JP3830010B2 - Manufacturing method of steel wire for gas shielded arc welding - Google Patents

Manufacturing method of steel wire for gas shielded arc welding Download PDF

Info

Publication number
JP3830010B2
JP3830010B2 JP07132899A JP7132899A JP3830010B2 JP 3830010 B2 JP3830010 B2 JP 3830010B2 JP 07132899 A JP07132899 A JP 07132899A JP 7132899 A JP7132899 A JP 7132899A JP 3830010 B2 JP3830010 B2 JP 3830010B2
Authority
JP
Japan
Prior art keywords
wire
welding
steel wire
pickling
gas shielded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP07132899A
Other languages
Japanese (ja)
Other versions
JP2000263229A (en
Inventor
弘志 藤井
丞治 大上
忠美 足立
忠盛 熊田
Original Assignee
日鐵住金溶接工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日鐵住金溶接工業株式会社 filed Critical 日鐵住金溶接工業株式会社
Priority to JP07132899A priority Critical patent/JP3830010B2/en
Publication of JP2000263229A publication Critical patent/JP2000263229A/en
Application granted granted Critical
Publication of JP3830010B2 publication Critical patent/JP3830010B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はワイヤ送給性および溶接作業性の優れたガスシールドアーク溶接用鋼ワイヤの製造方法に関する。
【0002】
【従来の技術】
ガスシールドアーク溶接用鋼ワイヤを製造する一般的な方法は、図3のフロー図に示すように(1)熱延鋼線材(原線)のスケールを除去する工程、(2)2〜5mm径までローラダイスあるいは孔型ダイスで伸線する工程(一次伸線)、(3)焼鈍工程、(4)酸洗工程、(5)めっき工程、(6)最終サイズ径まで伸線する工程(仕上げ伸線)、(7)スプール巻またはペイルパックに装填する巻取り工程によって行われる。
【0003】
これらの方法によって製造されたガスシールドアーク溶接用鋼ワイヤ(以下、ワイヤという。)は、溶接の自動化、溶接ロボットの普及やコンジットケーブルの長尺化等に伴って、ワイヤの送給性および溶接作業性の向上要求が一層高まっている。
【0004】
そこで従来、ワイヤ送給性を改善するために、ワイヤには、一般に特公昭50−3256号公報に代表されるように微量の動植物油あるいは鉱物油の単独またはそれらの混合潤滑剤が、前述の(6)の仕上げ伸線工程でワイヤ表面に塗布されており、この潤滑剤がワイヤの送給性を良好にしている。
【0005】
また、長さ6〜20mの長尺のコンジットケーブルを使用し、かつ狭隘な現場での溶接においては、コンジットケーブルをS字あるいはJ字状に曲げて使用されることが多々ある。この場合、コンジットケーブル内のコンジットチューブと内部を通過するワイヤとの接触摩擦部が増えて送給抵抗が増加し、また、ワイヤ送給ローラで溶接ワイヤがスリップしてワイヤ送給性が悪くなる。そのため、特開昭61−27198号公報のように、ワイヤの表面に平均粒径50〜750μmのショットを用いてショットブラスト加工を行い凹部を付与し、その後潤滑油を塗布する方法や特公平1−15356号公報のように、ワイヤ表面を多孔度5〜50%の多孔質めっき層で被覆し、このめっき層に潤滑油を含ませたものが開示されている。
【0006】
しかし、前述の特開昭61−27198号公報にあっては、ワイヤ表面にショットブラスト加工で所定の凹凸形状にしながら連続加工性に問題がある。また、ワイヤ表面が加工硬化しているので屈曲したコンジットチューブ内で摩擦抵抗が大きくなる。一方、特公平1−15356号公報にあっては、めっき被覆のコントロールが難しく製造工程も複雑となる。また、ワイヤ素地表面が平坦な状態でめっき層を多孔質としたものであるから、ワイヤ送給ローラでの送給力とコンジットチューブ内での摩擦抵抗の両方のバランスによって定まる良好なワイヤ送給性を維持することができない。さらに、これらのワイヤでは溶接作業性、特にスパッタの低減効果は得られない。
【0007】
溶接時に長尺のコンジットケーブルがS字あるいはJ字状に曲げられて使用される場合においてもワイヤ送給性が優れ、かつスパッタ発生量が少ないワイヤは、特開平9−141487号公報や特公平4−6478号公報に提案してあるように、図3中に示す焼鈍工程(3)で図1(a)に示すようにワイヤ表層部に粒界酸化層4を形成させ、酸洗工程で図1(b)に示すように外部酸化層2(図1の(a)に示されている)を剥離して地金表面を露出された後にめっきを施し、めっき工程(5)後の仕上げ伸線工程(6)で粒界酸化物1を起点としてめっき層に線状の亀裂を発生させ、その亀裂に液体潤滑剤を保持させてワイヤの送給性を向上させ、また、粒界酸化層4(通常1〜10μm深さ)によってワイヤ表面層に酸素を富化させた酸素の作用によってアークが安定しスパッタ発生の低減を図っている。
【0008】
しかし、前述の特開平9−141487号公報および特公平4−6478号公報に記載してある焼鈍後の酸洗工程に使用される酸洗液では、ワイヤ表層の鉄酸化物(FeO、Fe34)の皮膜(外部酸化層2)のみならず図1(c)に示すように焼鈍によって生成した粒界酸化物1が塩酸から生じた水素によって剥離される。したがって、めっき後の仕上げ伸線工程で図1(d)に示すように部分的にワイヤ表面の結晶粒3がワイヤ表面から剥がれて平面的な凹部5が生じ、溶接時にコンジットチューブ内で大きな抵抗となってアークを不安定にする。また、ワイヤ表層部に富化された酸素も少なくなることから、溶接時にスパッタ発生量も多くなる。
【0009】
【発明が解決しようとする課題】
本発明は、溶接時に長尺のコンジットケーブルがS字あるいはJ字状に曲げられて使用される場合においても、ワイヤ送給ローラでスリップが少なく、かつコンジットチューブ内での摩擦抵抗の少ないなど、ワイヤ送給性が極めて良好で、スパッタの発生が極めて少ないガスシールドアーク溶接用鋼ワイヤの製造方法を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明は、酸洗工程で酸洗液の塩酸濃度、温度、酸洗時間を制御することによって、粒界酸化された結晶粒をワイヤ表面から剥離することなしに、ワイヤ表層部の外部酸化層のみを除去し得ること、および、めっき後の仕上げ伸線工程で部分的にワイヤ表面の結晶粒がワイヤ表面から剥がれ平面的な凹部が生じないことを見出し、本発明を完成した。
【0011】
本発明の要旨は、以下の通りである。
【0012】
(1)ガスシールドアーク溶接用鋼ワイヤの製造方法において、熱延鋼線材を原線とし、該線材表面の脱スケール、一次伸線、非酸化性雰囲気で焼鈍した後、塩酸濃度を2.6〜6.5%、温度7〜40℃の酸洗液で35〜120秒間酸洗して焼鈍によって生成した粒界酸化物を剥離することなく外部酸化層のみを剥離し、次いでめっき処理、仕上げ伸線加工を施す。
【0013】
(2) 焼鈍、酸洗およびめっき処理はワイヤをループ状にして実施する(1)記載のガスシールドアーク溶接用鋼ワイヤの製造方法。
【0014】
【発明の実施の形態】
図2に本発明のワイヤの製造工程例のフロー図を示す。(1)熱延鋼線材(原線)のスケールをショットブラストや酸洗して除去する工程、(2)2〜5mm径まで孔型ダイスで伸線する工程(一次伸線)、(3)コイラーでループ状にする工程、(4)非酸化性雰囲気で焼鈍する工程、(5)酸洗工程、(6)めっき工程、(7)最終サイズ径まで伸線する工程(仕上げ伸線)、(8)スプール巻またはペイルパックに装填する巻取り工程によって製造される。
【0015】
本発明においては、酸洗工程(5)で酸洗液の塩酸濃度および温度を低くし、酸洗時間を適度にして酸洗するので、焼鈍によって生成した粒界酸化を剥離することなく、ワイヤ表層部の外部酸化層のみを剥離する。したがって、めっき(6)後のめっき密着性が良好で、仕上げ伸線工程(7)で結晶粒が剥がれて形成される平面的な凹部が生じることがなく、粒界酸化を起点として線状の亀裂を均一にワイヤ表面に発生させることができ、該亀裂部に液状潤滑剤を保持できるとともに、ワイヤ表層部に酸素を富化した状態の製品ワイヤを製造することができる。本発明での平面的な凹部とは、ワイヤ表面の結晶粒が剥がれて形成される凹部を意味する。
【0016】
さらに、ワイヤをコイラー等でループ状にした状態で焼鈍工程(4)、酸洗(5)およびめっき工程(6)の処理を施し、かつループ状で搬送することによって各処理を高能率で行え、ワイヤの生産性を向上させることができる。
【0017】
なお、ワイヤの焼鈍は、ワイヤ表面に粒界酸化層を生成させる時間を短縮するために金属炭酸塩を塗布して行う。また、焼鈍炉内の酸素を少なくしてワイヤ表面の外部酸化層を少なくするために非酸化性雰囲気で軟化焼鈍し、ワイヤ表層部の粒界を酸化させる。非酸化性のガスとしては、アルゴンガス、窒素ガスまたは一酸化炭素と二酸化炭素の混合ガス等の中性または還元性ガスを使用できるが、ランニングコスト、安全性を考慮して窒素ガスを用いることが好ましい。なお、焼鈍炉内の温度は650℃以上で1分以上保持すればよい。焼鈍炉の上限温度は特に制限しないがエネルギーコストを考えれば950℃以下が好ましい。
【0018】
このようにして製造されたワイヤは、図4に示すワイヤ送給工程によって溶接に供される。すなわち、ワイヤ6はワイヤ送給装置(図示せず)にセットされた状態から送給モータ(図示せず)の駆動によりワイヤ送給部の平型加圧送給ローラ7およびV溝付送給ローラ8によって順次送給され、コンジットケーブル9から溶接トーチ10を通って溶接部に送給される。この時、ワイヤ6表面は、線状の亀裂、例えば亀甲形を示す線状の亀裂部を均一に有するので平型加圧送給ローラ7とV溝付送給ローラ8間でグリップ力が働いてスリップが発生しない。また、例えば長さ6〜20mのコンジットケーブル9の中のコンジットチューブ(図示せず)内を通過するが、ワイヤ表面の線状の亀裂部に液体潤滑剤を保有しているのでワイヤ6とコンジットチューブとの摩擦抵抗が非常に小さくなってワイヤ送給性を極めて良好にしている。さらに、ワイヤ表層部には粒界酸化層および若干の粒内酸化層を有する、すなわちワイヤ表層部には酸素が富化されているので、溶接アークが非常に安定してスパッタ発生量が極めて少ない。
【0019】
酸洗工程におけるにおける塩酸の濃度は、2.6〜6.5%とする。塩酸の濃度が2.6%未満であると、ワイヤ表面の外部酸化層を剥離することができず、製品ワイヤでのめっき密着性が悪くなり、溶接時にコンジットチューブ内でめっきが剥離し、長時間溶接するとコンジットチューブ内に蓄積されてワイヤ送給抵抗が大きくなり、アークが不安定となる。逆に、塩酸の濃度が6.5%を超えると、ワイヤ表面の外部酸化層のみならず粒界酸化物まで剥離して、めっき後の仕上げ伸線工程で部分的にワイヤ表面の結晶粒がワイヤ表面から銅めっき層を伴って剥がれ平面的な凹部が生じ、溶接時にコンジットチューブ内で結晶粒の剥がれた平面的な凹部が大きな抵抗となってアークを不安定にする。また、ワイヤ表層部に富化された酸素も少なくなることから、溶接時にスパッタの発生量も多くなる。
【0020】
酸洗液の温度は7〜40℃とする。酸洗液の温度が7℃未満であると、ワイヤ表面の外部酸化層を剥離することができず、製品ワイヤでのめっきの密着性が悪くなり、溶接時にコンジットチューブ内でめっきが剥離し、長時間溶接するとコンジットチューブ内に蓄積されてワイヤ送給抵抗が大きくなり、アークが不安定となる。逆に、酸洗液の温度が40℃を超えると、塩酸の蒸発によって酸洗液濃度のコントロールが困難となるとともに、ワイヤ表面の外部酸化層のみならず粒界酸化物まで剥離して、めっき後の仕上げ伸線工程で部分的にワイヤ表面の結晶粒がワイヤ表面から剥がれて平面的な凹部が生じ、溶接時にコンジットチューブ内で大きな抵抗となってアークを不安定にする。また、ワイヤ表層部に富化された酸素も少なくなることから、溶接時にスパッタの発生量も多くなる。
【0021】
酸洗時間は25〜120秒間とする。酸洗時間が25秒未満であると、ワイヤ表面の外部酸化層を剥離することができず、製品ワイヤでのめっきの密着性が悪くなり、溶接時にコンジットチューブ内でめっきが剥離し、長時間溶接するとコンジットチューブ内に蓄積されてワイヤ送給抵抗が大きくなり、アークが不安定となる。逆に、酸洗時間が120秒を超えると、酸洗槽を大きくするか、ループ状ワイヤの搬送速度を遅くする必要があり、コスト高または作業能率が悪くなる。さらに、ワイヤ表面の外部酸化層のみならず粒界酸化物まで剥離して、めっき後の仕上げ伸線工程で部分的にワイヤ表面の結晶粒がワイヤ表面から剥がれ平面的な凹部が生じ、溶接時にコンジットチューブ内で大きな抵抗となってアークを不安定にする。また、ワイヤ表層部に富化された酸素も少なくなることから、溶接時にスパッタ発生量も多くなる。
【0022】
【実施例】
以下、実施例により本発明をさらに詳細に説明する。
【0023】
まず、ワイヤ原線はJIS Z3312 YGW11の5.5mm径を用いた。前記ワイヤ素線を図2に示す製造工程で、まずワイヤ原線のスケール除去工程(1)で酸洗してスケールを除去して孔型ダイスを用いて表1に示すワイヤ径まで一次伸線(2)した。次いでコイラー(3)でワイヤをループ状にし、20%の炭酸カリウム水溶液を塗布した後、窒素雰囲気中で表1に示す焼鈍条件(保持時間および保持温度は均熱帯の条件を示す。)で焼鈍(4)した。焼鈍後表1に示す酸洗条件で外部酸化層を酸洗(5)して、銅めっき(6)し、仕上げ伸線(7)で表1に示す製品径まで伸線して粒界酸化物を起点として線状の亀裂を付与した後、20kg巻のスプール巻ワイヤとした。なお、巻き取る前に液体潤滑剤をワイヤ100g当たり0.3〜1.0mg程度ワイヤ表面に塗布した。
【0024】
【表1】

Figure 0003830010
【0025】
ワイヤ送給性の調査は図4に示す装置で6m長さのコンジットケーブル9を用い、図5に示すコンジットケーブル9をループ径D150mmを2回付して、表2に示す溶接条件でワイヤ各10kgを溶接した。
【0026】
【表2】
Figure 0003830010
【0027】
ワイヤ送給性は、ワイヤ送給モータの電機子電流の測定により調べた。なお、電機子電流が3.5Aを超えるとアーク長が変化してアークが不安定になる。
【0028】
また、ワイヤ送給ローラ部でのワイヤスリップは、ワイヤ送給ローラの周速(T)とワイヤ送給ローラ出口のワイヤ速度(W)を測定し、下記式でスリップ率を算出して調べた。ワイヤのスリップ率は5%を超えると、ワイヤ送り速度に緩急が生じてワイヤの送給むらによってアークが不安定となる。
【0029】
スリップ率=(T−W)/T×100
【0030】
なお、スパッタ発生量は、前記ワイヤ送給性の調査とは別に銅製の捕集箱を用いて、ワイヤ送給性の調査と同一の溶接条件で3回溶接(1回の溶接時間1.5min)して捕集したスパッタ量を1分間の発生量に換算して測定した。スパッタ発生量は2g/min以下がアークが安定して良好である。それらの結果を表1にまとめて示す。
【0031】
表1において、試験No.1〜6が本発明例、試験No.9〜12が比較例である。
【0032】
本発明例の試験No.1〜6は、酸洗液の塩酸濃度、温度および酸洗時間が適正であったので、焼鈍によって生成した粒界酸化物を剥離することなくワイヤ表面の外部酸化層のみを剥離することができた。したがって、めっきの密着性が良好で、仕上げ伸線工程で結晶粒が剥がれて平面的な凹部が生じることなく、線状の亀裂を均一にワイヤ表面に生成することができ、亀裂部に液状潤滑剤を保持させることができたので、長尺のコンジットケーブルを曲げて溶接しても、ワイヤ送給ローラ部でのワイヤスリップ率が低く、コンジットチューブ内での摩擦抵抗も少なくて電機子電流が低くアークが安定しており、かつスパッタ発生量が少なく、極めて満足な結果であった。
【0033】
比較例中試験No.7は、酸洗液の塩酸濃度が低く、試験No.9は、酸洗液の温度が低く、また試験No.11は、酸洗時間が短いので、いずれも焼鈍で生じたワイヤ表面の外部酸化層を剥離しきれず、めっき密着性が不良となった。したがって、溶接時にコンジットチューブ内でめっきが剥離して、長時間溶接すると送給抵抗が大きくなり、電機子電流が高くなってアークが不安定となった。
【0034】
試験No.8は、酸洗液の塩酸濃度が高く、試験No.10は、酸洗液の温度が高く、また試験No.12は、酸洗時間が長いので、いずれも焼鈍で生じた粒界酸化物まで剥離して、仕上げ伸線時に部分的に結晶粒が剥がれ平面的な凹部が生じた。したがって、溶接時にコンジットチューブ内での摩擦抵抗が大きくなり、電機子電流が高くなってアークが不安定となった。また、ワイヤ表層部に富化された酸素も少なくなって、溶接時にスパッタ発生量も多くなった。
【0035】
なお、ワイヤ送給ローラ部でのスリップ率は、いずれのワイヤもワイヤ表層部に線状の亀裂が生成したのでスリップが少なく低値であった。
【0036】
【発明の効果】
以上詳述したように、本発明のガスシールドアーク溶接用鋼ワイヤおよびその製造方法によれば、溶接時に長尺のコンジットケーブルがS字あるいはJ字状に曲げられて使用される場合においても、ワイヤ送給ローラでスリップが少なく、かつコンジットチューブ内での摩擦抵抗の少ないなど、ワイヤ送給性が極めて良好で、スパッタの発生が極めて少ないガスシールドアーク溶接用鋼ワイヤを高能率に生産できる。
【図面の簡単な説明】
【図1】 (a)は焼鈍後のワイヤ断面を示す模式図、(b)は外部酸化層が酸洗で溶けた状態を示す模式図、(c)は粒界酸化物まで溶けた状態を示す模式図、(d)は仕上げ伸線で結晶粒界が剥がれ平面的な凹部が生じた状態を示す模式図である。
【図2】 本発明のガスシールドアーク溶接用鋼ワイヤ製造ラインの概要フロー図である。
【図3】 従来のガスシールドアーク溶接用鋼ワイヤ製造ラインの概要フロー図である。
【図4】 ワイヤ送給の工程を示す説明図である。
【図5】 本発明の実施例に用いたコンジットケーブルのループ部を示す図である。
【符号の説明】
粒界酸化物
2 外部酸化層
3 結晶粒
4 粒界酸化層
5 平面的な凹部
6 ワイヤ
7 平型加圧送給ローラ
8 V溝付き送給ローラ
9 コンジットケーブル
10 溶接トーチ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of manufacturing a steel wire for gas shielded arc welding having excellent wire feedability and welding workability.
[0002]
[Prior art]
As shown in the flow diagram of FIG. 3, a general method of manufacturing a steel wire for gas shielded arc welding is as follows: (1) a step of removing the scale of the hot-rolled steel wire (original wire); (2) a diameter of 2 to 5 mm Steps of drawing with a roller die or a hole die (primary drawing), (3) annealing step, (4) pickling step, (5) plating step, (6) drawing to the final size diameter (finishing) Wire drawing), (7) It is carried out by a winding process for loading into a spool or pail pack.
[0003]
Steel wires for gas shielded arc welding (hereinafter referred to as “wires”) manufactured by these methods are used for wire feeding and welding with the automation of welding, the widespread use of welding robots and the length of conduit cables. There is a growing demand for improved workability.
[0004]
Therefore, conventionally, in order to improve the wire feedability, the wire generally contains a small amount of animal or vegetable oil or mineral oil alone or a mixed lubricant thereof, as typified by JP-B-50-3256. It is applied to the surface of the wire in the finishing wire drawing step (6), and this lubricant makes the wire feedability good.
[0005]
In addition, when a long conduit cable having a length of 6 to 20 m is used and welding is performed in a narrow field, the conduit cable is often bent into an S shape or a J shape. In this case, the contact friction portion between the conduit tube in the conduit cable and the wire passing through the inside increases, the feeding resistance increases, and the welding wire slips by the wire feeding roller, so that the wire feeding property is deteriorated. . Therefore, as disclosed in Japanese Patent Application Laid-Open No. Sho 61-27198, a shot blasting process is applied to the surface of the wire using a shot having an average particle diameter of 50 to 750 μm to give a recess, and then a lubricating oil is applied. As disclosed in Japanese Patent No. 15356, a wire surface is covered with a porous plating layer having a porosity of 5 to 50%, and a lubricating oil is included in the plating layer.
[0006]
However, in the above-mentioned Japanese Patent Application Laid-Open No. 61-27198, there is a problem in continuous workability while the wire surface is formed into a predetermined uneven shape by shot blasting. Further, since the wire surface is work-hardened, the frictional resistance is increased in the bent conduit tube. On the other hand, in Japanese Patent Publication No. 1-15356, it is difficult to control the plating coating, and the manufacturing process becomes complicated. In addition, since the surface of the wire substrate is flat and the plating layer is made porous, good wire feedability determined by the balance between the feed force of the wire feed roller and the friction resistance in the conduit tube Can't keep up. Furthermore, with these wires, welding workability, especially the effect of reducing spatter cannot be obtained.
[0007]
Japanese Patent Application Laid-Open No. 9-141487 and Japanese Patent Publication No. 9-141487 disclose a wire having excellent wire feedability and a small amount of spatter generated even when a long conduit cable is bent into an S-shape or J-shape during welding. As suggested in Japanese Patent No. 4-6478, the grain boundary oxide layer 4 is formed on the wire surface layer portion as shown in FIG. 1A in the annealing step (3) shown in FIG. As shown in FIG. 1 (b), the outer oxide layer 2 (shown in FIG. 1 (a)) is peeled to expose the bare metal surface, and then plating is performed, and finishing after the plating step (5) In the wire drawing step (6), a linear crack is generated in the plating layer starting from the grain boundary oxide 1 , and a liquid lubricant is retained in the crack to improve the wire feedability, and the grain boundary oxidation Layer 4 (usually 1-10 μm deep) enriched the wire surface layer with oxygen Arc by the action of iodine are thereby reducing the stability spatter.
[0008]
However, in the pickling solution used in the pickling step after annealing described in Japanese Patent Application Laid-Open No. 9-141487 and Japanese Patent Publication No. 4-6478, iron oxides (FeO, Fe 3 ) on the wire surface layer are used. Not only the O 4 ) film (external oxide layer 2) but also the grain boundary oxide 1 generated by annealing as shown in FIG. 1C is peeled off by hydrogen generated from hydrochloric acid. Accordingly, as shown in FIG. 1 (d), the crystal grain 3 on the wire surface is partially peeled off from the wire surface in the finish wire drawing process after plating, resulting in a flat recess 5, and a large resistance in the conduit tube during welding. And the arc becomes unstable. Further, since the oxygen enriched in the wire surface layer portion is reduced, the amount of spatter generated during welding is increased.
[0009]
[Problems to be solved by the invention]
In the present invention, even when a long conduit cable is bent into an S-shape or J-shape during welding, the wire feeding roller has less slip and the friction resistance in the conduit tube is low. An object of the present invention is to provide a method for producing a steel wire for gas shielded arc welding that has very good wire feedability and generates very little spatter.
[0010]
[Means for Solving the Problems]
The present invention controls the external oxide layer on the surface layer of the wire without peeling the crystal grains that have undergone grain boundary oxidation from the wire surface by controlling the hydrochloric acid concentration, temperature, and pickling time of the pickling solution in the pickling step. The present invention was completed by discovering that only the surface of the wire could be removed and that the crystal grains on the surface of the wire were partly peeled off from the surface of the wire in the finishing wire drawing step after plating.
[0011]
The gist of the present invention is as follows.
[0012]
(1) In the method of manufacturing a steel wire for gas shielded arc welding, a hot-rolled steel wire is used as a raw wire, the surface of the wire is descaled, primary drawn, and annealed in a non-oxidizing atmosphere, and then the hydrochloric acid concentration is 2.6. ~ 6.5%, pickled with pickling solution at a temperature of 7 to 40 ° C for 35 to 120 seconds, peeled off only the outer oxide layer without peeling off the grain boundary oxide formed by annealing, then plated and finished Apply wire drawing.
[0013]
(2) The method for producing a steel wire for gas shielded arc welding according to (1), wherein annealing, pickling and plating are performed with the wire looped.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 2 shows a flow chart of an example of a manufacturing process of the wire of the present invention. (1) A step of removing the scale of hot-rolled steel wire (original wire) by shot blasting or pickling, (2) a step of drawing with a hole die to a diameter of 2 to 5 mm (primary wire drawing), (3) A step of forming a loop with a coiler, (4) a step of annealing in a non-oxidizing atmosphere, (5) a pickling step, (6) a plating step, (7) a step of drawing to the final size diameter (finish drawing), (8) Manufactured by a winding process in which a spool or a pail pack is loaded.
[0015]
In the present invention, in the pickling step (5) , the concentration and temperature of hydrochloric acid in the pickling solution are lowered, and pickling is performed with an appropriate pickling time. Therefore, the wire is formed without peeling off the grain boundary oxidation generated by annealing. Only the outer oxide layer on the surface layer is peeled off. Therefore, the plating adhesion after the plating (6) is good, and there is no planar recess formed by peeling off the crystal grains in the finish wire drawing step (7) . Cracks can be uniformly generated on the surface of the wire, and the liquid lubricant can be held in the cracked part, and a product wire in a state where the surface of the wire is enriched with oxygen can be manufactured. The planar recess in the present invention means a recess formed by peeling off crystal grains on the wire surface.
[0016]
Further, the wire is looped with a coiler or the like, and then the annealing process (4) , pickling (5), and plating process (6) are performed, and each process can be performed with high efficiency by conveying in a loop. , Wire productivity can be improved.
[0017]
Note that the annealing of the wire is performed by applying a metal carbonate in order to shorten the time for generating the grain boundary oxide layer on the wire surface. Further, in order to reduce oxygen in the annealing furnace and reduce the external oxide layer on the surface of the wire, soft annealing is performed in a non-oxidizing atmosphere to oxidize the grain boundary of the wire surface layer portion. As the non-oxidizing gas, neutral or reducing gas such as argon gas, nitrogen gas or a mixed gas of carbon monoxide and carbon dioxide can be used, but nitrogen gas should be used in consideration of running cost and safety. Is preferred. In addition, what is necessary is just to hold | maintain the temperature in an annealing furnace at 650 degreeC or more for 1 minute or more. The upper limit temperature of the annealing furnace is not particularly limited, but is preferably 950 ° C. or lower in view of energy cost.
[0018]
The wire thus manufactured is subjected to welding by the wire feeding process shown in FIG. That is, the wire 6 is set in a wire feeding device (not shown) and driven by a feeding motor (not shown) to drive a flat pressure feeding roller 7 and a V-grooved feeding roller of the wire feeding unit. 8 are sequentially fed from the conduit cable 9 to the welded portion through the welding torch 10. At this time, the surface of the wire 6 has a linear crack, for example, a linear crack showing a tortoiseshell shape, so that a grip force acts between the flat pressure feeding roller 7 and the V-grooved feeding roller 8. Slip does not occur. For example, it passes through a conduit tube (not shown) in a conduit cable 9 having a length of 6 to 20 m. However, since the liquid lubricant is held in a linear crack portion on the surface of the wire, the wire 6 and the conduit are connected. The frictional resistance with the tube is very small, and the wire feedability is extremely good. Further, the wire surface layer portion has a grain boundary oxide layer and a slight intragranular oxide layer, that is, the wire surface layer portion is enriched with oxygen, so that the welding arc is very stable and the amount of spatter generated is extremely small. .
[0019]
The concentration of hydrochloric acid in the pickling process is 2.6 to 6.5%. If the concentration of hydrochloric acid is less than 2.6%, the outer oxide layer on the surface of the wire cannot be peeled off, resulting in poor plating adhesion on the product wire, and the plating peels off in the conduit tube during welding. If time welding is performed, it accumulates in the conduit tube, increasing the wire feed resistance and making the arc unstable. Conversely, when the concentration of hydrochloric acid exceeds 6.5%, not only the outer oxide layer on the wire surface but also the grain boundary oxide is peeled off, and the crystal grains on the wire surface are partially formed in the final wire drawing process after plating. The surface of the wire is peeled off along with the copper plating layer to form a planar recess, and the planar recess from which the crystal grains are peeled off in the conduit tube during welding becomes a large resistance and makes the arc unstable. In addition, since oxygen enriched in the wire surface layer portion is reduced, the amount of spatter generated during welding is increased.
[0020]
The temperature of the pickling solution is 7 to 40 ° C. If the temperature of the pickling solution is less than 7 ° C., the external oxide layer on the wire surface cannot be peeled off, the adhesion of the plating on the product wire will deteriorate, and the plating will peel off in the conduit tube during welding. When welding for a long time, it accumulates in the conduit tube, increasing the wire feed resistance and making the arc unstable. Conversely, if the temperature of the pickling solution exceeds 40 ° C., it becomes difficult to control the concentration of the pickling solution due to evaporation of hydrochloric acid, and not only the outer oxide layer on the wire surface but also the grain boundary oxide is peeled off and plated. In the subsequent finish drawing process, the crystal grains on the surface of the wire are partly peeled off from the surface of the wire to form a flat recess, which becomes a large resistance in the conduit tube during welding and makes the arc unstable. In addition, since oxygen enriched in the wire surface layer portion is reduced, the amount of spatter generated during welding is increased.
[0021]
The pickling time is 25 to 120 seconds. If the pickling time is less than 25 seconds, the external oxide layer on the surface of the wire cannot be peeled off, the adhesion of the plating on the product wire will deteriorate, and the plating will peel off in the conduit tube during welding for a long time. When welding, it accumulates in the conduit tube, increasing the wire feed resistance and making the arc unstable. On the contrary, if the pickling time exceeds 120 seconds, it is necessary to enlarge the pickling tank or slow down the conveying speed of the loop wire, resulting in high cost or poor work efficiency. Furthermore, not only the outer oxide layer on the wire surface but also the grain boundary oxide is peeled off, and the crystal grain on the wire surface is partially peeled off from the wire surface in the finishing wire drawing process after plating, resulting in a flat recess. A large resistance in the conduit tube makes the arc unstable. Further, since the oxygen enriched in the wire surface layer portion is reduced, the amount of spatter generated during welding is increased.
[0022]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples.
[0023]
First, the diameter of 5.5 mm of JIS Z3312 YGW11 was used for the wire original wire. In the manufacturing process shown in FIG. 2, the wire strand is first pickled in the scale removal step (1) of the wire original wire, the scale is removed, and the primary wire is drawn to the wire diameter shown in Table 1 using a hole die. (2) Next, the wire is looped with a coiler (3) , and after applying a 20% aqueous potassium carbonate solution, annealing is performed in a nitrogen atmosphere under the annealing conditions shown in Table 1 (the holding time and holding temperature indicate soaking conditions). (4) After annealing, the outer oxide layer is pickled (5) under the pickling conditions shown in Table 1, copper plated (6), and drawn to the product diameter shown in Table 1 by finishing wire drawing (7) , and grain boundary oxidation. After giving a linear crack starting from the object , a 20 kg spool wire was formed. In addition, before winding up, about 0.3-1.0 mg of liquid lubricant was applied to the wire surface per 100 g of wire.
[0024]
[Table 1]
Figure 0003830010
[0025]
The wire feedability was investigated by using a 6 m long conduit cable 9 with the apparatus shown in FIG. 4, attaching the conduit cable 9 shown in FIG. 5 twice with a loop diameter of D150 mm, and welding each wire under the welding conditions shown in Table 2. 10 kg was welded.
[0026]
[Table 2]
Figure 0003830010
[0027]
The wire feedability was examined by measuring the armature current of the wire feed motor. When the armature current exceeds 3.5 A, the arc length changes and the arc becomes unstable.
[0028]
The wire slip at the wire feed roller was measured by measuring the peripheral speed (T) of the wire feed roller and the wire speed (W) at the outlet of the wire feed roller, and calculating the slip ratio by the following formula. . If the slip ratio of the wire exceeds 5%, the wire feed speed becomes steep and the arc becomes unstable due to the wire feed unevenness.
[0029]
Slip rate = (T−W) / T × 100
[0030]
Note that the amount of spatter generated was determined by using a copper collection box separately from the wire feedability survey, and welding three times under the same welding conditions as the wire feedability survey (one welding time of 1.5 min. ), And the amount of sputter collected was converted into the amount generated for 1 minute and measured. The amount of spatter generated is 2 g / min or less and the arc is stable and good. The results are summarized in Table 1.
[0031]
In Table 1, test no. 1 to 6 are examples of the present invention, test Nos. 9 to 12 are comparative examples.
[0032]
Test no. For Nos. 1 to 6, since the hydrochloric acid concentration, temperature and pickling time of the pickling solution were appropriate, only the outer oxide layer on the wire surface could be peeled without peeling the grain boundary oxide generated by annealing. It was. Therefore, the adhesion of the plating is good, the crystal grains are not peeled off in the finish wire drawing process, and a flat recess is not generated, and a linear crack can be uniformly generated on the wire surface, and the crack is liquid lubricated. Even if a long conduit cable is bent and welded, the wire slip rate at the wire feed roller is low, the friction resistance in the conduit tube is low, and the armature current is low. The result was very satisfactory because the arc was stable and the amount of spatter was small.
[0033]
Test No. in Comparative Examples. No. 7 has a low hydrochloric acid concentration in the pickling solution. No. 9 is a pickling solution having a low temperature. No. 11 has a short pickling time, so that the external oxide layer on the surface of the wire generated by annealing cannot be completely peeled off, resulting in poor plating adhesion. Therefore, the plating peeled off in the conduit tube during welding, and when welding was performed for a long time, the feeding resistance increased, the armature current increased, and the arc became unstable.
[0034]
Test No. No. 8 has a high hydrochloric acid concentration in the pickling solution. No. 10 is a pickling solution having a high temperature. In No. 12, since the pickling time was long, all of them were exfoliated to the grain boundary oxide generated by annealing, and the crystal grains were partly peeled at the time of finish drawing, resulting in a flat recess. Therefore, the frictional resistance in the conduit tube increased during welding, the armature current increased, and the arc became unstable. In addition, the oxygen enriched in the wire surface layer portion was reduced, and the amount of spatter generated during welding was increased.
[0035]
Note that the slip rate at the wire feed roller portion was low because there was little slip because any wire had a linear crack in the wire surface layer portion.
[0036]
【The invention's effect】
As described above in detail, according to the steel wire for gas shielded arc welding of the present invention and the manufacturing method thereof, even when a long conduit cable is bent into an S shape or a J shape during welding, The steel wire for gas shielded arc welding with extremely good wire feedability and extremely low spatter generation, such as less slip by the wire feed roller and less frictional resistance in the conduit tube, can be produced with high efficiency.
[Brief description of the drawings]
1A is a schematic diagram showing a cross section of a wire after annealing, FIG. 1B is a schematic diagram showing a state in which an outer oxide layer is melted by pickling, and FIG. 1C is a state in which even a grain boundary oxide is melted; FIG. 4D is a schematic diagram illustrating a state in which a crystal grain boundary is peeled off by finish drawing and a planar concave portion is generated.
FIG. 2 is a schematic flow diagram of a steel wire production line for gas shielded arc welding according to the present invention.
FIG. 3 is a schematic flow diagram of a conventional steel wire production line for gas shielded arc welding.
FIG. 4 is an explanatory diagram showing a wire feeding process.
FIG. 5 is a diagram showing a loop portion of a conduit cable used in an example of the present invention.
[Explanation of symbols]
1 grain boundary oxide 2 outer oxide layer 3 crystal grain 4 grain boundary oxide layer 5 planar recess 6 wire 7 flat pressure feed roller 8 V-groove feed roller 9 conduit cable 10 welding torch

Claims (2)

ガスシールドアーク溶接用鋼ワイヤの製造方法において、熱延鋼線材を原線とし、該線材表面の脱スケール、一次伸線、非酸化性雰囲気で焼鈍した後、塩酸濃度を2.6〜6.5%、温度7〜40℃の酸洗液で35〜120秒間酸洗して焼鈍によって生成した粒界酸化物を剥離することなく外部酸化層のみを剥離し、次いでめっき処理、仕上げ伸線加工を施すことを特徴とするガスシールドアーク溶接用鋼ワイヤの製造方法。In the method of manufacturing a steel wire for gas shielded arc welding, a hot-rolled steel wire is used as an original wire, and after the surface of the wire is descaled, primary drawn, and annealed in a non-oxidizing atmosphere, the hydrochloric acid concentration is 2.6 to 6. 5%, pickled with a pickling solution at a temperature of 7 to 40 ° C. for 35 to 120 seconds, peeled off only the outer oxide layer without peeling off the grain boundary oxide generated by annealing, then plated and finished wire drawing The manufacturing method of the steel wire for gas shielded arc welding characterized by performing these. 焼鈍、酸洗およびめっき処理はワイヤをループ状にして実施することを特徴とする請求項1記載のガスシールドアーク溶接用鋼ワイヤの製造方法。  The method for producing a steel wire for gas shielded arc welding according to claim 1, wherein the annealing, pickling and plating are performed by making the wire into a loop shape.
JP07132899A 1999-03-17 1999-03-17 Manufacturing method of steel wire for gas shielded arc welding Expired - Lifetime JP3830010B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07132899A JP3830010B2 (en) 1999-03-17 1999-03-17 Manufacturing method of steel wire for gas shielded arc welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07132899A JP3830010B2 (en) 1999-03-17 1999-03-17 Manufacturing method of steel wire for gas shielded arc welding

Publications (2)

Publication Number Publication Date
JP2000263229A JP2000263229A (en) 2000-09-26
JP3830010B2 true JP3830010B2 (en) 2006-10-04

Family

ID=13457379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07132899A Expired - Lifetime JP3830010B2 (en) 1999-03-17 1999-03-17 Manufacturing method of steel wire for gas shielded arc welding

Country Status (1)

Country Link
JP (1) JP3830010B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111604786A (en) * 2020-04-22 2020-09-01 山西太钢不锈钢股份有限公司 Acid pickling process for stainless steel hot-rolled strip steel

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5845136B2 (en) * 2012-05-14 2016-01-20 日鐵住金溶接工業株式会社 Pre-plating method for steel wire for arc welding
CN111424283A (en) * 2020-04-30 2020-07-17 苏州强新合金材料科技有限公司 Pickling process for steel wire

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111604786A (en) * 2020-04-22 2020-09-01 山西太钢不锈钢股份有限公司 Acid pickling process for stainless steel hot-rolled strip steel

Also Published As

Publication number Publication date
JP2000263229A (en) 2000-09-26

Similar Documents

Publication Publication Date Title
JP4012876B2 (en) Method for producing porous electrode wire for electric discharge machining
JPH10272596A (en) Manufacture of welding wire
JP3830010B2 (en) Manufacturing method of steel wire for gas shielded arc welding
JPH04293757A (en) Production of flat square coated wire
JP2000280088A (en) Manufacture of steel wire for gas shield arc welding
JP2000237894A (en) Flux cored wire for gas shielded arc welding and its production
JPH0790529A (en) Production of galvanized silicon-containing steel sheet and galvannealed steel sheet
JPH07106412B2 (en) High conductivity copper coated steel trolley wire manufacturing method
JPS649117B2 (en)
JPH08199325A (en) Production of tin coated flat square copper wire
JP2720925B2 (en) Low spatter wire and method of manufacturing the same
JPH0617217A (en) Production of hot dipped wire
JP4054277B2 (en) Solid wire for arc welding excellent in feeding performance and method for manufacturing the same
JPH0364239B2 (en)
JP2556847B2 (en) Gas shield welding wire
JPH0451274B2 (en)
JPH046478B2 (en)
JPS6257798A (en) Production of steel wire for welding
JP3780116B2 (en) Steel wire for gas shielded arc welding and manufacturing method thereof
JPS5817717B2 (en) Manufacturing method of copper coated steel wire
JPH07251295A (en) Production of steel wire for arc welding
JPS5997794A (en) Production of steel wire for welding
JPH0316237B2 (en)
JP2901492B2 (en) Low spatter wire for carbon dioxide shielded arc welding and method for producing the same
JPH06336663A (en) Continuous hot dip metal coating method of band steel

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060706

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090721

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100721

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120721

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130721

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term