetry of the optical system outside the sample part can be used, and these can be attributed to the passage of light beams through different paths in the case of an optical arrangement without symmetry. Spectral measurement with higher time resolution than conventional time-series conversion pulse spectrometers that do not take into account the symmetry of the optical arrangement. Is possible.

従来の時系列変換パルス分光装置の概略構成図である。It is a schematic block diagram of the conventional time series conversion pulse spectroscopy apparatus. 本発明の時系列変換パルス分光装置の一実施形態の概略構成図である。It is a schematic block diagram of one Embodiment of the time series conversion pulse spectroscopy apparatus of this invention. 本発明の時系列変換パルス分光装置の試料部入出射光学系の他の実施形態の概略構成図である。It is a schematic block diagram of other embodiment of the sample part entrance / exit optical system of the time series conversion pulse spectroscopy apparatus of this invention. 本発明の時系列変換パルス分光装置の他の実施形態の概略構成図である。It is a schematic block diagram of other embodiment of the time series conversion pulse spectroscopy apparatus of this invention.

符号の説明Explanation of symbols

1 パルスレーザー光源
2 分割手段
8 試料
12 検出手段
20 時系列変換パルス分光計測装置
27 入射側隣接光学要素
28 検出側隣接光学要素
30 付属光学ユニット
31 試料保持部
32−37 試料部入出射光学系
40 試料面に垂直な
41、42 光学的遅延手段
51−59 試料部入出射光学系
54、56 主鏡
55 副鏡
60 試料面に垂直な
77 入射側隣接光学要素
78 検出側隣接光学要素
81−88 試料部入出射光学系
90 試料面に垂直な
DESCRIPTION OF SYMBOLS 1 Pulse laser light source 2 Dividing means 8 Sample 12 Detection means 20 Time series conversion pulse spectroscopy measuring device 27 Incident side adjacent optical element 28 Detection side adjacent optical element 30 Attached optical unit 31 Sample holding part 32-37 Sample part entrance / exit optical system 40 Axis perpendicular to the sample surface 41, 42 Optical delay means 51-59 Specimen part entrance / exit optical system
54, 56 Primary mirror 55 Secondary mirror 60 Axis perpendicular to the sample surface 77 Incident side adjacent optical element 78 Detection side adjacent optical element 81-88 Specimen part entrance / exit optical system
90 Axis perpendicular to sample surface

Claims (3)

光放射手段と、
該光放射手段からの光が照射された試料からの反射光の電界強度の時系列信号を検出する検出手段と、
試料を保持する試料保持部と、
前記光放射手段側からの光を試料へ導光すると共に前記照射による試料からの反射光を前記検出手段側へ導光する試料部入出射光学系と、を備えた時系列変換パルス分光計測装置において、
前記試料保持部と前記試料部入出射光学系とは当該装置に着脱交換可能な付属光学ユニット内に備えられ、
前記光放射手段からの光を受けて付属光学ユニット内に送る少なくとも一の光学要素(入射側隣接光学要素)と、前記付属光学ユニット内から出てきた光を受けて前記検出手段へ送る少なくとも一の光学要素(検出側隣接光学要素)とを備え、
前記付属光学ユニット内には、前記入射側隣接光学要素からの光を直接受けて試料側へ送る入射側試料部最遠光学要素と、前記試料側からの光を直接前記検出側隣接光学要素へ送る検出側試料部最遠光学要素とが備えられ、
前記試料部入出射光学系は、前記試料の試料面に垂直なに対して180°回転対称な光学配置を有するとともに、前記入射側試料部最遠光学要素のFOVの値と前記入射側隣接光学要素のFOVの値とが一致し、かつ、前記検出側試料部最遠光学要素のFOVの値と前記検出側隣接光学要素のFOVの値とが一致することを特徴とする時系列変換パルス分光計測装置。
Light emitting means;
Detecting means for detecting a time-series signal of the electric field intensity of the reflected light from the sample irradiated with light from the light emitting means;
A sample holder for holding the sample;
A time-series conversion pulse spectroscopic measurement apparatus comprising: a sample portion entrance / exit optical system that guides light from the light emitting means side to the sample and guides reflected light from the sample to the detection means side by the irradiation In
The sample holder and the sample part entrance / exit optical system are provided in an attached optical unit that can be attached to and detached from the apparatus,
At least one optical element (incident side adjacent optical element) that receives light from the light emitting means and sends it into the attached optical unit, and at least one that receives light emitted from the attached optical unit and sends it to the detection means Optical elements (adjacent optical elements on the detection side)
In the attached optical unit, an incident-side sample portion farthest optical element that directly receives light from the incident-side adjacent optical element and sends it to the sample side, and light from the sample side directly to the detection-side adjacent optical element A detection-side sample part farthest optical element to be sent,
The sample unit input and output optical system is configured to have a 180 ° rotationally symmetrical optical arrangement with respect to an axis perpendicular to the sample surface of the sample, the value and the incident side of the FOV of the incident-side sample portion farthest optical element Time-series conversion characterized in that the FOV value of an adjacent optical element matches, and the FOV value of the farthest detection-side sample element optical element matches the FOV value of the detection-side adjacent optical element Pulse spectroscopic measurement device.
光放射手段と、
該光放射手段からの光が照射された試料からの反射光の電界強度の時系列信号を検出する検出手段と、
試料を保持する試料保持部と、
前記光放射手段側からの光を試料へ導光すると共に前記照射による試料からの反射光を前記検出手段側へ導光する試料部入出射光学系と、を備えた時系列変換パルス分光計測装置において、
前記試料保持部と前記試料部入出射光学系とは当該装置に着脱交換可能な付属光学ユニット内に備えられ、
前記光放射手段からの光を受けて付属光学ユニット内に送る少なくとも一の光学要素(入射側隣接光学要素)と、前記付属光学ユニット内から出てきた光を受けて前記検出手段へ送る少なくとも一の光学要素(検出側隣接光学要素)とを備え、
前記付属光学ユニット内には、前記入射側隣接光学要素からの光を直接受けて試料側へ送る入射側試料部最遠光学要素と、前記試料側からの光を直接前記検出側隣接光学要素へ送る検出側試料部最遠光学要素とが備えられ、
前記試料部入出射光学系は、前記試料の試料面に垂直な面に対して面対称の光学配置を有するとともに、前記入射側試料部最遠光学要素のFOVの値と前記入射側隣接光学要素のFOVの値とが一致し、かつ、前記検出側試料部最遠光学要素のFOVの値と前記検出側隣接光学要素のFOVの値とが一致することを特徴とする時系列変換パルス分光計測装置。
Light emitting means;
Detecting means for detecting a time-series signal of the electric field intensity of the reflected light from the sample irradiated with light from the light emitting means;
A sample holder for holding the sample;
A time-series conversion pulse spectroscopic measurement apparatus comprising: a sample portion entrance / exit optical system that guides light from the light emitting means side to the sample and guides reflected light from the sample to the detection means side by the irradiation In
The sample holder and the sample part entrance / exit optical system are provided in an attached optical unit that can be attached to and detached from the apparatus,
At least one optical element (incident side adjacent optical element) that receives light from the light emitting means and sends it into the attached optical unit, and at least one that receives light emitted from the attached optical unit and sends it to the detection means Optical elements (adjacent optical elements on the detection side)
In the attached optical unit, an incident-side sample portion farthest optical element that directly receives light from the incident-side adjacent optical element and sends it to the sample side, and light from the sample side directly to the detection-side adjacent optical element A detection-side sample part farthest optical element to be sent,
The sample unit input and output optical system is configured to have a optical arrangement of plane symmetry with respect to a plane perpendicular to the sample surface of the sample, the incident-side adjacent optical value of FOV of the incident-side sample portion farthest optical element Time-series conversion pulse spectroscopy , wherein the FOV value of the element coincides, and the FOV value of the farthest detection-side sample element optical element coincides with the FOV value of the detection-side adjacent optical element Measuring device.
前記前記試料部入出射光学系は、光路上の前記試料の前後においてカセグレン型の光学配置を有する光学系を含むことを特徴とする請求項1または2のいずれかに記載の時系列変換パルス分光計測装置。 3. The time-series conversion pulse spectroscopy according to claim 1, wherein the sample portion entrance / exit optical system includes an optical system having a Cassegrain type optical arrangement before and after the sample on an optical path. Measuring device.
JP2003357609A 2003-10-17 2003-10-17 Optical configuration for reflection spectroscopy observation. Expired - Fee Related JP3830483B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003357609A JP3830483B2 (en) 2003-10-17 2003-10-17 Optical configuration for reflection spectroscopy observation.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003357609A JP3830483B2 (en) 2003-10-17 2003-10-17 Optical configuration for reflection spectroscopy observation.

Publications (2)

Publication Number Publication Date
JP2005121513A JP2005121513A (en) 2005-05-12
JP3830483B2 true JP3830483B2 (en) 2006-10-04

Family

ID=34614451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003357609A Expired - Fee Related JP3830483B2 (en) 2003-10-17 2003-10-17 Optical configuration for reflection spectroscopy observation.

Country Status (1)

Country Link
JP (1) JP3830483B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10718708B2 (en) 2016-04-05 2020-07-21 Advanced Bio-Spectroscopy Co., Ltd Method for observing dynamic physical property of biological tissue and device for observing dynamic physical property of biological tissue

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4601516B2 (en) * 2005-08-25 2010-12-22 株式会社栃木ニコン Terahertz spectrometer
JP2010008406A (en) * 2008-05-30 2010-01-14 Shinichiro Isobe Multiple light source microscope
JP5717335B2 (en) * 2009-01-23 2015-05-13 キヤノン株式会社 Analysis equipment
JP5556031B2 (en) * 2009-03-13 2014-07-23 株式会社Ihi X-ray injection equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10718708B2 (en) 2016-04-05 2020-07-21 Advanced Bio-Spectroscopy Co., Ltd Method for observing dynamic physical property of biological tissue and device for observing dynamic physical property of biological tissue

Also Published As

Publication number Publication date
JP2005121513A (en) 2005-05-12

Similar Documents

Publication Publication Date Title
JP6220128B2 (en) Terahertz wave generator and terahertz wave measuring method
US10613026B2 (en) Far-infrared imaging device and far-infrared imaging method
US10393579B2 (en) Miniature spectrometer and a spectroscopic method
JPWO2005019809A1 (en) Optical path difference compensation mechanism for time-series signal acquisition of time-series conversion pulse spectrometer
US20180113026A1 (en) Fourier transform spectroscope
US11644418B2 (en) Far-infrared light source and far-infrared spectrometer
AU2015327741A1 (en) Cavity enhanced spectroscopy using off-axis paths
JP2014194344A (en) Method for measurement using terahertz wave
US10845583B2 (en) Scanning microscope
CN108037111A (en) Hand-held LIBS optical systems
JP3830483B2 (en) Optical configuration for reflection spectroscopy observation.
US10018557B2 (en) Terahertz wave measuring device
CN109358036B (en) Laser-induced breakdown spectroscopy signal error correction system and method
US10760968B2 (en) Spectrometric measuring device
US10082456B2 (en) Photothermal conversion spectroscopic analyzer
Kirchner et al. All-reflective UV-VIS-NIR transmission and fluorescence spectrometer for μm-sized samples
US10914628B2 (en) Apparatus for spectrum and intensity profile characterization of a beam, use thereof and method thereof
US9658154B2 (en) Spectrometer and gas analyzer
JP7356498B2 (en) Equipment for analyzing the material composition of samples via plasma spectral analysis
WO2023002585A1 (en) Far-infrared spectroscopy device and sample adapter
JP7486178B2 (en) Spectroscopic equipment
JP4632373B2 (en) Time-series conversion pulse spectrometer
Zarobila et al. Supercontinuum fiber laser source for reflectance calibrations in remote sensing
JP2021051074A (en) Spectroscopic analyzer
CN117367584A (en) Telescope system auto-collimation type spectrum calibration method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060620

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060711

R150 Certificate of patent or registration of utility model

Ref document number: 3830483

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090721

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100721

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120721

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120721

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120721

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120721

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130721

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees