JPH046478B2 - - Google Patents

Info

Publication number
JPH046478B2
JPH046478B2 JP59048642A JP4864284A JPH046478B2 JP H046478 B2 JPH046478 B2 JP H046478B2 JP 59048642 A JP59048642 A JP 59048642A JP 4864284 A JP4864284 A JP 4864284A JP H046478 B2 JPH046478 B2 JP H046478B2
Authority
JP
Japan
Prior art keywords
wire
welding
annealing
steel wire
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59048642A
Other languages
Japanese (ja)
Other versions
JPS60191694A (en
Inventor
Mitsuo Kurihara
Minoru Adachi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Welding and Engineering Co Ltd
Original Assignee
Nippon Steel Welding and Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Welding and Engineering Co Ltd filed Critical Nippon Steel Welding and Engineering Co Ltd
Priority to JP4864284A priority Critical patent/JPS60191694A/en
Publication of JPS60191694A publication Critical patent/JPS60191694A/en
Publication of JPH046478B2 publication Critical patent/JPH046478B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/40Making wire or rods for soldering or welding

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metal Extraction Processes (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(発明の技術分野) 本発明は送給性のすぐれた銅メツキ処理を行つ
た全自動および半自動溶接用鋼ワイヤの製造方法
に関する。 (従来技術) 一般にCO2ガスシールド溶接、MIG溶接等には
0.8〜2.4mmφの銅メツキした溶接用鋼ワイヤが使
用されている。これらの溶接用ワイヤは通常スプ
ールやボビンに巻装された状態で、あるいはペイ
ルパツクと呼ばれる円筒容器に装填された状態で
溶接に供せられる。これらのワイヤが使用される
ときは、溶接機の付属装置である送給機に設置さ
れ、送給ローラを通り3〜20mにおよぶフレキシ
ブルコンジツトチユーブ、溶接トーチ、コンタク
トチツプを通じ、溶接が行われる例が多い。 この他、走行台車にワイヤスプールなどを搭載
し、コンジツトチユーブを使用しない装置も使用
されているが、これは前記した設置形式のものに
比べて、装置が複雑でしかも大型化しかつ溶接領
域が限定される等の欠点があり用途が限られてい
る。 さてフレキシブルコンジツトチユーブを用いる
溶接ワイヤの送給方式としてはプツシユ式、プル
式、プツシユプル式の3種類あるが、取扱いの簡
便な、プツシユ式の使用比率が高い。しかしプツ
シユ式の送給機のコンジツトチユーブは通常3
m、広領域の溶接を行う場合には20m程度の長さ
のものが使用され、この時ワイヤ送給性の問題が
生じる。溶接ワイヤには一定速度で供給されるこ
とが求められるものである。しかしワイヤはフレ
キシブルコンジツトの案内管であるライナー、ト
ーチ、チツプとの間の接触抵抗およびフレキシブ
ルコンジツトチユーブの屈曲部とを通りぬけるた
めの抵抗力などが作用する。フレキシブルコンジ
ツトチユーブが直接状態である現場作業はほとん
どなく、屈曲状態下で使用されるのが普通であ
り、屈曲部が多いほどまた屈曲半径が小さいほど
屈曲部通りぬけの抵抗力は大きい。しかして、前
記の如き溶接ワイヤとの接触抵抗力に打克つ力で
ワイヤは押進せしめられ送給されるものである
が、接触抵抗が大きくなると溶接ワイヤの送給速
度が不均一になりついには送給停止の事態が生じ
るようになる。このため、溶接アークの不安定、
ビード形状の不揃、融合不良、アンダーカツトの
発生など種々の溶接欠陥を生じるようになる。 最近、溶接作業の複雑化、高速化、広範囲化に
伴ないフレキシブルコンジツトライナーとの摩擦
抵抗力が小さく、送給が円滑でかつ安定し、常に
定速送給されうる溶接用ワイヤ、すなわち送給性
が安定な溶接用ワイヤが強く要求されるようにな
つた。 従来、ワイヤの送給性を改善するために、送給
機の送給パワーを高めるかあるいはワイヤ自体の
送給性を向上させることが行われてきた。例えば
特公昭50−3256号公報に開示されたワイヤのよう
にワイヤ自体の送給性の向上をはかるべく、表面
が充分ミクロ的に緻密平滑なワイヤ表面に液状の
潤滑油を塗布し、ワイヤ表面の潤滑能を上げ、送
給抵抗の軽減を計る方法が知られているが必ずし
も安定した送給性を示すものは得られなかつた。
その理由はワイヤ表面が緻密平滑であることから
液状の潤滑剤をワイヤ表面に均一にかつ安定した
状態で塗布することは困難であり、所定の性能を
得るため潤滑油を多量に塗布せざるを得なかつた
からである。また必要以上に多量に塗布されたワ
イヤ表面の潤滑油は溶接部の材質変化を生ぜしめ
たりあるいは溶接作業性に悪影響をおよぼすのみ
であつた。第1図は表面が緻密平滑な従来ワイヤ
の表面状態を示す金属顕微鏡写真(倍率×400)
である。 この従来のワイヤは大気焼鈍すなわち酸素の多
い状態で焼鈍するために、ワイヤ表面より数μm
〜10μm程度の深さまで鉄酸化物(FeO、Fe3O4
Fe2O3等)を主成分とする酸化被膜、いわゆる外
部酸化層を生成する。この外部酸化層はワイヤの
めつき密着性に悪影響を及ぼすことから次工程の
めつき前処理(酸洗)で除去し、表面清浄なワイ
ヤとしてその表面に銅めつき等のめつきを施こ
す。このときの鋼ワイヤは外周部に伸びのあるめ
つき層、内部は軟化焼鈍された伸びのある2重構
造のワイヤ断面であり、該ワイヤの伸線加工に際
して、減面するワイヤにともなつてめつき層が伸
びるので第1図に示すような表面が緻密平滑なワ
イヤとなる。 その他特開昭54−141349号公報に開示されてい
るように、ワイヤの表面を強制的に加圧し、表面
粗度を変え接触抵抗を軽減する方法などもあるが
その効果は前記した潤滑油の塗布による送給性の
改善の効果と大同小異であり、未だ満足すべきも
のではない。 このような従来ワイヤの欠点を解消する溶接用
鋼ワイヤとして本出願人は特開昭56−144892号公
報に示されたワイヤを開発した。即ち、原線径5
〜6mmφの熱延鋼線材を使用して溶接用鋼ワイヤ
を製造する場合、製品の具備すべき適正な引張強
さを得る意味で伸線加工により硬化した線材の応
力除去を目的に伸線加工途中で雰囲気ガス中での
バツチ式軟化焼鈍を行なう。例えば窒素ガス雰囲
気中で700℃×4hrのバツチ焼鈍を行なう。この焼
鈍により鋼ワイヤは所定の引張強さに下げられる
とともに、鋼ワイヤの表面層は前工程よりワイヤ
表面に付着して焼鈍炉内に持込まれた水分、潤滑
剤等によつて酸化されて深さ数μm〜10μm程度
の硬い内部酸化層となる。次いでめつき前処理工
程の酸洗処理でめつき密着性を悪くするワイヤ表
面上層部を除去するとともに、最終の仕上伸線工
程で亀甲状の溝が良好に形成されるように前記硬
い内部酸化層の厚さを調整した上で銅めつき等の
めつきを行なう。 かくして外周部に軟かく伸びのあるめつき層、
中間部は焼鈍で生成し調整された硬い内部酸化
層、内部は軟化焼鈍された伸びのある線材の3重
構造のワイヤ断面を呈する線材が得られる。 こうして得られためつきされた鋼ワイヤを仕上
伸線工程で所望製品径まで伸線を行なう。仕上伸
線工程で伸線すると、それぞれの層間の密着性が
損われず、厚さ調整した中間の内部酸化層の最も
薄く伸びの少ない箇所を基点にして、横溝がワイ
ヤ表面の円周方向に発達し、ワイヤ表面に亀甲状
の溝が生成する。 この製造方法はワイヤ表面に前工程にて付着し
た水分、潤滑剤等の酸素源のみによりワイヤ表面
層に内部酸化層を生成せしめようとするいわば消
極的な製造方法であつた。このため少なくとも2
時間以上の長時間焼鈍を余儀なくされ、各工程の
連続化を困難なものにしていた。なぜならば伸
線、めつき前処理、めつき処理等の各工程の所要
時間は数分以内であり、焼鈍のみ数時間を要した
場合、連続化のためには膨大な長さの焼鈍炉を設
置しなければならないからである。そこで従来バ
ツチ式の焼鈍炉が採用されている。 第2図はこの溶接用鋼ワイヤの表面状態を示す
金属顕微鏡写真(倍率×400)であり、ワイヤ表
面に亀甲状の横溝が形成されていることがわか
る。この横溝はワイヤ円周方向に形成された溝で
あり、この溝が全体として亀甲模様を呈する。こ
のワイヤによればできるだけ少ない液状潤滑剤を
安定した状態でワイヤ長手方向に均一に付着させ
ることが可能となる。すなわちワイヤ表面の亀裂
内に液状潤滑剤を保持しワイヤの表面はミクロ的
な含油状態になるのでワイヤ表面の潤滑能が極め
て良好となりコンジツトライナーとの接触抵抗が
軽減される。この結果送給抵抗そのものも低く、
変動範囲が狭くなりワイヤ送給性が安定する。ワ
イヤ送給性の安定・均一化によりアークは安定
し、ビード形状の不揃、融合不良などの溶接欠陥
が生じない。さらにメツキ亀裂内に液状潤滑剤が
安定した状態で保持されるため液状潤滑剤は最小
限のワイヤ付着量で安定した送給性が得られるの
で過剰な潤滑剤によるピツト、ブローホールなど
の溶接欠陥の発生がなく、すぐれた溶接作業性が
達成される。 (発明の目的) 本発明はこのようにワイヤ表面に亀甲状の溝を
形成した送給性の良好な溶接用ワイヤの最も好ま
しい製造方法であつて、短時間にかつ安定してワ
イヤ表面に亀甲状の溝を有する溶接用鋼ワイヤを
得ることのできる製造方法を提供することを目的
とする。 又本発明の他の目的は製造工程を連続化しうる
溶接用鋼ワイヤの製造方法を提供することを目的
とする。 (発明の構成・作用) この目的を達成する本発明の要旨とするところ
はダイスボツクス内の粉状潤滑剤中にアルカリ金
属炭酸塩を混合し、孔ダイスあるいはローラダイ
スにより鋼ワイヤ表面に該アルカリ金属炭酸塩を
圧着塗布した後、非酸化性雰囲気中で焼鈍し、次
いでめつき処理、伸線加工を施すことを特徴とす
る溶接用鋼ワイヤの製造方法にある。 以下本発明を詳細に説明する。 本発明では非酸化性雰囲気で軟化焼鈍しワイヤ
に内部酸化層を生成させる。焼鈍炉内の酸素量を
少なくするためには、アルゴンガス等の不活性ガ
スあるいは窒素ガス、一酸化炭素と二酸化炭素の
混合ガス等のいわゆる中性又は還元性ガスを使用
すればよいがランニングコスト、安全性等を考慮
して例えば窒素ガスを使用する。又本発明ではワ
イヤに内部酸化層を生成させる時間を短縮化する
ために焼鈍前のワイヤにアルカリ金属炭酸塩を圧
着塗布してから、上記雰囲気の焼鈍炉内で焼鈍温
度650℃以上で1分以上保持することで所望の内
部酸化層を生成せしめる。ワイヤ表面に塗布した
アルカリ金属炭酸塩がワイヤの内部酸化層の生成
を促進するのは、アルカリ金属炭酸塩として炭酸
カリウムを例にして説明すると、該炭酸カリウム
が650℃以上の高温で分解し、 K2CO3→K2O+CO2 となつて発生する炭酸ガスが雰囲気の酸素分圧を
有効に高める作用によりワイヤ表面層に内部酸化
が進むものと考えられる。酸素の供給源は焼鈍に
供されるワイヤに付着している水分、伸線潤滑剤
あるいは雰囲気ガス中の不純物であり、さらにア
ルカリ金属炭酸塩が分解して発生する炭酸ガスが
安定した酸素供給源となり、これらの酸素の供給
源からもたらされる酸素が高温状態で鋼ワイヤ中
の鉄よりも親和力の強いケイ素、マンガン等の合
金元素と反応してワイヤ表面からほぼ10μm以内
にFe2SiO4、FeMnO2等の酸化物からなる内部酸
化層を生成する。このとき窒素ガス雰囲気中での
焼鈍ならば、該窒素およびワイヤに付着した潤滑
剤中の炭素により不可避的に生成する若干の窒化
物、炭化物も内部酸化層中に含有される。又ワイ
ヤ表面に若干の鉄の酸化物(FeO、Fe3O4
Fe2O3等)も生成するが、炉内の酸素が非常に少
ないので前記した鉄の酸化被膜の状態、すなわち
外部酸化の状態にはならない。 このようにワイヤ焼鈍に先だつてワイヤ表面に
アルカリ金属炭酸塩を塗布するが、塗布方法とし
てダイスボツクス(潤滑剤ボツクス)内の粉状潤
滑剤(例えば金属石けん)に該アルカリ金属炭酸
塩を混合し孔ダイスあるいはローラダイスにより
圧着塗布する方法を用いる。 このようにしてワイヤ表面からほぼ10μm以内
に上記の酸化物、窒化物、炭化物からなる硬い内
部酸化層が生成する。焼鈍工程に次いで酸洗工程
で、焼鈍で生成しためつき密着性を悪くする鉄酸
化物等の表面上層部を除去すると共に最終仕上伸
線工程で亀甲模様の溝が良好に形成されるように
前記の硬い内部酸化層の膜厚を調整し次いでめつ
き(必須ではない)を行なう。かくして外周部に
軟かく伸びのあるめつき層、中間部は焼鈍で生成
し調整された硬い内部酸化層、内部は軟化焼鈍さ
れた伸びのある鋼ワイヤの3重構造のワイヤ断面
を呈する線材が得られる。 この3重構造のワイヤを仕上伸線工程で伸線す
るとそれぞれの層間の密着性が損われず、硬い中
間層の最も伸びの少ない箇所を基点にして、亀甲
模様の溝がワイヤ表面の円周方向に発生する。 ここで好ましい焼鈍条件について説明する。本
発明では炉内雰囲気を非酸化性雰囲気とするが、
ワイヤに内部酸化層を効果的に生成させるために
は酸素量2vol%以下、好ましくは1vol%以下の雰
囲気とする。又、前述したようにアルカリ金属炭
酸塩を塗布した鋼ワイヤを非酸化性雰囲気中で焼
鈍する場合、焼鈍温度650℃以上で1分以上保持
することが必要である。すなわち、焼鈍温度の下
限値650℃はアルカリ金属炭酸塩を分解させるに
必要な温度である。他方、上限値は特に限定しな
いがエネルギーコストを考えれば900℃以下が望
ましい。 焼鈍時間は鋼ワイヤの温度650℃以上で1分間
以上保持すれば亀甲模様の溝を生成する目的にお
いて充分である。焼鈍温度を1分間以上長く保持
すれば内部酸化層の厚さは焼鈍時間が長くなるの
につれて厚くなるが、この内部酸化層の厚さは
少々厚くなつても弊害はないことから焼鈍時間の
上限値は特に限定せず、エネルギーコスト等から
適宜決定すればよい。 このように所定温度、所定時間で加熱されて内
部酸化層が形成されかつ軟化された焼鈍ワイヤは
冷却されて次工程に供給される。 製造された溶接用鋼ワイヤ表面にはワイヤ送給
性、耐錆性のための潤滑剤が付着されるが、この
潤滑剤は油脂、鉱物油、湿式伸線用潤滑剤等の液
状潤滑剤であり、これら潤滑剤中に添加される界
面活性剤を含むものである。 本発明の製造方法より製造された溶接用ワイヤ
が送給性良好なワイヤになる理由は前記したよう
にワイヤ表面の亀甲状の亀裂に伸線時の液状潤滑
剤等の潤滑剤が入り込み、ワイヤ表面がミクロ的
給油状態になつているので溶接時にコンジツトラ
イナー内壁等と、接触したとき、亀裂内に存在す
る液状潤滑剤が排出され、これにより接触抵抗の
軽減が計れ、よりバラツキのない安定した送給性
が得られるものである。 以下本発明の製造方法の実施例を述べる。 原線径5.5mmφ、化学成分C:0.08%、Si:0.80
%、Mn:1.53%の熱延鋼線材を原線として、製
品1.2mmφの溶接用鋼ワイヤを第1表の(イ)から(ハ)
に示す各条件の工程を経て製造した。製造工程(イ)
は炭酸カリウム(K2CO3)による工程であり、
工程(ロ)は炭酸ナトリウム(NaCO3)、工程(ハ)は炭
酸リチウム(Li2CO3)による工程である。
(Technical Field of the Invention) The present invention relates to a method for producing steel wire for fully automatic and semi-automatic welding using copper plating treatment with excellent feedability. (Conventional technology) Generally speaking, CO 2 gas shield welding, MIG welding, etc.
Copper-plated welding steel wire with a diameter of 0.8 to 2.4 mm is used. These welding wires are usually used for welding while being wound around a spool or bobbin, or loaded into a cylindrical container called a pail pack. When these wires are used, they are installed in a feeder, which is an attached device to a welding machine, and welding is performed through a feeding roller, a flexible conduit tube extending 3 to 20 meters, a welding torch, and a contact tip. There are many examples. In addition, devices are used in which a wire spool is mounted on a traveling trolley and no conduit tube is used, but this device is more complex and larger than the installation type described above, and requires a welding area. There are drawbacks such as limitations, and its uses are limited. Now, there are three types of welding wire feeding systems using flexible conduit tubes: push type, pull type, and push-pull type, but the push type is used more frequently because it is easier to handle. However, the conduit tube of a push-type feeder is usually 3
When welding a wide area, a length of about 20 m is used, and at this time problems arise with wire feedability. Welding wire is required to be fed at a constant speed. However, the wire is subject to contact resistance with the liner, torch, and tip that are guide tubes of the flexible conduit, and resistance force due to passing through the bent portion of the flexible conduit tube. There is almost no on-site work where the flexible conduit tube is in a direct state, and it is usually used in a bent state, and the more bends there are and the smaller the bend radius, the greater the resistance to passing through the bends. The wire is pushed forward and fed by the force that overcomes the contact resistance force with the welding wire as described above, but as the contact resistance increases, the feeding speed of the welding wire becomes uneven and eventually In this case, a situation where the supply is stopped occurs. For this reason, the welding arc becomes unstable,
Various welding defects such as irregular bead shapes, poor fusion, and undercuts occur. Recently, as welding work has become more complex, faster, and wider, welding wires that have low frictional resistance with flexible conduit liners, can be fed smoothly and stably, and can always be fed at a constant speed have been developed. There has been a strong demand for welding wires with stable feedability. Conventionally, in order to improve the feeding performance of the wire, the feeding power of the feeder has been increased or the feeding performance of the wire itself has been improved. For example, in order to improve the feedability of the wire itself, as in the wire disclosed in Japanese Patent Publication No. 50-3256, liquid lubricant is applied to the surface of the wire, which has a sufficiently microscopically dense and smooth surface. Although methods are known for increasing the lubricating ability of the material and reducing the feeding resistance, it has not always been possible to obtain a method that shows stable feeding performance.
The reason for this is that because the wire surface is dense and smooth, it is difficult to apply liquid lubricant evenly and stably to the wire surface, and in order to achieve the desired performance, a large amount of lubricant must be applied. Because it was not profitable. Moreover, lubricating oil applied to the wire surface in an unnecessarily large amount only causes changes in the material of the welded part or adversely affects welding workability. Figure 1 is a metal micrograph (magnification x 400) showing the surface condition of a conventional wire with a dense and smooth surface.
It is. This conventional wire is annealed in the atmosphere, that is, in a state with a lot of oxygen, so it is several μm below the wire surface.
Iron oxides (FeO, Fe 3 O 4 ,
This produces an oxide film, the so-called external oxide layer, whose main component is Fe 2 O 3 , etc.). Since this external oxidation layer has a negative effect on the plating adhesion of the wire, it is removed in the next plating pretreatment (pickling), and the surface of the wire is cleaned, and plating such as copper plating is applied to the surface. . The steel wire at this time has a plating layer with elongation on the outer periphery, and a double structure wire cross section with elongation that has been softened and annealed on the inside. Since the plating layer stretches, a wire with a dense and smooth surface as shown in FIG. 1 is obtained. In addition, as disclosed in JP-A-54-141349, there is a method of forcibly pressurizing the surface of the wire to change the surface roughness and reduce the contact resistance, but this method is less effective than the above-mentioned lubricating oil. The effect is almost the same as that of improving feedability by coating, and is still not satisfactory. As a welding steel wire that overcomes the drawbacks of conventional wires, the present applicant has developed a wire disclosed in Japanese Patent Application Laid-open No. 144892/1983. That is, the original wire diameter 5
When manufacturing steel wire for welding using ~6mmφ hot-rolled steel wire, wire drawing is performed to remove stress from the wire that has been hardened by wire drawing in order to obtain the appropriate tensile strength that the product should have. Batch-type softening annealing is performed in an atmospheric gas midway through the process. For example, batch annealing is performed at 700°C for 4 hours in a nitrogen gas atmosphere. This annealing lowers the tensile strength of the steel wire to a predetermined level, and the surface layer of the steel wire is oxidized by moisture, lubricant, etc. that has adhered to the wire surface from the previous process and is brought into the annealing furnace. It becomes a hard internal oxidation layer with a thickness of several μm to 10 μm. Next, the upper layer of the wire surface that deteriorates plating adhesion is removed by pickling treatment in the plating pretreatment process, and the hard internal oxidation is removed so that hexagonal grooves are well formed in the final wire drawing process. After adjusting the layer thickness, plating such as copper plating is performed. In this way, a soft and stretchy plating layer is formed on the outer periphery,
A wire rod having a wire cross section with a triple structure is obtained, with a hard internal oxidation layer generated and adjusted by annealing in the middle portion and an elongated wire rod which has been softened and annealed in the inner portion. The thus-obtained thinned steel wire is drawn to a desired product diameter in a final wire drawing step. When the wire is drawn in the final wire drawing process, the adhesion between each layer is not impaired, and horizontal grooves are formed in the circumferential direction of the wire surface, starting from the thinnest and least elongated part of the intermediate internal oxidation layer whose thickness has been adjusted. It develops, and tortoiseshell-shaped grooves are formed on the wire surface. This manufacturing method is a so-called passive manufacturing method in which an internal oxidation layer is generated on the wire surface layer only by oxygen sources such as moisture and lubricant that have adhered to the wire surface in the previous process. For this reason, at least 2
This necessitated annealing for an extended period of time, making it difficult to carry out each process continuously. This is because the time required for each process such as wire drawing, plating pretreatment, and plating treatment is within a few minutes, and if annealing alone takes several hours, an extremely long annealing furnace would be required for continuous operation. This is because it must be installed. Therefore, a batch-type annealing furnace is conventionally used. FIG. 2 is a metallurgical micrograph (magnification x 400) showing the surface condition of this welding steel wire, and it can be seen that hexagonal-shaped horizontal grooves are formed on the wire surface. This lateral groove is a groove formed in the circumferential direction of the wire, and this groove exhibits a hexagonal pattern as a whole. With this wire, it is possible to deposit as little liquid lubricant as possible in a stable and uniform manner in the longitudinal direction of the wire. That is, the liquid lubricant is retained in the cracks on the wire surface, and the surface of the wire becomes microscopically oil-impregnated, so that the lubrication ability of the wire surface is extremely good and the contact resistance with the conduit liner is reduced. As a result, the feeding resistance itself is low,
The fluctuation range is narrowed and wire feedability is stabilized. Stable and uniform wire feeding makes the arc stable, and welding defects such as irregular bead shapes and poor fusion do not occur. Furthermore, since the liquid lubricant is held in a stable state within the plating cracks, stable feeding performance can be achieved with a minimum amount of wire adhesion, resulting in welding defects such as pits and blowholes caused by excessive lubricant. Excellent welding workability is achieved. (Object of the Invention) The present invention is the most preferable method for manufacturing a welding wire having hexagonal grooves formed on the wire surface and having good feedability. It is an object of the present invention to provide a manufacturing method capable of obtaining a welding steel wire having a groove in the shape of a groove. Another object of the present invention is to provide a method of manufacturing steel wire for welding, which allows the manufacturing process to be continuous. (Structure and operation of the invention) The gist of the present invention to achieve this object is to mix an alkali metal carbonate into a powdered lubricant in a die box, and apply the alkali metal carbonate to the surface of a steel wire using a hole die or a roller die. A method for manufacturing a steel wire for welding, which comprises applying a metal carbonate under pressure, annealing in a non-oxidizing atmosphere, followed by plating and wire drawing. The present invention will be explained in detail below. In the present invention, an internal oxidation layer is generated in the wire by soft annealing in a non-oxidizing atmosphere. In order to reduce the amount of oxygen in the annealing furnace, it is possible to use an inert gas such as argon gas, or a so-called neutral or reducing gas such as nitrogen gas or a mixed gas of carbon monoxide and carbon dioxide, but this reduces the running cost. For example, nitrogen gas is used in consideration of safety and the like. In addition, in the present invention, in order to shorten the time required to generate an internal oxide layer on the wire, an alkali metal carbonate is pressure-coated on the wire before annealing, and then annealing is performed in an annealing furnace with the above atmosphere at a temperature of 650°C or higher for 1 minute. By holding the temperature above, a desired internal oxidation layer is generated. The reason why the alkali metal carbonate applied to the wire surface promotes the formation of an internal oxidation layer on the wire is explained using potassium carbonate as an example of an alkali metal carbonate.The potassium carbonate decomposes at a high temperature of 650°C or higher, It is thought that internal oxidation progresses in the wire surface layer due to the effect of the carbon dioxide gas generated as K 2 CO 3 →K 2 O + CO 2 effectively increasing the oxygen partial pressure in the atmosphere. Sources of oxygen supply are moisture adhering to the wire being annealed, wire drawing lubricant, or impurities in the atmosphere gas, and carbon dioxide gas generated by decomposition of alkali metal carbonates is a stable source of oxygen supply. Oxygen brought from these oxygen sources reacts at high temperatures with alloying elements such as silicon and manganese, which have a stronger affinity than iron in the steel wire, forming Fe 2 SiO 4 and FeMnO within approximately 10 μm from the wire surface. Generates an internal oxide layer consisting of oxides of grade 2 . At this time, if annealing is performed in a nitrogen gas atmosphere, some nitrides and carbides inevitably generated by the nitrogen and carbon in the lubricant adhering to the wire will also be contained in the internal oxidation layer. Also, some iron oxides (FeO, Fe 3 O 4 ,
Fe 2 O 3 etc.) are also produced, but since there is very little oxygen in the furnace, the above-mentioned iron oxide film state, ie, external oxidation state, does not occur. In this way, an alkali metal carbonate is applied to the wire surface prior to wire annealing, and the application method is to mix the alkali metal carbonate with a powdered lubricant (for example, metal soap) in a die box (lubricant box). A pressure application method using a hole die or roller die is used. In this way, a hard internal oxide layer consisting of the above-mentioned oxides, nitrides, and carbides is formed within approximately 10 μm from the wire surface. Following the annealing process, the pickling process removes the upper surface layer such as iron oxides that are generated during annealing and impairs the adhesion, and also ensures that the tortoise-shell pattern grooves are well formed in the final wire drawing process. After adjusting the thickness of the hard internal oxide layer, plating (not essential) is performed. In this way, the wire rod has a wire cross section with a triple structure: a soft and elongated plating layer on the outer periphery, a hard internal oxidation layer generated and adjusted by annealing in the middle, and an elongated steel wire that has been softened and annealed inside. can get. When this triple-layered wire is drawn in the final wire drawing process, the adhesion between each layer is not impaired, and the hexagonal pattern grooves are formed around the circumference of the wire surface, starting from the point of least elongation in the hard intermediate layer. occurs in the direction. Here, preferred annealing conditions will be explained. In the present invention, the atmosphere inside the furnace is a non-oxidizing atmosphere,
In order to effectively generate an internal oxide layer on the wire, the atmosphere should have an oxygen content of 2 vol% or less, preferably 1 vol% or less. Further, as described above, when a steel wire coated with an alkali metal carbonate is annealed in a non-oxidizing atmosphere, it is necessary to maintain the annealing temperature at 650°C or higher for 1 minute or more. That is, the lower limit of the annealing temperature of 650°C is the temperature necessary to decompose the alkali metal carbonate. On the other hand, the upper limit is not particularly limited, but in consideration of energy costs, 900°C or less is desirable. As for the annealing time, keeping the steel wire at a temperature of 650° C. or higher for 1 minute or more is sufficient for the purpose of forming hexagonal pattern grooves. If the annealing temperature is maintained for more than 1 minute, the thickness of the internal oxidation layer will increase as the annealing time increases; however, since there is no adverse effect even if the internal oxidation layer becomes slightly thicker, the upper limit of the annealing time is The value is not particularly limited and may be appropriately determined based on energy costs and the like. The annealed wire thus heated at a predetermined temperature and for a predetermined time to form an internal oxidation layer and softened is cooled and supplied to the next step. A lubricant is applied to the surface of the produced steel wire for welding to improve wire feedability and rust resistance. These lubricants contain surfactants. The reason why the welding wire manufactured by the manufacturing method of the present invention has good feedability is that, as mentioned above, lubricant such as liquid lubricant during wire drawing enters the hexagonal cracks on the wire surface. The surface is in a micro-lubricated state, so when it comes into contact with the inner wall of the conduit liner during welding, the liquid lubricant present in the cracks is discharged, which reduces contact resistance and provides stability with less variation. This provides excellent feedability. Examples of the manufacturing method of the present invention will be described below. Original wire diameter 5.5mmφ, chemical composition C: 0.08%, Si: 0.80
%, Mn: 1.53% hot-rolled steel wire as the raw wire, welding steel wire of 1.2 mmφ from (a) to (c) in Table 1.
It was manufactured through the steps shown in the following. Manufacturing process (a)
is a process using potassium carbonate (K 2 CO 3 ),
Step (b) is a step using sodium carbonate (NaCO 3 ), and step (c) is a step using lithium carbonate (Li 2 CO 3 ).

【表】【table】

【表】 第3図は第1表(イ)に基づいて製造された溶接用
鋼ワイヤの表面状態を示す金属顕微鏡写真(倍率
×400)であり、この写真から明らかなように亀
甲状の亀裂がワイヤ表面上に形成されている。な
お第2図と第3図は同様にワイヤ表面に亀甲状の
亀裂が形成されているが焼鈍に要する時間が大幅
に異なり、本発明では6分間に対して第2図のワ
イヤの場合は4時間であり、本発明に従えば亀甲
状の溝を有するワイヤ表面状態を得るのに極めて
短時間の軟化焼鈍でよい。従つて本発明では工程
の連続化が可能となる。 第4図はワイヤ表面に付着した液状潤滑剤の付
着量と送給抵抗との関係を示す図である。なお送
給性は第2表に示す条件により行なつた。
[Table] Figure 3 is a metallurgical micrograph (magnification x 400) showing the surface condition of the welding steel wire manufactured based on Table 1 (a). is formed on the wire surface. Although the wires in FIGS. 2 and 3 have tortoise-shell-shaped cracks formed on their surfaces, the time required for annealing is significantly different; in the case of the wire shown in FIG. According to the present invention, a very short softening annealing time is required to obtain a wire surface condition having hexagonal grooves. Therefore, in the present invention, it is possible to make the process continuous. FIG. 4 is a diagram showing the relationship between the amount of liquid lubricant adhering to the wire surface and the feeding resistance. The feedability was tested under the conditions shown in Table 2.

【表】 ワイヤの送給性は送給モータ電機子電流で等価
的に示すことができ、この電機子電流値が大きい
程送給抵抗が大きくて送給性の悪いことを意味
し、逆に値が小さい程送給性は良好である。図か
ら明らかなように表面が緻密平滑な従来ワイヤC
に比べて表面に亀甲状の亀裂を有するワイヤは、
本発明の製造方法(イ)によるワイヤA、従来の製造
方法によるワイヤBともに送給抵抗が低く、ワイ
ヤの送給性が良好である。なお、第1表の本発明
の製造方法(ロ)および(ハ)によるワイヤの送給性もワ
イヤAと同様に良好であつた。 (発明の効果) 以上説明したように本発明によればワイヤ表面
に亀甲状の溝を形成した溶接用鋼ワイヤを短時間
でかつ安定して製造することができる。従つて各
工程の連続化が可能となる。このような効果を奏
する本発明は産業上稗益するところが極めて大で
ある。
[Table] The wire feeding performance can be equivalently expressed by the feeding motor armature current, and the larger the armature current value, the greater the feeding resistance and poorer feeding performance. The smaller the value, the better the feedability. As is clear from the figure, the conventional wire C has a dense and smooth surface.
Wires with hexagonal cracks on the surface compared to
Both the wire A manufactured by the manufacturing method (a) of the present invention and the wire B manufactured by the conventional manufacturing method have low feeding resistance and good wire feeding performance. Note that the wire feedability according to the manufacturing methods (b) and (c) of the present invention shown in Table 1 was also good, as was the case with wire A. (Effects of the Invention) As described above, according to the present invention, a steel wire for welding having hexagonal grooves formed on the wire surface can be manufactured stably in a short time. Therefore, each process can be made continuous. The present invention, which exhibits such effects, is of great industrial benefit.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図、第3図は溶接用鋼ワイヤの表
面状態を示す金属顕微鏡写真(倍率×400)で第
1図は表面が緻密平滑な従来ワイヤ、第2図は表
面に亀甲状の亀裂を有するワイヤで従来の製造方
法によるもの、第3図は本発明の製造方法(イ)によ
るワイヤである。第4図は液状潤滑剤の付着量と
送給抵抗との関係を示す図である。 第4図において:A:表面に亀甲状の亀裂を有
するワイヤで本発明方法(イ)によるもの、B:表面
に亀甲状の亀裂を有するワイヤで従来の方法によ
るもの、C:表面が緻密平滑な従来ワイヤ。
Figures 1, 2, and 3 are metallurgical micrographs (magnification x 400) showing the surface condition of steel wire for welding. Fig. 3 shows a wire having cracks produced by the conventional manufacturing method, and Fig. 3 shows a wire produced by the manufacturing method (a) of the present invention. FIG. 4 is a diagram showing the relationship between the amount of liquid lubricant deposited and the feeding resistance. In Fig. 4: A: Wire with hexagonal cracks on the surface made by the method (a) of the present invention, B: Wire with hexagonal cracks on the surface made by the conventional method, C: Surface dense and smooth. conventional wire.

Claims (1)

【特許請求の範囲】[Claims] 1 ダイスボツクス内の粉状潤滑剤中にアルカリ
金属炭酸塩を混合し、孔ダイスあるいはローラダ
イスにより鋼ワイヤ表面に該アルカリ金属炭酸塩
を圧着塗布した後、非酸化性雰囲気中で焼鈍し、
次いでめつき処理、伸線加工を施すことを特徴と
する溶接用鋼ワイヤの製造方法。
1. Mix an alkali metal carbonate in a powdered lubricant in a die box, pressure apply the alkali metal carbonate onto the surface of a steel wire using a hole die or a roller die, and then anneal it in a non-oxidizing atmosphere.
A method for manufacturing a steel wire for welding, which comprises subsequently performing plating treatment and wire drawing.
JP4864284A 1984-03-14 1984-03-14 Production of steel wire for welding Granted JPS60191694A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4864284A JPS60191694A (en) 1984-03-14 1984-03-14 Production of steel wire for welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4864284A JPS60191694A (en) 1984-03-14 1984-03-14 Production of steel wire for welding

Publications (2)

Publication Number Publication Date
JPS60191694A JPS60191694A (en) 1985-09-30
JPH046478B2 true JPH046478B2 (en) 1992-02-05

Family

ID=12809020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4864284A Granted JPS60191694A (en) 1984-03-14 1984-03-14 Production of steel wire for welding

Country Status (1)

Country Link
JP (1) JPS60191694A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111975247A (en) * 2020-08-25 2020-11-24 天长市瑞颖焊材有限公司 Copper-plating-free CO2Gas shielded welding wire coating and coated welding wire thereof
CN112536546B (en) * 2020-12-02 2022-05-06 中国科学院金属研究所 Drawing process of austenitic stainless steel bare wire for sodium-cooled fast reactor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59104292A (en) * 1982-12-08 1984-06-16 Nippon Steel Corp Production of steel wire for welding

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59104292A (en) * 1982-12-08 1984-06-16 Nippon Steel Corp Production of steel wire for welding

Also Published As

Publication number Publication date
JPS60191694A (en) 1985-09-30

Similar Documents

Publication Publication Date Title
JP4417358B2 (en) Flux-cored wire manufacturing method for stainless steel welding and flux-cored wire manufactured thereby
JPH10272596A (en) Manufacture of welding wire
JP2004314303A (en) Structure of porous electrode wire for electric discharge machining
JPS6321595B2 (en)
JPH046478B2 (en)
JPH0364239B2 (en)
JP3753173B2 (en) Steel wire for gas shielded arc welding
JPS58128294A (en) Steel wire of small diameter for welding
JPH0452197B2 (en)
KR100668170B1 (en) Baked flux cored wire for gas shield arc welding having excellent rust resistance and feedability and a method for preparing thereof
JP3734030B2 (en) Steel wire for gas shielded arc welding
JPH0569181A (en) Steel wire for gas shield arc welding and manufacture thereof
JPH0316237B2 (en)
JPH07106412B2 (en) High conductivity copper coated steel trolley wire manufacturing method
JP2975203B2 (en) Metal fiber manufacturing method
JP3830010B2 (en) Manufacturing method of steel wire for gas shielded arc welding
JPH0451274B2 (en)
JP4054277B2 (en) Solid wire for arc welding excellent in feeding performance and method for manufacturing the same
JP2000280088A (en) Manufacture of steel wire for gas shield arc welding
JPS5997794A (en) Production of steel wire for welding
JPH0452196B2 (en)
JP3592465B2 (en) Diamond dies for flux cored wire drawing
JPS61126995A (en) Production of solid wire for welding
JPH0617217A (en) Production of hot dipped wire
JP2003311468A (en) Flux cored wire for gas-shielded arc welding

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees