JPH0364239B2 - - Google Patents

Info

Publication number
JPH0364239B2
JPH0364239B2 JP57213996A JP21399682A JPH0364239B2 JP H0364239 B2 JPH0364239 B2 JP H0364239B2 JP 57213996 A JP57213996 A JP 57213996A JP 21399682 A JP21399682 A JP 21399682A JP H0364239 B2 JPH0364239 B2 JP H0364239B2
Authority
JP
Japan
Prior art keywords
wire
welding
annealing
plating
steel wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57213996A
Other languages
Japanese (ja)
Other versions
JPS59104292A (en
Inventor
Taketomo Yamazaki
Minoru Adachi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP21399682A priority Critical patent/JPS59104292A/en
Publication of JPS59104292A publication Critical patent/JPS59104292A/en
Publication of JPH0364239B2 publication Critical patent/JPH0364239B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/40Making wire or rods for soldering or welding

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metal Extraction Processes (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は送給性のすぐれた銅メツキ処理を行つ
た全自動および半自動溶接用鋼ワイヤの製造方法
に関する。 一般にCO2ガスシールド溶接、MIG溶接等には
0.8〜2.4mmφの銅メツキした溶接用鋼ワイヤが使
用されている。これらの溶接用ワイヤは通常スプ
ールやボビンに巻装された状態で、あるいはプイ
ルパツクと呼ばれると円筒容器に装填された状態
で溶接に供せられる。これらのワイヤが使用され
るときは、溶接機の付属装置である送給機に配置
され、送給ローラを通り3〜20mにおよびフレキ
シブルコンジツトチユーブ、溶接トーチ、コンタ
クトチツプを通じ、溶接が行われる例が多い。 この他、走行台車にワイヤスプールなどを搭載
し、コンジツトチユーブを使用しない装置も使用
されているが、これは前記した配置形式のものに
比べて、装置が複雑でしかも大型化しかつ溶接領
域が限定される等の欠点があり用途が限られてい
る。 さてフレキシブルコンジツトチユーブを用いる
溶接ワイヤの送給方式としてはプツシユ式、プル
式、プツシユプル式の3種類であるが、取扱いの
簡便な、プツシユ式の使用比率が高い。しかしプ
ツシユ式の送給機のコンジツトチユーブは通常3
m、広領域の溶接を行う場合には20m程度の長さ
のものが使用され、この時ワイヤ送給性の問題が
生じる。溶接ワイヤには一定速度で供給されるこ
とが求められるものである。しかしワイヤはフレ
キシブルコンジツトの案内管であるライナー、ト
ーチ、チツプとの間の接触抵抗およびフレキシブ
ルコンジツトチユーブの屈曲部とを通りぬけるた
め抵抗力などが作用する。フレキシブルコンジツ
トチユーブが直線状態である現場作業はほとんど
なく、屈曲状態下で使用さるるのが普通であり、
屈曲部が多いほどまた屈曲半径が小さいほど屈曲
部通りねけの抵抗力が大きい。しかして、前記の
如き溶接ワイヤとの接触抵抗力に打克つ力でワイ
ヤは押進せしめられ送給されるものであるが、接
触抵抗が大きくなると溶接ワイヤの送給速度が不
均一になりついには送給停止の事態が生じるよう
になる。このため、溶接アークの不安定、ビード
形状の不揃、融合不良、アンダーカツトの発生な
ど種々の溶接欠陥を生じるようになる。 最近、溶接作業の複雑化、高速化、広範囲化に
伴ないフレキシブルコンジツトライナーとの摩擦
抵抗力が小さく、送給が円滑でかつ安定し、常に
定速送給されうる溶接用ワイヤ、すなわち送給性
が安定な溶接用ワイヤが強く要求されるようにな
つた。 従来、ワイヤの送給性を改善するために、送給
機の送給パワーを高めるかあるいはワイヤ自体の
送給性を向上させることが行われてきた。例えば
特公昭50−3256号公報に開示されたワイヤのよう
にワイヤ自体の送給性の向上をはかるべく、表面
に充分ミクロ的に緻密平滑なワイヤ表面に液状の
潤滑油を塗布し、ワイヤ表面の潤滑能を上げ、送
給抵抗の軽減を計る方法が知られているが必ずし
も安定した送給性を示すものは得られなかつた。
その理由はワイヤ表面が緻密平滑であることから
液状の潤滑剤をワイヤの表面に均一にかつ安定し
た状態で塗布することは困難であり、所定の性能
を得るため潤滑油を多量に塗布せざるを得なかつ
たからである。また必要以上に多量に塗布された
ワイヤ表面の潤滑油は溶接部の材質変化を生ぜし
めたりあるいは溶接作業性に悪影響をおよぼすの
みであつた。第1図は表面が緻密平滑な従来ワイ
ヤの表面状態を示す金属顕微鏡写真(倍率×400)
である。 この従来のワイヤは大気焼鈍すなわち酸素の多
い状態で焼鈍するために、ワイヤ表面より数μm
〜10μm程度の深さまで鉄酸化物(FeO、Fe3O4
Fe2O3等)を主成分とする酸化被覆、いわゆる外
部酸化層を生成する。この外部酸化層はワイヤの
めつき密着性に悪影響を及ぼすことから次工程の
めつき前処理(酸洗)で除去し、表面清浄なワイ
ヤとしてその表面に銅めつき等のめつきを施こ
す。このときの鋼ワイヤは外周部に伸びのあるめ
つき層、内部な軟化焼鈍された伸びのある2重構
造のワイヤ断面であり、該ワイヤの伸線加工に際
して、減面するワイヤにともなつてめつき層が伸
びるので第1図に示すような表面が緻密平滑なワ
イヤとなる。 その他特開昭54−141349号公報に開示されてい
るように、ワイヤの表面を強制的に加圧し、表面
粗度を変え接触抵抗を軽減する方法などもあるが
その効果は前記した潤滑油の塗布による送給性を
改善の効果と大同小異であり、未だ満足すべきも
のではない。 このような従来ワイヤの欠点を解消する溶接用
鋼ワイヤとして本出願人は特開昭56−144892号公
報に示されたワイヤを開発した。即ち、原線径5
〜6mmφの熱延鋼線材を使用して溶接用鋼ワイヤ
を製造する場合、製品の具備すべき適正な引張強
さを得る意味で伸線加工により硬化した線材の応
力除去を目的に伸線加工途中で雰囲気ガス中での
バツチ式軟化焼鈍を行なう。例えば窒素ガス雰囲
気中で700℃×4hrのバツチ焼鈍を行なう。この焼
鈍により鋼ワイヤは所定の引張強さに下げられる
とともに、鋼ワイヤの表面層は前工程よりワイヤ
表面に付着して焼鈍炉内に持込まれた水分、潤滑
剤等によつて酸化されて深さ数μm〜10μm程度
の硬い内部酸化層となる。次いでめつき前処理工
程の酸洗処理でめつき密着性を悪くするワイヤ表
面上層部を除去するとともに、最終の仕上伸線工
程で亀甲状の溝が良好に形成されるように前記硬
い内部酸化層の厚さを調整した上で銅めつき等の
めつきを行なう。 かくして外周部に軟かく伸びのあるめつき層、
中間部は焼鈍で生成し調整された硬い内部酸化
層、内部は軟化焼鈍された伸びのある線材の3重
構造のワイヤ断面を呈する線材が得られる。 こうして得られためつきされた鋼ワイヤを仕上
伸線工程で所望製品径まで伸線を行なう。仕上伸
線工程で伸線すると、それぞれの層間の密着性が
損われず、厚さ調整した中間酸化層の最も薄く伸
びの少ない箇所を基点にして、横溝がワイヤ表面
の円周方向に発達し、ワイヤ表面に亀甲状の溝が
生成する。 この製造方法はワイヤ表面に前工程にて付着し
た水分、潤滑剤等の酸素源のみによりワイヤ表面
層に内部酸化層を生成せしめようとするいわば消
極的な製造方法であつた。このため少なくとも2
時間以上の長時間焼鈍を余儀なくされ、各工程の
連続化を困難なものにしていた。なぜならば伸
線、めつき前処理、めつき処理等の各工程の所要
時間は数分以内であり、焼鈍のみ数時間を要した
場合、連続化のためには膨大な長さの焼鈍炉を設
置しなければならないからである。そこで従来バ
ツチ式の焼鈍炉が採用されている。 第2図はこの溶接用鋼ワイヤの表面状態を示す
金属顕微鏡写真(倍率×400)であり、ワイヤ表
面に亀甲状の横溝が形成されていることがわか
る。この横溝はワイヤの長手方向に対して30〜
150°の角度の範囲内で、ワイヤ円周方向に形成さ
れた溝であり、この溝が全体として亀甲模様を呈
する。このワイヤによればできるだけ少ない液状
潤滑剤を安定した状態でワイヤ長手方向に均一に
付着させることが可能となる。すなわちワイヤ表
面の亀裂内に液状潤滑剤を保持しワイヤの表面は
ミクロ的な含油状態になるのでワイヤ表面の潤滑
能が極めて良好となりコンジツトライナーとの接
触抵抗が軽減される。この結果送給抵抗そのもの
も低く、変動範囲が狭くなりワイヤ送給性が安定
する。ワイヤ送給性の安定・均一化によりアーク
は安定し、ビード形状の不揃、融合不良などの溶
接欠陥が生じない。さらにメツキ亀裂内に液状潤
滑が安定した状態で保持されるため液状潤滑剤は
最小限のワイヤ付着量で安定した送給性が得られ
るので過剰な潤滑剤によるピツト、ブローホール
などの溶接欠陥の発生がなく、すぐれた溶接作業
性が達成される。 本発明はこのようにワイヤ表面に亀甲状の溝を
形成した送給性の良好な溶接用ワイヤの最も好ま
しい製造方法であつて、短時間にかつ安定してワ
イヤ表面に亀甲状の溝を有する溶接用鋼ワイヤを
得ることのできる製造方法を提供することを目的
とする。 又本発明の他の目的は焼鈍−めつき−伸線等の
各工程を連続化しうる溶接用鋼ワイヤの製造方法
を提供することを目的とする。 この目的を達成する本発明の要旨とするところ
は鋼ワイヤ表面にアルカリ金属炭酸塩を塗布して
から窒素ガス雰囲気中で焼鈍し、続いてめつき処
理、伸線加工を施こすことを特徴とする溶接用鋼
ワイヤの製造方法である。 以下本発明を詳細に説明する。 本発明では酸素量が非常に少ない雰囲気、すな
わち100ppm以下の雰囲気で軟化焼鈍しワイヤに
内部酸化層を生成させる。焼鈍炉内の酸素量を少
なくするためには窒素ガス、アルゴンガス等の不
活性ガスあるいは一酸化炭素と二酸化炭素の混合
ガスを使用すればよいがランニングコスト、安全
性等を考慮して本発明では窒素ガスを使用する。
又本発明ではワイヤに内部酸化層を生成させる時
間を短縮化するために焼鈍前のワイヤにアルカリ
金属炭素塩を塗布しこれにより内部酸化層生成を
促進せしめる。実際にはアルカリ金属炭素塩の水
溶液に鋼ワイヤを浸漬として乾燥してから、窒素
ガス雰囲気の焼鈍炉内で焼鈍温度650℃以上で1
分以上保持することで所望の内部酸化層を生成せ
しめる。ワイヤ表面に塗布した炭酸塩がワイヤの
内部酸化層の生成を促進するのは、炭酸塩として
炭酸カリウムを例にして説明すると、該炭酸カリ
ウムが650℃以上の高温で分解し、 K2CO3→K2O+CO2 となつて発生する炭酸ガスが雰囲気の酸素分圧を
有効に高める作用によりワイヤ表面層に内部酸化
が進むものと考えられる。酸素の供給源は焼鈍に
供されるワイヤに付着している水分、伸線潤滑剤
あるいは窒素ガス中の不純物であり、さらにアル
カリ金属炭酸塩が分解して発生する炭酸ガスが安
定した酸素供給源となり高温状態で鋼ワイヤ中の
鉄よりも親和力の強いケイ素、マンガン等の合金
元素と炭素塩の存在により良好に反応してワイヤ
表面からほぼ10μm以内にFe2SiO4、FeMnO2
の酸化物からなる内部酸化層を生成する。このと
き窒素ガス雰囲気中の窒素およびワイヤに付着し
た潤滑剤中の炭素により不可避的に生成する若干
の窒化物、炭化物も内部酸化層中に含有さる。又
ワイヤ表面の若干の鉄の酸化物(FeO、Fe3O4
Fe2O3等)も生成するが、炉内の酸素が非常に少
ないので前記した鉄の酸化被膜の状態、すなわち
外部酸化の状態にはならない。 このようにしてワイヤ表面からほぼ10μm以内
の上記の酸化物、窒化物、炭化物からなる硬い内
部酸化層が生成する。焼鈍工程に次いでめつき前
処理の酸洗工程で、焼鈍で生成しためつき密着性
を悪くする鉄酸化物等の表面上層部を除去すると
共に最終仕上伸線工程で亀甲模様の溝が良好に形
成されるように前記の硬い内部酸化層の膜厚を調
整したうえでめつきを行なう。かくして外周部に
軟かく伸びのあるめつき層、中間部は焼鈍で生成
し調整された硬い内部酸化層、内部は軟化焼鈍さ
れた伸びのある鋼ワイヤの3重構造のワイヤ断面
を呈する線材が得られる。 この3重構造のワイヤを仕上伸線工程で伸線す
るとそれぞれの層間の密着性が損われず、硬い中
間層の最も伸びの少ない箇所を基点にして、亀甲
模様の溝がワイヤ表面の円周方向に発生する。 ここで好ましい焼鈍条件について説明する。前
記したように炭酸塩を塗布した鋼ワイヤを窒素ガ
ス雰囲気中で焼鈍する場合、焼鈍温度650℃以上
で1分以上保持することが必要である。すなわ
ち、焼鈍温度の下限値650℃は炭酸塩を分解させ
るに必要な温度である。他方、上限値は特に限定
しないがエネルギーコストを考えれば900℃以下
が望ましい。 焼鈍時間は鋼ワイヤの温度650℃以上で1分間
以上保持すれば亀甲模様の溝を生成する目的にお
いて充分である。焼鈍温度を1分間以上長く保持
すれば内部酸化層の厚さは焼鈍時間が長くなるに
つれて厚くなるが、この内部酸化層の厚さは少々
厚くなつも幣害はないことから焼鈍時間の上限値
は特に限定せず、エネルギーコスト等から適宜決
定すればよい。 このように所定温度、所定時間で加熱されて内
部酸化層が形成されかつ軟化された焼鈍ワイヤは
冷却されて次工程に供給される。 製造された溶接用鋼ワイヤ表面にはワイヤ送給
性、耐錆性のための潤滑剤が付着されるが、この
潤滑剤は油脂、鉱物油、湿式伸線用潤滑剤等の液
状潤滑剤であり、これら潤滑剤中に添加される界
面活性剤を含むものである。 本発明の製造方法より製造された溶接用ワイヤ
が送給性良好なワイヤになる理由は前記したよう
にワイヤ表面の亀甲状の亀裂に伸線時の液状潤滑
剤等の潤滑剤が入り込み、ワイヤ表面がミクロ的
給油状態になつているので溶接時にコンジツトラ
イナー内壁等と、接触したとき、亀裂内に存在す
る液状潤滑剤が排出され、これにより接触抵抗の
軽減が計れ、よりバラツキのない安定した送給性
が得られるものである。 以下本発明の製造方法の実施例を述べる。 原線径5.5mmφ、化学成分C:0.08%、Si:0.75
%、Mn:1.56%の熱延鋼線材を原線として、製
品径1.2mmφの溶接用鋼ワイヤを第1表のイから
ハに示す各条件の工程を経て製造した。製造工程
イは炭酸カリウム(K2CO3)による工程であり、
工程ロは炭酸リチウム(Li2CO3)、工程ハは炭酸
ナトリウム(Na2CO3)による工程である。工程
ロでは炭酸リチウムが水に溶けにくいために5%
水溶液とし、焼鈍温度を高めた条件とした。
The present invention relates to a method for producing steel wire for fully automatic and semi-automatic welding using copper plating with excellent feedability. Generally, for CO 2 gas shield welding, MIG welding, etc.
Copper-plated welding steel wire with a diameter of 0.8 to 2.4 mm is used. These welding wires are usually used for welding while being wound around a spool or bobbin, or loaded into a cylindrical container called a pull pack. When these wires are used, they are placed in a feeder, which is an accessory to a welding machine, and welded through a feed roller for 3 to 20 meters and through a flexible conduit tube, welding torch, and contact tip. There are many examples. In addition, devices are used in which a wire spool is mounted on a traveling truck and no conduit tube is used, but this device is more complex and larger than the above-mentioned arrangement, and requires a welding area. There are drawbacks such as limitations, and its uses are limited. Now, there are three types of welding wire feeding systems using flexible conduit tubes: push type, pull type, and push-pull type, but the push type is used more frequently because it is easier to handle. However, the conduit tube of a push-type feeder is usually 3
When welding a wide area, a length of about 20 m is used, and at this time problems arise with wire feedability. Welding wire is required to be fed at a constant speed. However, since the wire passes through the contact resistance between the guide tube of the flexible conduit, such as the liner, the torch, and the tip, and the bent portion of the flexible conduit tube, resistance forces act on the wire. There are very few on-site operations where flexible conduit tubes are in a straight state, and they are usually used in a bent state.
The more bends there are, the smaller the radius of bend, the greater the resistance to passing through the bends. The wire is pushed forward and fed by the force that overcomes the contact resistance force with the welding wire as described above, but as the contact resistance increases, the feeding speed of the welding wire becomes uneven and eventually In this case, a situation where the supply is stopped occurs. This causes various welding defects such as instability of the welding arc, irregular bead shapes, poor fusion, and undercuts. Recently, as welding work has become more complex, faster, and wider, welding wires that have low frictional resistance with flexible conduit liners, can be fed smoothly and stably, and can always be fed at a constant speed have been developed. There has been a strong demand for welding wires with stable feedability. Conventionally, in order to improve the feeding performance of the wire, the feeding power of the feeder has been increased or the feeding performance of the wire itself has been improved. For example, in order to improve the feedability of the wire itself, such as the wire disclosed in Japanese Patent Publication No. 50-3256, liquid lubricating oil is applied to the surface of the wire, which is sufficiently microscopically dense and smooth. Although methods are known for increasing the lubricating ability of the material and reducing the feeding resistance, it has not always been possible to obtain a method that shows stable feeding performance.
The reason for this is that the surface of the wire is dense and smooth, so it is difficult to apply liquid lubricant evenly and stably to the surface of the wire, and in order to achieve the desired performance, a large amount of lubricant must be applied. This is because he did not obtain any. Moreover, lubricating oil applied to the wire surface in an unnecessarily large amount only causes changes in the material of the welded part or adversely affects welding workability. Figure 1 is a metal micrograph (magnification x 400) showing the surface condition of a conventional wire with a dense and smooth surface.
It is. This conventional wire is annealed in the atmosphere, that is, in a state with a lot of oxygen, so it is several μm below the wire surface.
Iron oxides (FeO, Fe 3 O 4 ,
This produces an oxide coating, the so-called external oxide layer, whose main component is Fe 2 O 3 , etc.). Since this external oxidation layer has a negative effect on the plating adhesion of the wire, it is removed in the next plating pretreatment (pickling), and the surface of the wire is cleaned, and plating such as copper plating is applied to the surface. . The steel wire at this time has a plating layer with elongation on the outer periphery and a double structure wire cross section with an elongation that has been softened and annealed on the inside. Since the plating layer stretches, a wire with a dense and smooth surface as shown in FIG. 1 is obtained. In addition, as disclosed in JP-A-54-141349, there is a method of forcibly pressurizing the surface of the wire to change the surface roughness and reduce the contact resistance, but this method is less effective than the above-mentioned lubricating oil. The effect of improving the feedability by coating is almost the same, and the effect is still not satisfactory. As a welding steel wire that overcomes the drawbacks of conventional wires, the present applicant has developed a wire disclosed in Japanese Patent Application Laid-open No. 144892/1983. That is, the original wire diameter 5
When manufacturing steel wire for welding using ~6mmφ hot-rolled steel wire, wire drawing is performed to remove stress from the wire that has been hardened by wire drawing in order to obtain the appropriate tensile strength that the product should have. Batch-type softening annealing is performed in an atmospheric gas midway through the process. For example, batch annealing is performed at 700°C for 4 hours in a nitrogen gas atmosphere. This annealing lowers the tensile strength of the steel wire to a predetermined level, and the surface layer of the steel wire is oxidized by moisture, lubricant, etc. that has adhered to the wire surface from the previous process and is brought into the annealing furnace. It becomes a hard internal oxidation layer with a thickness of several μm to 10 μm. Next, the upper layer of the wire surface that deteriorates plating adhesion is removed by pickling treatment in the plating pretreatment process, and the hard internal oxidation is removed so that hexagonal grooves are well formed in the final wire drawing process. After adjusting the layer thickness, plating such as copper plating is performed. In this way, a soft and stretchy plating layer is formed on the outer periphery,
A wire rod exhibiting a wire cross section with a triple structure of a hard internal oxidation layer generated and adjusted by annealing in the middle portion and an elongated wire rod that has been softened and annealed inside is obtained. The thus-obtained thinned steel wire is drawn to a desired product diameter in a final wire drawing step. When the wire is drawn in the final wire drawing process, the adhesion between each layer is not impaired, and horizontal grooves develop in the circumferential direction of the wire surface, starting from the thinnest and least elongated part of the intermediate oxide layer whose thickness has been adjusted. , a hexagonal groove is generated on the wire surface. This manufacturing method is a so-called passive manufacturing method in which an internal oxidation layer is generated on the wire surface layer using only oxygen sources such as moisture and lubricant that have adhered to the wire surface in the previous process. For this reason, at least 2
This necessitated annealing for an extended period of time, making it difficult to carry out each process continuously. This is because the time required for each process such as wire drawing, plating pretreatment, and plating treatment is within a few minutes, and if annealing alone takes several hours, an extremely long annealing furnace would be required for continuous operation. This is because it must be installed. Therefore, a batch-type annealing furnace is conventionally used. FIG. 2 is a metallurgical micrograph (magnification x 400) showing the surface condition of this welding steel wire, and it can be seen that hexagonal-shaped horizontal grooves are formed on the wire surface. This horizontal groove is 30~30mm in the longitudinal direction of the wire.
A groove is formed in the circumferential direction of the wire within an angle of 150°, and the groove exhibits a hexagonal pattern as a whole. With this wire, it is possible to deposit as little liquid lubricant as possible in a stable and uniform manner in the longitudinal direction of the wire. That is, the liquid lubricant is retained in the cracks on the wire surface, and the surface of the wire becomes microscopically oil-impregnated, so that the lubrication ability of the wire surface is extremely good and the contact resistance with the conduit liner is reduced. As a result, the feeding resistance itself is low, the fluctuation range is narrowed, and the wire feeding performance is stabilized. Stable and uniform wire feeding makes the arc stable, and welding defects such as irregular bead shapes and poor fusion do not occur. Furthermore, since the liquid lubrication is maintained in a stable state within the plating cracks, stable feeding of the liquid lubricant can be achieved with a minimum amount of wire adhesion, which prevents welding defects such as pits and blowholes caused by excess lubricant. Excellent welding workability is achieved without occurrence of welding. The present invention is the most preferable method for manufacturing a welding wire having hexagonal grooves formed on the wire surface and having good feedability. It is an object of the present invention to provide a manufacturing method by which steel wire for welding can be obtained. Another object of the present invention is to provide a method of manufacturing steel wire for welding, which allows continuous steps such as annealing, plating, and wire drawing. The gist of the present invention to achieve this object is that the surface of the steel wire is coated with an alkali metal carbonate and then annealed in a nitrogen gas atmosphere, followed by plating and wire drawing. This is a method of manufacturing steel wire for welding. The present invention will be explained in detail below. In the present invention, an internal oxidation layer is generated in the wire by soft annealing in an atmosphere with a very low oxygen content, that is, an atmosphere with an oxygen content of 100 ppm or less. In order to reduce the amount of oxygen in the annealing furnace, an inert gas such as nitrogen gas or argon gas, or a mixed gas of carbon monoxide and carbon dioxide may be used, but the present invention was developed in consideration of running costs and safety. In this case, nitrogen gas is used.
Further, in the present invention, in order to shorten the time required to form an internal oxide layer on the wire, an alkali metal carbon salt is applied to the wire before annealing, thereby promoting the formation of the internal oxide layer. In practice, a steel wire is immersed in an aqueous solution of an alkali metal carbon salt, dried, and then annealed at a temperature of 650°C or higher in an annealing furnace with a nitrogen gas atmosphere.
A desired internal oxidation layer is generated by holding the temperature for more than a minute. The reason why the carbonate applied to the wire surface promotes the formation of an internal oxidation layer on the wire is explained using potassium carbonate as an example.The potassium carbonate decomposes at high temperatures of 650°C or higher and becomes K 2 CO 3 . →It is thought that internal oxidation progresses in the wire surface layer due to the action of the carbon dioxide gas generated as K 2 O + CO 2 that effectively increases the oxygen partial pressure in the atmosphere. Sources of oxygen are moisture adhering to the wire being annealed, wire drawing lubricant, or impurities in nitrogen gas, and carbon dioxide gas generated by decomposition of alkali metal carbonates is a stable source of oxygen. At high temperatures, the steel wire reacts well with alloying elements such as silicon and manganese, which have a stronger affinity than iron, due to the presence of carbon salts, forming oxides such as Fe 2 SiO 4 and FeMnO 2 within approximately 10 μm from the wire surface. An internal oxidation layer consisting of At this time, some nitrides and carbides, which are inevitably produced by nitrogen in the nitrogen gas atmosphere and carbon in the lubricant adhering to the wire, are also contained in the internal oxidation layer. Also, some iron oxides (FeO, Fe 3 O 4 ,
Fe 2 O 3 etc.) are also produced, but since there is very little oxygen in the furnace, the above-mentioned iron oxide film state, ie, external oxidation state, does not occur. In this way, a hard internal oxide layer consisting of the above-mentioned oxides, nitrides, and carbides is formed within approximately 10 μm from the wire surface. Following the annealing process, the pre-plating pickling process removes the upper surface layer such as iron oxides that are generated during annealing and impairs plating adhesion, and the final wire drawing process improves the tortoise-shell pattern grooves. Plating is performed after adjusting the thickness of the hard internal oxide layer so as to form the hard internal oxide layer. In this way, the wire rod has a wire cross section with a triple structure: a soft and elongated plating layer on the outer periphery, a hard internal oxidation layer generated and adjusted by annealing in the middle, and an elongated steel wire that has been softened and annealed inside. can get. When this triple-layered wire is drawn in the final wire drawing process, the adhesion between each layer is not impaired, and the hexagonal pattern grooves are formed around the circumference of the wire surface, starting from the point of least elongation in the hard intermediate layer. occurs in the direction. Here, preferred annealing conditions will be explained. When a steel wire coated with carbonate is annealed in a nitrogen gas atmosphere as described above, it is necessary to maintain the annealing temperature at 650°C or higher for 1 minute or more. That is, the lower limit of the annealing temperature of 650°C is the temperature necessary to decompose carbonate. On the other hand, the upper limit is not particularly limited, but in consideration of energy costs, 900°C or less is desirable. As for the annealing time, keeping the steel wire at a temperature of 650° C. or higher for 1 minute or more is sufficient for the purpose of forming hexagonal pattern grooves. If the annealing temperature is maintained for more than 1 minute, the thickness of the internal oxidation layer will increase as the annealing time increases, but the upper limit of the annealing time is is not particularly limited, and may be appropriately determined based on energy costs and the like. The annealed wire thus heated at a predetermined temperature and for a predetermined time to form an internal oxidation layer and softened is cooled and supplied to the next step. A lubricant is applied to the surface of the produced steel wire for welding to improve wire feedability and rust resistance. These lubricants contain surfactants. The reason why the welding wire manufactured by the manufacturing method of the present invention has good feedability is that, as mentioned above, lubricant such as liquid lubricant during wire drawing enters the hexagonal cracks on the wire surface. Since the surface is in a micro-lubricated state, when it comes into contact with the inner wall of the conduit liner during welding, the liquid lubricant present in the cracks is discharged, reducing contact resistance and making it more stable and consistent. This provides excellent feedability. Examples of the manufacturing method of the present invention will be described below. Original wire diameter 5.5mmφ, chemical composition C: 0.08%, Si: 0.75
%, Mn: 1.56% hot-rolled steel wire as the raw wire, welding steel wire with a product diameter of 1.2 mmφ was manufactured through the processes under each condition shown in Table 1 from A to C. Manufacturing process A is a process using potassium carbonate (K 2 CO 3 ),
Step B is a step using lithium carbonate (Li 2 CO 3 ), and Step C is a step using sodium carbonate (Na 2 CO 3 ). In the process, 5% is used because lithium carbonate is difficult to dissolve in water.
An aqueous solution was used, and the annealing temperature was increased.

【表】【table】

【表】 第3図aは第1表のイに基づいて製造された溶
接用鋼ワイヤの表面状態を示す金属顕微鏡写真
(倍率×400)であり、この写真から明らかなよう
に亀甲状の亀裂がワイヤ表面上に形成されてい
る。又、第3図bはワイヤを6度の傾斜で切断
し、断面を研磨後に金属顕微鏡で撮影した写真で
ありワイヤ表面から内部に向つて内部酸化層が認
められる。第4図は比較のために表面が緻密平滑
な従来ワイヤについて第3図bと同様に撮影した
写真であり、内部酸化層は全く認められない。な
お第2図と第3図aは同様にワイヤ表面に亀甲状
の亀裂が形成されているが焼鈍に要する時間が大
幅に異なり、本発明では1分間に対して第2図の
ワイヤの場合は4時間であり、本発明に従えば亀
甲状の溝を有するワイヤ表面状態を得るに極めて
短時間の軟化焼鈍でよい。従つて本発明では工程
の連続化が可能となる。 第1表に示す本発明の製造方法の実施例ではa
伸線工程からfめつき工程までを連続工程とし
た。すなわちa伸線後コイラーによりワイヤを直
径800mmφのループ状にしてコンベアで横置搬送
して各工程を通過そせて連続処理を行なつた。 第5図はワイヤ表面に付着した液状潤滑剤の付
着量と送給抵抗との関係を示す図である。なお送
給性は第2表に示す条件により行なつた。
[Table] Figure 3a is a metallurgical micrograph (magnification x 400) showing the surface condition of the steel wire for welding manufactured based on A of Table 1. is formed on the wire surface. Moreover, FIG. 3b is a photograph taken with a metallurgical microscope after cutting the wire at an angle of 6 degrees and polishing the cross section, in which an internal oxidation layer is observed from the surface of the wire toward the inside. For comparison, FIG. 4 is a photograph taken in the same manner as in FIG. 3b of a conventional wire with a dense and smooth surface, in which no internal oxidation layer is observed. Although the wires in Figures 2 and 3a have similar hexagonal cracks formed on their surfaces, the time required for annealing is significantly different. According to the present invention, an extremely short softening annealing time is sufficient to obtain a wire surface condition having hexagonal grooves. Therefore, in the present invention, it is possible to make the process continuous. In the example of the manufacturing method of the present invention shown in Table 1, a
The process from the wire drawing process to the f-plating process was a continuous process. That is, after drawing the wire, the wire was formed into a loop having a diameter of 800 mm by a coiler, and was conveyed horizontally by a conveyor to pass through each process for continuous processing. FIG. 5 is a diagram showing the relationship between the amount of liquid lubricant adhering to the wire surface and the feeding resistance. The feedability was tested under the conditions shown in Table 2.

【表】【table】

【表】 ワイヤの送給性は送給モータ電機子電流で等価
的に示すことができ、この電機子電流値が大きい
程送給抵抗が大きくて送給性の悪いことを意味
し、逆に値が小さい程送給性は良好である。図か
ら明らかなように表面が緻密平滑な従来ワイヤC
に比べて表面に亀甲状の亀裂を有するワイヤは、
本発明の製造方法イによるワイヤA、従来の製造
方法によるワイヤBともに送給抵抗が低く、ワイ
ヤの送給性が良好である。なお、第1表の本発明
の製造方法ロおよびハによりワイヤの送給性もワ
イヤAと同様に良好であつた。 以上説明したように本発明によればワイヤ表面
に亀甲状の溝を形成した溶接用鋼ワイヤを短時間
でかつ安定して製造することができる。従つて各
工程の連続化が可能となり本発明の工業的価値は
大である。
[Table] The wire feeding performance can be equivalently expressed by the feeding motor armature current, and the larger the armature current value, the greater the feeding resistance and poorer feeding performance. The smaller the value, the better the feedability. As is clear from the figure, the conventional wire C has a dense and smooth surface.
Wires with hexagonal cracks on the surface compared to
Both the wire A manufactured by the manufacturing method A of the present invention and the wire B manufactured by the conventional manufacturing method have low feeding resistance and good wire feeding performance. In addition, the wire feedability was also as good as that of wire A according to the manufacturing methods (b) and (c) of the present invention shown in Table 1. As explained above, according to the present invention, a steel wire for welding having hexagonal grooves formed on the wire surface can be manufactured stably in a short time. Therefore, each step can be made continuous, and the present invention has great industrial value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図、第3図aは溶接用鋼ワイヤの
表面状態を示す金属顕微鏡写真(倍率×400)で
第1図は表面が緻密平滑な従来ワイヤ、第2図は
表面に亀甲状の亀裂を有するワイヤで従来の製造
方法によるもの、第3図aは本発明の製造方法イ
によるワイヤである。第3図b、第4図はワイヤ
の断面状態を示す金属顕微鏡写真(倍率×400)
で第3図bは本発明の製造方法イによるワイヤ、
第4図は表面が緻密平滑な従来ワイヤである。第
5図は液状潤滑剤の付着量と送給抵抗との関係を
示す図である。 第5図において:A:表面に亀甲状の亀裂を有
するワイヤで本発明方法によるもの、B:表面に
亀甲状の亀裂を有するワイヤで従来の方法による
もの、C:表面が緻密平滑な従来ワイヤ。
Figures 1, 2, and 3a are metallurgical micrographs (magnification x 400) showing the surface condition of steel wire for welding. Figure 1 shows a conventional wire with a dense and smooth surface, and Figure 2 shows a hexagonal surface Fig. 3a shows a wire having a crack in the form of a conventional manufacturing method. Figures 3b and 4 are metallurgical micrographs showing the cross-sectional state of the wire (magnification x 400)
FIG. 3b shows a wire according to the manufacturing method A of the present invention,
FIG. 4 shows a conventional wire with a dense and smooth surface. FIG. 5 is a diagram showing the relationship between the amount of liquid lubricant deposited and the feeding resistance. In Fig. 5: A: Wire with hexagonal cracks on the surface made by the method of the present invention, B: Wire with hexagonal cracks on the surface made by the conventional method, C: Conventional wire with a dense and smooth surface. .

Claims (1)

【特許請求の範囲】[Claims] 1 鋼ワイヤ表面にアルカリ金属炭酸塩を塗布し
てから窒素ガス雰囲気中で焼鈍し、続いてめつき
処理、伸線加工を施すことを特徴とする溶接用鋼
ワイヤの製造方法。
1. A method for manufacturing a steel wire for welding, which comprises applying an alkali metal carbonate to the surface of the steel wire, annealing it in a nitrogen gas atmosphere, and subsequently subjecting it to plating and wire drawing.
JP21399682A 1982-12-08 1982-12-08 Production of steel wire for welding Granted JPS59104292A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21399682A JPS59104292A (en) 1982-12-08 1982-12-08 Production of steel wire for welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21399682A JPS59104292A (en) 1982-12-08 1982-12-08 Production of steel wire for welding

Publications (2)

Publication Number Publication Date
JPS59104292A JPS59104292A (en) 1984-06-16
JPH0364239B2 true JPH0364239B2 (en) 1991-10-04

Family

ID=16648525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21399682A Granted JPS59104292A (en) 1982-12-08 1982-12-08 Production of steel wire for welding

Country Status (1)

Country Link
JP (1) JPS59104292A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60191694A (en) * 1984-03-14 1985-09-30 Nippon Steel Weld Prod & Eng Co Ltd Production of steel wire for welding
JP4794413B2 (en) * 2006-10-25 2011-10-19 株式会社神戸製鋼所 Solid wire for gas shielded arc welding

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5118236A (en) * 1974-08-05 1976-02-13 Matsushita Electric Ind Co Ltd TETSUKOYOSETSUYOSORITSUDOWAIYANO SEIZOHOHO
JPS56144892A (en) * 1980-04-10 1981-11-11 Nippon Steel Weld Prod & Eng Co Ltd Wire for welding
JPS56151197A (en) * 1980-04-23 1981-11-24 Nippon Steel Weld Prod & Eng Co Ltd Continuous manufacture of welding wire

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5118236A (en) * 1974-08-05 1976-02-13 Matsushita Electric Ind Co Ltd TETSUKOYOSETSUYOSORITSUDOWAIYANO SEIZOHOHO
JPS56144892A (en) * 1980-04-10 1981-11-11 Nippon Steel Weld Prod & Eng Co Ltd Wire for welding
JPS56151197A (en) * 1980-04-23 1981-11-24 Nippon Steel Weld Prod & Eng Co Ltd Continuous manufacture of welding wire

Also Published As

Publication number Publication date
JPS59104292A (en) 1984-06-16

Similar Documents

Publication Publication Date Title
US6492036B2 (en) Porous electrode wire for use in electrical discharge machining and method of manufacturing the same
JP4417358B2 (en) Flux-cored wire manufacturing method for stainless steel welding and flux-cored wire manufactured thereby
US6079243A (en) Method of production of welding wire
JPS6321595B2 (en)
JPH0364239B2 (en)
JPH046478B2 (en)
JPS58128294A (en) Steel wire of small diameter for welding
KR100668170B1 (en) Baked flux cored wire for gas shield arc welding having excellent rust resistance and feedability and a method for preparing thereof
JPH0316237B2 (en)
JPH0452197B2 (en)
JP2000280088A (en) Manufacture of steel wire for gas shield arc welding
JP3830010B2 (en) Manufacturing method of steel wire for gas shielded arc welding
JPH0452196B2 (en)
JP4054277B2 (en) Solid wire for arc welding excellent in feeding performance and method for manufacturing the same
JPH0569181A (en) Steel wire for gas shield arc welding and manufacture thereof
JPH0451274B2 (en)
JPS5997794A (en) Production of steel wire for welding
JP2981928B2 (en) Copper plated steel wire for gas shielded arc welding
JPS61126995A (en) Production of solid wire for welding
JPH0617217A (en) Production of hot dipped wire
JPH09141487A (en) Low spatter steel wire for welding and its manufacture
JP3780116B2 (en) Steel wire for gas shielded arc welding and manufacturing method thereof
JP3878406B2 (en) Hot rolled wire rod for arc welding solid wire and manufacturing method thereof
JP2003311468A (en) Flux cored wire for gas-shielded arc welding
JPS63149093A (en) Gas shielded welding wire