JP3826791B2 - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP3826791B2
JP3826791B2 JP2002000637A JP2002000637A JP3826791B2 JP 3826791 B2 JP3826791 B2 JP 3826791B2 JP 2002000637 A JP2002000637 A JP 2002000637A JP 2002000637 A JP2002000637 A JP 2002000637A JP 3826791 B2 JP3826791 B2 JP 3826791B2
Authority
JP
Japan
Prior art keywords
fluid passage
heat exchanger
flat tube
porous flat
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002000637A
Other languages
Japanese (ja)
Other versions
JP2003202197A (en
Inventor
典秀 河地
憲 山本
昌章 川久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2002000637A priority Critical patent/JP3826791B2/en
Priority to DE2003100054 priority patent/DE10300054A1/en
Publication of JP2003202197A publication Critical patent/JP2003202197A/en
Application granted granted Critical
Publication of JP3826791B2 publication Critical patent/JP3826791B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0243Header boxes having a circular cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0008Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium
    • F28D7/0025Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium the conduits for one medium or the conduits for both media being flat tubes or arrays of tubes
    • F28D7/0033Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium the conduits for one medium or the conduits for both media being flat tubes or arrays of tubes the conduits for one medium or the conduits for both media being bent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/022Tubular elements of cross-section which is non-circular with multiple channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F7/00Elements not covered by group F28F1/00, F28F3/00 or F28F5/00
    • F28F7/02Blocks traversed by passages for heat-exchange media

Description

【0001】
【発明の属する技術分野】
本発明は、押出成形で形成される多数の流体通路孔が断面厚み方向に複数の列状に配置された多孔扁平チューブを熱交換部に用いた熱交換器に関するもので、その複数列の流体通路孔に例えば第1流体と第2流体とを流通させて熱交換を行わせるのに好適なものである。
【0002】
【従来の技術】
従来技術として、押出成形で形成される多数の流体通路孔が断面厚み方向に複数の列状に配置された多孔扁平チューブを熱交換部に用い、その複数列の流体通路孔の列毎に、例えば第1流体として高温高圧の冷媒と第2流体として低温低圧の冷媒とを流通させて熱交換を行わせる熱交換器が知られている。例えば、本出願人が先に出願した特開2000−346584号公報に示す熱交換器の構造がある。
【0003】
【発明が解決しようとする課題】
しかし、上記公報に示す従来構造では、多孔扁平チューブ100の端部を図4(a)に示すような形状にフライスカッター等で削る必要があり、薄物の広い面を精度良く削ることから加工コストが高くつくうえ、回転する刃具方向に流体通路孔100aが開口するため削った切り粉が入り込んで詰まるという問題点がある。(尚、図中の符号は後述する実施形態と対応するものである。)
また、この削った多孔扁平チューブ100を、二重管の外側ヘッダタンク(パイプ)に挿通させるための長孔は長円形となりプレス加工が容易な形状であるが、二重管の内側ヘッダタンク(パイプ)に挿通させるための長孔は両側に鋭い角を持った略D字型の形状となるためプレス加工が難しいうえ、このことより、多孔扁平チューブ100のD字型外形部と内側ヘッダタンク(パイプ)との接合(ろう付け)部の気密が不完全となっても、内部リークとなるため検出が難しいという問題点もある。
【0004】
本発明は、上記従来技術の問題点に鑑みて成されたものであり、その目的は、多孔扁平チューブ内の流体通路孔とヘッダタンクとの連通構造を簡単としてコストを抑えられるうえ気密信頼性も向上できる熱交換器を提供することにある。
【0005】
【課題を解決するための手段】
上記目的を達成するため、本発明では以下の技術的手段を採用する。請求項1記載の発明では、押出成形で形成される多数の流体通路孔(100a)が断面厚み方向に複数の列状に配置された多孔扁平チューブ(100)を熱交換部に用いた熱交換器において、多孔扁平チューブ(100)の扁平面であって、前記流体通路孔(100a)の一方の列の側面に、幅方向に渡って前記流体通路孔(100a)の前記一方の列にのみ達して開口部となる所定深さの矩形形状、V字形状またはU字形状の切り込み(110a、120a)を入れ、この切り込み(110a、120a)の回りにヘッダタンク(210、220、211、221)を接合し、前記切り込み(110a、120a)を介して前記流体通路孔(100a)の前記一方の列と前記ヘッダタンク(210、220、211、221)とを連通させていることを特徴とする。
【0006】
これにより、多孔扁平チューブ(100)内の流体通路孔(100a)と各ヘッダタンク(210、220、211、221)との連通構造が簡単となってコストを抑えられるうえ気密信頼性も向上させることができる。
請求項2記載の発明では、多孔扁平チューブ(100)の扁平面に幅方向に渡って所定深さの切り込み(110a、120a)を当該切り込み(110a、120a)の両側に扁平面が残るように入れ、この切り込み(110a、120a)の回りにヘッダタンク(210、220、211、221)を接合し、切り込み(110a、120a)を介して流体通路孔(100a)とヘッダタンク(210、220、211、221)とを連通させていることを特徴とする。これにより、多孔扁平チューブ(100)内の流体通路孔(100a)と各ヘッダタンク(210、220、211、221)との連通構造が簡単となってコストを抑えられるうえ気密信頼性も向上させることができる。
【0007】
請求項記載の発明では、板状の金属加工品(211、221)を多孔扁平チューブ(100)の扁平面に接合して切り込み(110a、120a)を被うことで金属加工品(211、221)をヘッダタンク(211、221)としたことを特徴とする。これにより、ヘッダタンク(211、221)を必要部分の多孔扁平チューブ(100)の片面にだけに突出させたコンパクトな熱交換器とすることができる。
【0008】
請求項記載の発明では、多孔扁平チューブ(100)を幅方向に渡って厚み方向に潰した潰し部(100b)を設けることにより、流体通路孔(100a)の流通を封止したことを特徴とする。これにより、簡単な加工で流体通路孔(100a)の流通を封止できるので、熱交換器のコストを抑えることができる。
【0009】
請求項記載の発明では、切り込み(110a、120a)に封止部品(140)を接合することにより、流体通路孔(100a)の流通を封止したことを特徴とする。これにより、切り込み(110a、120a)と封止部品(140)とを組み合わせることで簡単に流体通路孔(100a)の流通を封止でき、熱交換器の気密信頼性を向上することができる。
【0010】
請求項6記載の発明では、多孔扁平チューブ(100)は、第1面側に配置され第1流体が流通する流体通路孔(100a)の一部で構成された第1流体通路(110)と、第1面と反対側の第2面側に配置され第2流体が流通する流体通路孔(100a)の他部で構成された第2流体通路(120)とを有し、少なくとも多孔扁平チューブ(100)の第1面に幅方向に渡って所定深さの矩形形状、V字形状またはU字形状の切り込み(110a)を入れ、この切り込み(110a)を介して第1流体通路(110)とヘッダタンク(211)とを連通させ、第1流体と第2流体との熱交換を行わせることを特徴とする。
【0011】
これにより、多孔扁平チューブ(100)内の第1流体通路(110)とヘッダタンク(211)との連通構造が簡単となってコストを抑えられるうえ気密信頼性も向上させることができる。
【0012】
請求項7の発明では、多孔扁平チューブ(100)の第2面に幅方向に渡って所定深さの矩形形状、V字形状またはU字形状の切り込み(120a)を入れ、この切り込み(120a)を介して第2流体通路(120)とヘッダタンク(221)とを連通させことを特徴とする。これにより、多孔扁平チューブ(100)内の第2流体通路(120)とヘッダタンク(221)との連通構造が簡単となってコストを抑えられるうえ気密信頼性も向上させることができる。
【0013】
因みに、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示す一例である。
【0014】
【発明の実施の形態】
以下、本発明の実施形態を図に基づいて説明する。
【0015】
(第1実施形態)
図1は、本実施形態における冷凍サイクルの模式図であり、車両等に用い、二酸化炭素(CO2)等の高圧の冷媒を使用する冷凍サイクルである。コンプレッサで冷媒を圧縮し、ガスクーラで冷却し、膨張弁で減圧し、エバポレータで蒸発させる通常の冷凍サイクルに加え、システムの効率(性能)を向上させるため、エバポレータ下流の低温低圧冷媒とガスクーラ下流の高温高圧冷媒とを熱交換させてガスクーラ下流の冷媒温度を下げる内部熱交換器を備えている。
【0016】
本実施形態は、その内部熱交換器に本発明の熱交換器を用いたもので、図2に本発明の第1実施形態における熱交換器の斜視図を示し、図3にその熱交換器の構造を部分断面側面図で示す。但し、長手方向の中央から対称構造となっているため片側だけで説明する。
【0017】
多孔扁平チューブ100は、アルミニウム材の押出成形で多数の流体通路孔100aが形成されており、その多数の流体通路孔100aが図4(b)に示すように偏平状な断面の厚み方向に複数の列状に配置されている。本実施形態では流体通路孔100aが2列に配置された多孔扁平チューブ100を熱交換器の熱交換部に用い、一方の列を第1流体通路110とし第1流体として高温高圧冷媒を流通させ、他方の列を第2流体通路120とし第2流体として低温低圧冷媒を流通させて熱交換を行わせている。
【0018】
具体的には図3に示すように、多孔扁平チューブ100の両端近傍で、第1流体通路110側面にその第1流体通路110の開口部となる切り込み110aを多孔扁平チューブ100の幅方向に渡って所定深さだけ切り込んで設けている。
【0019】
また、反対の第2流体通路120側面にその第2流体通路120の開口部となる切り込み120aを多孔扁平チューブ100の幅方向に渡って所定深さだけ切り込んで設けている。
【0020】
この両切り込み110a、120aは、図4(b)に示すようにメタルソー等で加工され、加工コストは安く、回転する刃具方向に流体通路孔100aがないため、削った切り粉が入り込んで詰まるという問題もない。その点から切り込み110a、120aの形状は実施例のような矩形形状が望ましいが、V字形状やU字形状であっても良い。
【0021】
この両切り込み110a、120aの位置は多孔扁平チューブ100の長手方向に対して少しずらして設けてある。そして、図2、図3に示すように、この多孔扁平チューブ100の両端にアルミニウム製のパイプ材を2本づつ挿入して接合する。切り込み110aの回りに接合したパイプ材は第1流体通路110と連通する第1ヘッダパイプ(タンク)210となり、切り込み120aの回りに接合したパイプ材は第2流体通路120と連通する第2ヘッダパイプ(タンク)220となる。
【0022】
各第1、第2ヘッダパイプ210、220は、従来技術は径の違うパイプ材に形状の違う長孔を明けていたのに対し、本実施形態ではパイプ材の両側面中央に長孔230を明けた一種類のパイプ加工品でだけ良い。また、明ける長孔230も、多孔扁平チューブ100の外形のまま挿通させるため長円形で、プレス加工も接合も容易な形状となる。これらのことより、熱交換器のコストを抑えられるうえ気密信頼性も向上させることができる。
【0023】
そして、各第1、第2ヘッダパイプ210、220の流体出入口となる部分には配管接続ブロック240が接合され、流体出入口とならない反対側にはキャップ250が接合されて封止される。尚、上記に構成した部分は組み合わせたうえ治具により保持され、ろう付け用加熱炉内に搬入されて一体ろう付けされる。また、多孔扁平チューブ100の両端の切断部はろう材130が盛られて第1、第2流体通路110、120とも封止される。
【0024】
以上の構成において本実施形態の第1、第2流体の流れ経路を説明すると、第1流体は、図2中の矢印に示すように、一方の第1ヘッダパイプ210内に流入し、一方の切り込み110aから第1流体通路110に分配される。そして、第1流体通路110を流れ、他方の切り込み110aから他方の第1ヘッダパイプ210内に流れ出して集合され、矢印に示すように他方の第1ヘッダパイプ210から流出する。
【0025】
また、第2流体は、図2中の矢印に示すように、一方の第2ヘッダパイプ220内に流入し、一方の切り込み120aから第2流体通路120に分配される。そして、第2流体通路120を流れ、他方の切り込み120aから他方の第2ヘッダパイプ220内に流れ出して集合され、矢印に示すように他方の第2ヘッダパイプ220から流出する。よって、図2の矢印から分かるように、第1流体の流れと第2流体の流れは対向流となっているが、平行流であっても良い。
【0026】
次に、本実施形態での特徴を述べる。多孔扁平チューブ100の両面に、幅方向に渡って所定深さの切り込み110a、120aを入れ、この切り込み110a、120aより流体通路孔100aとヘッダタンク211、221とを連通させる構造となっている。
【0027】
これにより、多孔扁平チューブ100内の流体通路孔100aと各ヘッダタンク211、221との連通構造が簡単となってコストを抑えられるうえ気密信頼性も向上させることができる。
【0028】
(第2実施形態)
図5は、本発明の第2実施形態における熱交換器の構造を示す部分断面側面図であり、第1実施形態とヘッダタンク211、221の構造のみ異なる。
【0029】
上述の第1実施形態ではパイプ材を用いてヘッダパイプ211、221としていたが、本実施形態ではアルミニウムの部材にプレス加工や切削加工を施した板状の金属加工品211、221を、多孔扁平チューブ100の片面にろう付け接合して切り込み110a、120aを被うことで、金属加工品211、221をヘッダタンク211、221としている。これにより、ヘッダタンク211、221を必要部分の多孔扁平チューブ100の片面にだけに突出させたコンパクトな熱交換器とすることができる。
【0030】
(第3実施形態)
図6は、本発明の第3実施形態における熱交換器の構造を示す部分断面側面図であり、第1実施形態と多孔扁平チューブ100両端の封止構造のみ異なる。
【0031】
上述の第1実施形態では多孔扁平チューブ100の両端の切断部にろう材130を盛って封止していたが、本実施形態では多孔扁平チューブ100を幅方向に渡って厚み方向に潰した潰し部100bを設けることにより、流体通路孔100aの流通を封止している。これにより、簡単な加工で流体通路孔100aの流通を封止できるので、熱交換器のコストを抑えることができる。
【0032】
(第4実施形態)
図7は、本発明の第4実施形態における熱交換器の構造を示す部分断面側面図であり、これも第1実施形態と多孔扁平チューブ100両端の封止構造のみ異なる。
【0033】
本実施形態ではアルミニウム製の封止部品140を作り切り込み110a、120aに嵌めて接合することにより、流体通路孔100aの流通を封止している。これにより、切り込み110a、120aと封止部品140とを組み合わせることで簡単に流体通路孔100aの流通を封止でき、熱交換器の気密信頼性を向上することができる。
【0034】
(第5実施形態)
図8は、本発明の第5実施形態における熱交換器の構造を示す部分断面側面図であり、第1実施形態とは第2流体通路120と第2ヘッダパイプ220との連通構造が異なる。
【0035】
本実施形態では第1流体通路110と第1ヘッダパイプ210との連通構造は第1実施形態と同じであるが、第2ヘッダパイプ220に明ける長孔230は片側にだけとし、多孔扁平チューブ100の端部をそのまま挿通して接合することで第2流体通路120と第2ヘッダパイプ220との連通を取っている。
【0036】
よって多孔扁平チューブ100の第2流体通路120側面に切り込み120aを設けていないが、その代わりに両第1、第2ヘッダパイプ210、220の間の第1流体通路110側面にもう1つ切れ込み110aを設け、そこに第4実施形態の封止部品140を嵌めて接合することにより、第1流体通路110まで第2ヘッダパイプ220と連通しないようにしている。この構造は第2ヘッダパイプ220から多孔扁平チューブ100が突出しないため、熱交換器をコンパクトにすることができる。
【0037】
(第6実施形態)
図9は、本発明の第6実施形態における熱交換器の構造を示す部分断面側面図である。本実施形態では流体通路孔100aが3列に配置された多孔扁平チューブ100を熱交換器の熱交換部に用い、外側の2列を第1流体通路110とし第1流体として高温高圧冷媒を流通させ、中央の1列を第2流体通路120とし第2流体として低温低圧冷媒を流通させて熱交換を行わせている。
【0038】
よって多孔扁平チューブ100の両面に切れ込み110aを設け、その両面の切れ込み110aの回りに第1ヘッダパイプ210を接合することにより両面の第1流体通路110と連通を取っている。また、両第1、第2ヘッダパイプ210、220の間の両面にもう2つ切れ込み110aを設け、そこに第4実施形態の封止部品140をそれぞれ嵌めて接合することにより、両第1流体通路110が第2ヘッダパイプ220と連通しないようにしている。
【0039】
そして第5実施形態と同じく、第2ヘッダパイプ220に明ける長孔230は片側だけとし、多孔扁平チューブ100の端部をそのまま挿通して接合することで中央の第2流体通路120と第2ヘッダパイプ220との連通を取っている。
【0040】
このように、流体通路孔100aが多数列に配置された多孔扁平チューブ100においても、切れ込みを設ける面や切れ込みの深さを可変し、更には切れ込みと封止部品を組み合わせることにより、どの列をどこと連通させるか等が可変でき、様々な流体通路列の組み合わせができる熱交換器となる。
【0041】
尚、外側の2列を第2流体通路120とし第2流体として低温低圧冷媒を流通させ、中央の1列を第1流体通路110とし第1流体として高温高圧冷媒を流通させても良い。
【図面の簡単な説明】
【図1】本実施形態における冷凍サイクルの模式図である。
【図2】本発明の第1実施形態における熱交換器を示す斜視図である。
【図3】本発明の第1実施形態における熱交換器の構造を示す部分断面側面図である。
【図4】多孔扁平チューブの加工方法概要を示し、(a)は従来構造の場合、(b)は本発明の実施形態における場合である。
【図5】本発明の第2実施形態における熱交換器の構造を示す部分断面側面図である。
【図6】本発明の第3実施形態における熱交換器の構造を示す部分断面側面図である。
【図7】本発明の第4実施形態における熱交換器の構造を示す部分断面側面図である。
【図8】本発明の第5実施形態における熱交換器の構造を示す部分断面側面図である。
【図9】本発明の第6実施形態における熱交換器の構造を示す部分断面側面図である。
【符号の説明】
100 多孔扁平チューブ
100a 流体通路孔
100b 潰し部
110 第1流体通路
110a 切り込み
120 第2流体通路
120a 切り込み
140 封止部品
211 第1ヘッダパイプ(ヘッダタンク、金属加工品)
221 第2ヘッダパイプ(ヘッダタンク、金属加工品)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heat exchanger using a porous flat tube in which a plurality of fluid passage holes formed by extrusion molding are arranged in a plurality of rows in a cross-sectional thickness direction as a heat exchange section. For example, the first fluid and the second fluid are allowed to flow through the passage hole to perform heat exchange.
[0002]
[Prior art]
As a conventional technique, a porous flat tube in which a large number of fluid passage holes formed by extrusion molding are arranged in a plurality of rows in the cross-sectional thickness direction is used for the heat exchange part, and for each row of the plurality of rows of fluid passage holes, For example, a heat exchanger is known in which heat exchange is performed by circulating a high-temperature and high-pressure refrigerant as a first fluid and a low-temperature and low-pressure refrigerant as a second fluid. For example, there exists the structure of the heat exchanger shown in Unexamined-Japanese-Patent No. 2000-346484 for which this applicant applied previously.
[0003]
[Problems to be solved by the invention]
However, in the conventional structure shown in the above publication, it is necessary to cut the end of the porous flat tube 100 into a shape as shown in FIG. 4A with a milling cutter or the like. In addition to being expensive, the fluid passage hole 100a opens in the direction of the rotating cutting tool, so that the shaved chips enter and become clogged. (The reference numerals in the figure correspond to the embodiments described later.)
In addition, the long hole for inserting the shaved porous flat tube 100 into the outer header tank (pipe) of the double pipe is an oval shape and is easy to press, but the inner header tank ( The long hole to be inserted into the pipe) has a substantially D-shaped shape with sharp corners on both sides and is difficult to press. From this, the D-shaped outer shape of the porous flat tube 100 and the inner header tank Even if the airtightness of the joint (brazing) with the (pipe) is incomplete, there is a problem that it is difficult to detect because of internal leakage.
[0004]
The present invention has been made in view of the above-mentioned problems of the prior art, and its purpose is to simplify the communication structure between the fluid passage hole in the porous flat tube and the header tank, thereby reducing the cost and airtight reliability. It is in providing the heat exchanger which can also improve.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, the present invention employs the following technical means. In the first aspect of the present invention, heat exchange using a porous flat tube (100) in which a plurality of fluid passage holes (100a) formed by extrusion molding are arranged in a plurality of rows in the cross-sectional thickness direction is used as a heat exchange section. In the container, it is a flat surface of the porous flat tube (100), and on the side surface of one row of the fluid passage holes (100a), only in the one row of the fluid passage holes (100a) across the width direction. A rectangular, V-shaped, or U-shaped cut (110a, 120a) having a predetermined depth to be an opening is made, and a header tank (210, 220, 211, 221) is formed around the cut (110a, 120a). ) joining causes the cuts (110a, 120a) communicating the with one column and the header tank (210,220,211,221) of said fluid passage hole (100a) through the And said that you are.
[0006]
As a result, the communication structure between the fluid passage hole (100a) in the porous flat tube (100) and each header tank ( 210, 220, 211 , 221) is simplified, the cost is reduced, and the airtight reliability is improved. be able to.
In the invention according to claim 2, the notch (110a, 120a) having a predetermined depth is formed in the width direction on the flat surface of the porous flat tube (100) so that the flat surface remains on both sides of the notch (110a, 120a). The header tanks (210, 220, 211, 221) are joined around the notches (110a, 120a), and the fluid passage hole (100a) and the header tanks (210, 220, 210) are joined through the notches (110a, 120a). 211, 221). This simplifies the communication structure between the fluid passage hole (100a) in the porous flat tube (100) and the header tanks (210, 220, 211, 221), thereby reducing costs and improving airtight reliability. be able to.
[0007]
In invention of Claim 3 , a plate-shaped metal workpiece (211, 221) is joined to the flat surface of a porous flat tube (100), and a metal workpiece (211, 120a) is covered by cutting (110a, 120a). 221) is a header tank (211, 221). Thereby, it can be set as the compact heat exchanger which made the header tank (211, 221) protrude only on the single side | surface of the porous flat tube (100) of a required part.
[0008]
The invention according to claim 4 is characterized in that the flow passage of the fluid passage hole (100a) is sealed by providing a crushing portion (100b) obtained by crushing the porous flat tube (100) in the thickness direction across the width direction. And Thereby, since the circulation of the fluid passage hole (100a) can be sealed by simple processing, the cost of the heat exchanger can be suppressed.
[0009]
The invention according to claim 5 is characterized in that the flow of the fluid passage hole (100a) is sealed by joining the sealing component (140) to the notches (110a, 120a). Thereby, the circulation of the fluid passage hole (100a) can be easily sealed by combining the notches (110a, 120a) and the sealing component (140), and the hermetic reliability of the heat exchanger can be improved.
[0010]
In the invention according to claim 6, the porous flat tube (100) includes a first fluid passage (110) configured on a first surface side and configured by a part of a fluid passage hole (100a) through which the first fluid flows. And a second fluid passage (120) configured on the other side of the second surface opposite to the first surface and configured by the other part of the fluid passage hole (100a) through which the second fluid flows, and at least a porous flat tube A rectangular, V-shaped or U-shaped cut (110a) having a predetermined depth is made in the first surface of (100) in the width direction, and the first fluid passage (110) is inserted through the cut (110a). And the header tank (211) are in communication with each other to exchange heat between the first fluid and the second fluid.
[0011]
Thereby, the communication structure between the first fluid passage (110) and the header tank (211) in the porous flat tube (100) is simplified, the cost can be reduced, and the airtight reliability can be improved.
[0012]
In the invention of claim 7, a rectangular, V-shaped or U-shaped cut (120a) having a predetermined depth is made in the second surface of the porous flat tube (100) in the width direction, and the cut (120a). The second fluid passageway (120) and the header tank (221) are communicated with each other through the above. Thereby, the communication structure between the second fluid passage (120) in the porous flat tube (100) and the header tank (221) is simplified, the cost can be reduced, and the airtight reliability can be improved.
[0013]
Incidentally, the reference numerals in parentheses of each means described above are an example showing the correspondence with the specific means described in the embodiments described later.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0015]
(First embodiment)
FIG. 1 is a schematic diagram of a refrigeration cycle in the present embodiment, and is a refrigeration cycle that is used in a vehicle or the like and uses a high-pressure refrigerant such as carbon dioxide (CO 2 ). In order to improve the efficiency (performance) of the system, in addition to the normal refrigeration cycle in which the refrigerant is compressed by the compressor, cooled by the gas cooler, depressurized by the expansion valve, and evaporated by the evaporator, the low-temperature and low-pressure refrigerant downstream of the evaporator and the gas cooler downstream An internal heat exchanger that lowers the refrigerant temperature downstream of the gas cooler by exchanging heat with the high-temperature and high-pressure refrigerant is provided.
[0016]
This embodiment uses the heat exchanger of the present invention as its internal heat exchanger. FIG. 2 shows a perspective view of the heat exchanger in the first embodiment of the present invention, and FIG. 3 shows the heat exchanger. This structure is shown in a partial sectional side view. However, since it has a symmetrical structure from the center in the longitudinal direction, only one side will be described.
[0017]
In the porous flat tube 100, a large number of fluid passage holes 100a are formed by extrusion molding of an aluminum material, and a plurality of fluid passage holes 100a are provided in the thickness direction of a flat cross section as shown in FIG. Are arranged in rows. In the present embodiment, the porous flat tubes 100 in which the fluid passage holes 100a are arranged in two rows are used for the heat exchange part of the heat exchanger, and one row is used as the first fluid passage 110 and the high-temperature and high-pressure refrigerant is circulated as the first fluid. The other row is the second fluid passage 120, and a low-temperature and low-pressure refrigerant is circulated as the second fluid for heat exchange.
[0018]
Specifically, as shown in FIG. 3, in the vicinity of both ends of the porous flat tube 100, a notch 110 a serving as an opening of the first fluid passage 110 is formed on the side surface of the first fluid passage 110 in the width direction of the porous flat tube 100. And cut to a predetermined depth.
[0019]
In addition, a notch 120 a serving as an opening portion of the second fluid passage 120 is provided on the opposite side surface of the second fluid passage 120 by cutting a predetermined depth in the width direction of the porous flat tube 100.
[0020]
Both the cuts 110a and 120a are processed with a metal saw or the like as shown in FIG. 4 (b), the processing cost is low, and there is no fluid passage hole 100a in the direction of the rotating blade, so that the cut chips enter and become clogged. There is no problem. From this point, the shapes of the cuts 110a and 120a are preferably rectangular as in the embodiment, but may be V-shaped or U-shaped.
[0021]
The positions of both cuts 110a and 120a are slightly shifted from the longitudinal direction of the porous flat tube 100. Then, as shown in FIGS. 2 and 3, two aluminum pipe members are inserted and joined to both ends of the porous flat tube 100. The pipe material joined around the notch 110 a becomes the first header pipe (tank) 210 communicating with the first fluid passage 110, and the pipe material joined around the notch 120 a communicates with the second fluid passage 120. (Tank) 220.
[0022]
Each of the first and second header pipes 210 and 220 has a long hole 230 having a different shape in the pipe material having a different diameter in the prior art, whereas in this embodiment, the long hole 230 is formed at the center of both side surfaces of the pipe material. Only one kind of finished pipe product is enough. Moreover, since the elongated long hole 230 is inserted in the outer shape of the porous flat tube 100, it is oval and has a shape that can be easily pressed and joined. As a result, the cost of the heat exchanger can be reduced and the airtight reliability can be improved.
[0023]
Then, a pipe connection block 240 is joined to a portion serving as a fluid inlet / outlet of each of the first and second header pipes 210 and 220, and a cap 250 is joined and sealed to the opposite side not serving as a fluid inlet / outlet. The parts configured as described above are combined, held by a jig, carried into a brazing heating furnace, and integrally brazed. Moreover, the brazing material 130 is piled up at the cut portions at both ends of the porous flat tube 100 to seal the first and second fluid passages 110 and 120 together.
[0024]
The flow paths of the first and second fluids of the present embodiment in the above configuration will be described. The first fluid flows into one first header pipe 210 as shown by an arrow in FIG. Distributed from the notch 110 a to the first fluid passage 110. Then, it flows through the first fluid passage 110, flows out from the other notch 110 a into the other first header pipe 210, is collected, and flows out from the other first header pipe 210 as indicated by an arrow.
[0025]
Further, as shown by the arrow in FIG. 2, the second fluid flows into one second header pipe 220 and is distributed to the second fluid passage 120 from one notch 120a. Then, it flows through the second fluid passage 120, flows out from the other notch 120a into the other second header pipe 220, collects, and flows out from the other second header pipe 220 as indicated by an arrow. Therefore, as can be seen from the arrows in FIG. 2, the flow of the first fluid and the flow of the second fluid are counterflows, but they may be parallel flows.
[0026]
Next, features of this embodiment will be described. Cuts 110a and 120a having a predetermined depth are formed in both sides of the porous flat tube 100 in the width direction, and the fluid passage hole 100a and the header tanks 211 and 221 are communicated with each other through the cuts 110a and 120a.
[0027]
Thereby, the communication structure between the fluid passage hole 100a in the porous flat tube 100 and the header tanks 211 and 221 is simplified, the cost can be suppressed, and the airtight reliability can be improved.
[0028]
(Second Embodiment)
FIG. 5 is a partial cross-sectional side view showing the structure of the heat exchanger in the second embodiment of the present invention, which is different from the first embodiment only in the structures of the header tanks 211 and 221.
[0029]
In the first embodiment described above, the pipe pipes are used as the header pipes 211 and 221. However, in this embodiment, the plate-like metal workpieces 211 and 221 obtained by subjecting an aluminum member to press working or cutting work are made porous flat. The metal workpieces 211 and 221 are used as the header tanks 211 and 221 by brazing and joining one side of the tube 100 and covering the cuts 110a and 120a. Thereby, it can be set as the compact heat exchanger which made the header tank 211,221 protrude only on the single side | surface of the porous flat tube 100 of a required part.
[0030]
(Third embodiment)
FIG. 6 is a partial cross-sectional side view showing the structure of the heat exchanger in the third embodiment of the present invention, which is different from the first embodiment only in the sealing structure at both ends of the porous flat tube 100.
[0031]
In the first embodiment described above, the brazing filler metal 130 is placed and sealed at the cut ends of the porous flat tube 100, but in this embodiment, the porous flat tube 100 is crushed in the thickness direction across the width direction. By providing the portion 100b, the flow of the fluid passage hole 100a is sealed. Thereby, since the distribution | circulation of the fluid passage hole 100a can be sealed by simple process, the cost of a heat exchanger can be held down.
[0032]
(Fourth embodiment)
FIG. 7 is a partial cross-sectional side view showing the structure of the heat exchanger according to the fourth embodiment of the present invention, which also differs from the first embodiment only in the sealing structure at both ends of the porous flat tube 100.
[0033]
In the present embodiment, the flow of the fluid passage hole 100a is sealed by making an aluminum sealing component 140 and fitting it into the cuts 110a and 120a. Thereby, the flow of the fluid passage hole 100a can be easily sealed by combining the notches 110a and 120a and the sealing component 140, and the airtight reliability of the heat exchanger can be improved.
[0034]
(Fifth embodiment)
FIG. 8 is a partial cross-sectional side view showing the structure of the heat exchanger in the fifth embodiment of the present invention, and the communication structure of the second fluid passage 120 and the second header pipe 220 is different from that of the first embodiment.
[0035]
In this embodiment, the communication structure between the first fluid passage 110 and the first header pipe 210 is the same as in the first embodiment, but the long hole 230 opened in the second header pipe 220 is only on one side, and the porous flat tube 100 The second fluid passage 120 and the second header pipe 220 are in communication with each other by inserting and joining the end portions thereof.
[0036]
Therefore, the notch 120a is not provided on the side surface of the second fluid passage 120 of the porous flat tube 100. Instead, another notch 110a is provided on the side surface of the first fluid passage 110 between the first and second header pipes 210 and 220. And the sealing component 140 of the fourth embodiment is fitted and joined thereto so that the second header pipe 220 is not communicated to the first fluid passage 110. In this structure, since the porous flat tube 100 does not protrude from the second header pipe 220, the heat exchanger can be made compact.
[0037]
(Sixth embodiment)
FIG. 9 is a partial cross-sectional side view showing the structure of the heat exchanger in the sixth embodiment of the present invention. In the present embodiment, the porous flat tubes 100 in which the fluid passage holes 100a are arranged in three rows are used for the heat exchange part of the heat exchanger, and the outer two rows are the first fluid passages 110 and the high-temperature and high-pressure refrigerant is circulated as the first fluid. Then, the central row is the second fluid passage 120, and the low-temperature and low-pressure refrigerant is circulated as the second fluid for heat exchange.
[0038]
Therefore, cuts 110a are provided on both sides of the porous flat tube 100, and the first header pipe 210 is joined around the cuts 110a on both sides, thereby communicating with the first fluid passages 110 on both sides. In addition, two cuts 110a are provided on both surfaces between the first and second header pipes 210 and 220, and the sealing parts 140 of the fourth embodiment are respectively fitted and joined to the two first fluids. The passage 110 is prevented from communicating with the second header pipe 220.
[0039]
Similarly to the fifth embodiment, the elongated hole 230 opened in the second header pipe 220 is only on one side, and the end of the porous flat tube 100 is inserted and joined as it is, so that the second fluid passage 120 and the second header in the center are joined. Communication with the pipe 220 is established.
[0040]
As described above, even in the porous flat tube 100 in which the fluid passage holes 100a are arranged in a plurality of rows, the surface on which the cut is provided and the depth of the cut are variable, and further, by combining the cut and the sealing component, It is possible to change where to communicate with, and the heat exchanger can be combined with various fluid passage arrays.
[0041]
The outer two rows may be the second fluid passage 120 and the low temperature and low pressure refrigerant may be circulated as the second fluid, and the central one row may be the first fluid passage 110 and the high temperature and high pressure refrigerant may be circulated as the first fluid.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of a refrigeration cycle in the present embodiment.
FIG. 2 is a perspective view showing a heat exchanger in the first embodiment of the present invention.
FIG. 3 is a partial cross-sectional side view showing the structure of the heat exchanger in the first embodiment of the present invention.
4A and 4B show an outline of a processing method of a porous flat tube, in which FIG. 4A shows a case of a conventional structure, and FIG. 4B shows a case of an embodiment of the present invention.
FIG. 5 is a partial cross-sectional side view showing the structure of a heat exchanger in a second embodiment of the present invention.
FIG. 6 is a partial cross-sectional side view showing the structure of a heat exchanger in a third embodiment of the present invention.
FIG. 7 is a partial sectional side view showing the structure of a heat exchanger according to a fourth embodiment of the present invention.
FIG. 8 is a partial cross-sectional side view showing the structure of a heat exchanger in a fifth embodiment of the present invention.
FIG. 9 is a partial cross-sectional side view showing the structure of a heat exchanger in a sixth embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 100 Perforated flat tube 100a Fluid passage hole 100b Collapsed part 110 First fluid passage 110a Cut 120 Second fluid passage 120a Cut 140 Sealing component 211 First header pipe (header tank, metal workpiece)
221 Second header pipe (header tank, metal processed product)

Claims (7)

押出成形で形成される多数の流体通路孔(100a)が断面厚み方向に複数の列状に配置された多孔扁平チューブ(100)を熱交換部に用いた熱交換器において、
前記多孔扁平チューブ(100)の扁平面であって、前記流体通路孔(100a)の一方の列の側面に、幅方向に渡って前記流体通路孔(100a)の前記一方の列の開口部となる所定深さの矩形形状、V字形状またはU字形状の切り込み(110a、120a)を入れ、この切り込み(110a、120a)の回りにヘッダタンク(210、220、211、221)を接合し、前記切り込み(110a、120a)を介して前記流体通路孔(100a)の前記一方の列と前記ヘッダタンク(210、220、211、221)とを連通させていることを特徴とする熱交換器。
In a heat exchanger using a porous flat tube (100) in which a plurality of fluid passage holes (100a) formed by extrusion are arranged in a plurality of rows in a cross-sectional thickness direction as a heat exchange part,
An opening of the one row of the fluid passage holes (100a) across the width direction on a side surface of one row of the fluid passage holes (100a), which is a flat surface of the porous flat tube (100). A rectangular, V-shaped or U-shaped cut (110a, 120a) having a predetermined depth is inserted, and a header tank (210, 220, 211, 221) is joined around the cut (110a, 120a), The heat exchanger, wherein the one row of the fluid passage holes (100a) and the header tanks (210, 220, 211, 221) are communicated with each other through the notches (110a, 120a).
押出成形で形成される多数の流体通路孔(100a)が断面厚み方向に複数の列状に配置された多孔扁平チューブ(100)を熱交換部に用いた熱交換器において、
前記多孔扁平チューブ(100)の扁平面に、幅方向に渡って所定深さの切り込み(110a、120a)を当該切り込み(110a、120a)の両側に前記扁平面が残るように入れ、この切り込み(110a、120a)の回りにヘッダタンク(210、220、211、221)を接合し、前記切り込み(110a、120a)を介して前記流体通路孔(100a)と前記ヘッダタンク(210、220、211、221)とを連通させていることを特徴とする熱交換器。
In a heat exchanger using a porous flat tube (100) in which a plurality of fluid passage holes (100a) formed by extrusion are arranged in a plurality of rows in a cross-sectional thickness direction as a heat exchange part,
In the flat surface of the porous flat tube (100), cuts (110a, 120a) having a predetermined depth in the width direction are made so that the flat surfaces remain on both sides of the cuts (110a, 120a). 110a, 120a) around the header tanks (210, 220, 211, 221), and through the notches (110a, 120a), the fluid passage hole (100a) and the header tanks (210, 220, 211, 221) is in communication with the heat exchanger.
板状の金属加工品(211、221)を前記多孔扁平チューブ(100)の片面に接合して前記切り込み(110a、120a)を被うことで前記金属加工品(211、221)を前記ヘッダタンク(211、221)としたことを特徴とする請求項1または請求項2に記載の熱交換器。  A plate-shaped metal workpiece (211, 221) is joined to one side of the porous flat tube (100) and the cuts (110a, 120a) are covered, whereby the metal workpiece (211, 221) is covered with the header tank The heat exchanger according to claim 1, wherein the heat exchanger is (211, 221). 前記多孔扁平チューブ(100)を幅方向に渡って厚み方向に潰した潰し部(100b)を設けることにより、前記流体通路孔(100a)の流通を封止したことを特徴とする請求項1ないし請求項3のうちいずれか1項に記載の熱交換器。  2. The flow path of the fluid passage hole (100 a) is sealed by providing a crushing part (100 b) obtained by crushing the porous flat tube (100) in the thickness direction in the width direction. The heat exchanger according to any one of claims 3 to 4. 前記切り込み(110a、120a)に封止部品(140)を接合することにより、前記流体通路孔(100a)の流通を封止したことを特徴とする請求項1ないし請求項3のうちいずれか1項に記載の熱交換器。  4. The flow path of the fluid passage hole (100 a) is sealed by joining a sealing component (140) to the cuts (110 a, 120 a). 5. The heat exchanger according to item. 押出成形で形成される多数の流体通路孔(100a)が断面厚み方向に複数の列状に配置された多孔扁平チューブ(100)を熱交換部に用いた熱交換器において、
前記多孔扁平チューブ(100)は、第1面側に配置され第1流体が流通する前記流体通路孔(100a)の一部で構成された第1流体通路(110)と、第1面と反対側の第2面側に配置され第2流体が流通する前記流体通路孔(100a)の他部で構成された第2流体通路(120)とを有し、少なくとも前記多孔扁平チューブ(100)の第1面に幅方向に渡って所定深さの矩形形状、V字形状またはU字形状の切り込み(110a)を入れ、この切り込み(110a)を介して前記第1流体通路(110)とヘッダタンク(211)とを連通させ、前記第1流体と前記第2流体との熱交換を行わせることを特徴とする熱交換器。
In a heat exchanger using a porous flat tube (100) in which a plurality of fluid passage holes (100a) formed by extrusion are arranged in a plurality of rows in a cross-sectional thickness direction as a heat exchange part,
The porous flat tube (100) is disposed on the first surface side and is opposite to the first surface, the first fluid passage (110) configured by a part of the fluid passage hole (100a) through which the first fluid flows. A second fluid passage (120) configured at the other portion of the fluid passage hole (100a) disposed on the second surface side of the fluid passage through which the second fluid flows, and at least of the porous flat tube (100). A rectangular, V-shaped or U-shaped cut (110a) having a predetermined depth is formed in the first surface in the width direction, and the first fluid passage (110) and the header tank are inserted through the cut (110a). (211) is connected, and heat exchange between the first fluid and the second fluid is performed.
前記多孔扁平チューブ(100)の第2面に幅方向に渡って所定深さの矩形形状、V字形状またはU字形状の切り込み(120a)を入れ、この切り込み(120a)を介して前記第2流体通路(120)とヘッダタンク(221)とを連通させことを特徴とする請求項6に記載の熱交換器。A rectangular, V-shaped or U-shaped notch (120a) having a predetermined depth is formed in the second surface of the porous flat tube (100) in the width direction, and the second through the notch (120a). The heat exchanger according to claim 6, wherein the fluid passage (120) and the header tank (221) are communicated with each other.
JP2002000637A 2002-01-07 2002-01-07 Heat exchanger Expired - Fee Related JP3826791B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002000637A JP3826791B2 (en) 2002-01-07 2002-01-07 Heat exchanger
DE2003100054 DE10300054A1 (en) 2002-01-07 2003-01-03 Heat exchanger with slotted heat exchange tube has tube with several channels running parallel to tube and connected to collection tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002000637A JP3826791B2 (en) 2002-01-07 2002-01-07 Heat exchanger

Publications (2)

Publication Number Publication Date
JP2003202197A JP2003202197A (en) 2003-07-18
JP3826791B2 true JP3826791B2 (en) 2006-09-27

Family

ID=19190521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002000637A Expired - Fee Related JP3826791B2 (en) 2002-01-07 2002-01-07 Heat exchanger

Country Status (2)

Country Link
JP (1) JP3826791B2 (en)
DE (1) DE10300054A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2859779B1 (en) * 2003-09-16 2008-08-29 Valeo Climatisation HEAT EXCHANGER WITH ALTERNATE FLAT TUBES
DE10346141B4 (en) * 2003-10-01 2006-04-13 Eaton Fluid Power Gmbh heat exchanger unit
FR2862747B1 (en) * 2003-11-20 2008-09-05 Commissariat A L'energie Atomique HEAT EXCHANGER PLATE, AND THIS EXCHANGER
TWI324242B (en) * 2004-02-12 2010-05-01 Sanyo Electric Co Refrigerant cycle apparatus
JP4536459B2 (en) * 2004-08-25 2010-09-01 株式会社ティラド Heat exchanger tubes and heat exchangers
US9151540B2 (en) * 2010-06-29 2015-10-06 Johnson Controls Technology Company Multichannel heat exchanger tubes with flow path inlet sections
WO2012017681A1 (en) * 2010-08-05 2012-02-09 三菱電機株式会社 Heat exchanger and refrigeration and air conditioning device
WO2012153361A1 (en) * 2011-05-06 2012-11-15 三菱電機株式会社 Heat exchanger and refrigeration cycle device provided with same
JP5758991B2 (en) * 2011-05-06 2015-08-05 三菱電機株式会社 Heat exchanger and refrigeration cycle apparatus including the same
DE102017203258A1 (en) 2017-02-28 2018-08-30 Mahle International Gmbh heater
CN108627042A (en) * 2018-02-06 2018-10-09 南京航空航天大学 Three media heat exchanger of integrated molding based on Multi-hole parallel flow flat tube

Also Published As

Publication number Publication date
JP2003202197A (en) 2003-07-18
DE10300054A1 (en) 2003-07-10

Similar Documents

Publication Publication Date Title
US7044208B2 (en) Heat exchanger
KR100274586B1 (en) Heat exchanger
US7775067B2 (en) Heat exchanger header tank and heat exchanger comprising same
JP3826791B2 (en) Heat exchanger
JP3945208B2 (en) Heat exchange tubes and heat exchangers
US6170567B1 (en) Heat exchanger
US6446713B1 (en) Heat exchanger manifold
EP3458789B1 (en) Double tube for heat-exchange
JP2005300135A (en) Header tank for heat exchanger, and heat exchanger using the same
US5941304A (en) Connector for heat exchanger
JP2007093025A (en) Heat exchanger and its manufacturing method
KR20050044325A (en) Heat exchanger, heat exchanger header tank and manufacturing method thereof
WO2001059384A1 (en) Weld-free heat exchanger assembly
US20070169508A1 (en) Refrigerant flow section connection structure for use in refrigeration cycle
US5494099A (en) Heat exchanger
JP2006003071A (en) Heat exchanger
US8726507B2 (en) Method for manufacturing a heat exchanger and exchanger obtained by the method
EP0805330B1 (en) Heat exchanger enabling leak test of chambers in tank separated by single partition
JP2004125340A (en) Heat exchanger
JPH0989477A (en) Manufacture of heat exchanger
JPH08233476A (en) Heat exchanger
KR20050055046A (en) Semifinished flat tube, process for producing same, flat tube, heat exchanger comprising the flat tube and process for fabricating the heat exchanger
JP2009008347A (en) Heat exchanger
JP2006284163A (en) Integrated heat exchanging device
JP2003214793A (en) Heat exchanger, header tank for heat exchanger, and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040402

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060209

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060307

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060421

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060626

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090714

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100714

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110714

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120714

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120714

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130714

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees