JP3826569B2 - Gas sensor - Google Patents

Gas sensor Download PDF

Info

Publication number
JP3826569B2
JP3826569B2 JP16384998A JP16384998A JP3826569B2 JP 3826569 B2 JP3826569 B2 JP 3826569B2 JP 16384998 A JP16384998 A JP 16384998A JP 16384998 A JP16384998 A JP 16384998A JP 3826569 B2 JP3826569 B2 JP 3826569B2
Authority
JP
Japan
Prior art keywords
gas
gas sensor
sensitive film
sensor
conductive polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16384998A
Other languages
Japanese (ja)
Other versions
JP2000065772A (en
Inventor
浩樹 九山
佳弘 青山
純一 喜多
光良 吉井
久光 赤丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP16384998A priority Critical patent/JP3826569B2/en
Publication of JP2000065772A publication Critical patent/JP2000065772A/en
Application granted granted Critical
Publication of JP3826569B2 publication Critical patent/JP3826569B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、導電性高分子からなる感応膜を用いてガス中の被測定成分を検知するガスセンサに関するものである。本発明は、例えば複数のガスセンサを用いてにおいを識別するにおいセンサにも利用することができる。
【0002】
【従来の技術】
ガスセンサは、空気又は供給された試料ガス中に含まれるにおい物質が、センサの感応面に付着することにより生ずるセンサの物理的化学変化を、電気的に測定するものにも使用される。
ガスセンサとしては、酸化物半導体を用いたものが市販されている。
また、酸化物半導体ガスセンサを複数個用いた人工電子鼻と呼ばれるガス測定装置も市販が始められている。人工電子鼻は、「におい」を検知するシステムとして、食品や香料の品質検査、悪臭公害の定量基準、焦げ臭検知による火災警報機などへの利用が試みられている。
【0003】
しかし、酸化物半導体を用いたガスセンサの測定対象は、感応面で酸化還元反応を起こす物質に限られる。また、センサ部が高温でないと動作しないため、その熱によって熱分解を受ける物質は測定対象にならない。さらに、分析にあたり、センサの温度が動作温度まで上昇し安定するまで待つ必要があり、繰返し測定に時間がかかるという問題もあるし、センサの表面状態により経時変化があるという欠点もある。
【0004】
他のガスセンサとしては、ポリアセチレンやポリピロール、ポリチオフェン等の導電性高分子からなる感応膜を用いたものがある。導電性高分子膜を用いたガスセンサでは、におい物質のようなガス成分が感応面に付着すると、分子の直接的又は間接的な関与により導電性高分子の導電率が変化する。そこで、感応膜を挾んで設けた電極間の抵抗又はインピーダンスの変化を測定することによりガス成分の検知を行なうことができる。
感応膜に用いる導電性高分子は、初期のものは溶媒に不溶で加工性の悪いポリアセチレン、ポリピロール、ポリチオフェンなどであったが、それらにアルキル基などを導入してポリアルキルアセチレン、ポリアルキルピロール、ポリアルキルチオフェンとして、可溶性を与えて加工性のよいものへと改良されてきている。
【0005】
【発明が解決しようとする課題】
しかし、感応膜としては、ドーパントを導入した状態での熱安定性という点では未だに満足できるものはない。
そこで本発明は、導電性高分子膜を用いたガスセンサの熱安定性を向上させることを目的とするものである。
【0006】
【課題を解決するための手段】
本発明は、絶縁基板上に形成された2個以上の電極間に導電性高分子からなる感応膜が設けられ、その感応膜にガス中の測定対象成分が付着した際の前記電極間の電気的変化により測定対象成分を測定するガスセンサであって、ポリ(3'−n−オクチル−2,2';5',2''−ターチオフェン)(poly (3'-n-octyl-2, 2';5',2''- terthiophene)、PDTOTと略記する)を感応膜に用いたものである。
【0007】
近年、導電性高分子のドープ状態での熱安定性の研究が報告された(Q. Pei, O. Inganas, G.Gustafsson and M.Granstrom, Synth. Met., 55-57, 1221-1226(1993)、M. R. Andersson, Q. Pei, T. Hjertberg, O. Inganas, O. Wennerstrom and J.-E. Osterholm, Synth. Met., 55-57, 1227-1231(1993 ) 参照)。これらの研究によれば、ポリ(3−n−オクチルチオフェン)(poly(3-n-octylthiophene)、POTと略記する)など1残基に1つの置換基を有する導電性高分子、あるいはポリ(3'−n−オクチル−2,2'−ビチオフェン)(poly(3'-n-octyl-2,2'-bithiophene)、PTOTと略記する)などのランダム重合体は、ドーパントの存在場所が空間的に不十分であるため、主鎖及び側鎖の熱運動によってドーパントが移動しやすく、熱安定性が損なわれる。POT、PTOT及びPDTOTの構造式を以下の化学式(A)、(B)及び(C)にそれぞれ示す。
【0008】
【化1】

Figure 0003826569
【0009】
PDTOTはPOTに比べて側鎖が残基の2つおきに存在するため、ドーパントが存在するための空間的余裕がある。また、PDTOTは、PTOTに比べて側鎖の位置が規則正しいので、ドーパントの分布もランダム性が減少する。この概念はFree Volume Theoryとよばれており、この空間の大きさと配置が熱安定性を与えていると考えられる。
【0010】
【実施例】
図1により、本発明が適用されるガスセンサの一例を示す。(A)は平面図、(B)はその電極部の一部拡大図である。
ガラス基板1上に、2個の金電極3,3'が2mm×3mmの領域に5μmスペースで櫛形状に形成されており、それらの電極3,3'は同じ材料からなる0.5mm幅の端子5,5'にそれぞれ接続されている。電極3,3'及び端子5,5'は、金薄膜を例えばリフトオフ法によってパターン化することにより形成されている。電極3,3'の上面には、電極3,3'全体を覆うように導電性高分子(PDTOT)からなる感応膜7が形成されている。対向する各電極対間には感応膜7が存在し、それらの電極対間の感応膜7の電気抵抗値が端子5,5'間で測定される。
【0011】
図2は本発明が適用されるガス測定装置の一例を示したものである。ボンベにより供給される乾燥窒素ガスの流路上にはバルブ9及びフローセル11が設けられ、図示しないポンプの吸引によって乾燥窒素ガスが流路内に流通する。バルブ9には、におい物質容器13に連なるガス流路が接続されており、バルブ9の操作により乾燥窒素ガス中に適宜量のにおい物質が混入される。フローセル11内にはセンサ15が設置されている。そのセンサ15は、図1に示されたガスセンサが複数個配置されたものであり、それらのガスセンサは互いにガス応答特性が異なっている。各ガスセンサには電極3,3'間の抵抗値を測定する抵抗計17が接続されている。
【0012】
次に、このガス測定装置の動作を説明すると、初めにフローセル11に乾燥窒素ガスを流しておき、バルブ9を切り替えて、におい物質容器13からにおい物質をフローセル11に送る。におい物質に含まれる各種成分の分子がセンサ15の感応膜7に付着すると、分子の直接的又は間接的な関与により導電性高分子の感応膜7の導電率が変化し、抵抗計17により電極3,3'間の抵抗変化が測定される。におい物質には複数の成分が含まれており、それらの成分がセンサ15に含まれる複数のガスセンサで同時に検出される。各ガスセンサの検出出力がそれぞれいずれかの成分に対応するというものではなく、各ガスセンサが複数の成分に感度をもっているため、各ガスセンサでは複数の成分をそれぞれのガス応答特性に応じた感度で同時に検出して出力する。図には示されていないが、データ処理装置では、それらのガスセンサの出力をもとにして多変量解析を行ない、複数の成分を同時に定性定量する。
【0013】
PDTOTは以下の工程にて製造した。
(2,5−ジブロモ−3−n−オクチルチオフェンの合成)
6.35ミリモルのN−ブロモスクシンイミドを10mlのジメチルホルムアミドに溶解し撹拌した。その中へ2.54ミリモルの3−n−オクチルチオフェンを含む10mlのジメチルホルムアミド溶液を加え、撹拌した。その反応混合物を50mlの水に加え、ジクロロメタンで抽出し、粗生成物を得た。この粗生成物をクロマトグラフィーで精製し、2,5−ジブロモ−3−n−オクチルチオフェン(2,5-dibromo-3-n-octylthiophene)を850mg(収率94.5%)得た。この化学反応式を以下に示す。
【0014】
【化2】
Figure 0003826569
【0015】
(グリニャール試薬の合成)
50mlのフラスコに、8.3ミリモルのマグネシウムを入れ、N置換を行なった。それに10mlのジエチルエーテルを加え、7.36ミリモルの2−ブロモチオフェンを加えた。反応が終了した後、さらに加温し、還流させた。マグネシウムはほとんど溶解し、グリニャール試薬を得た。この化学反応式を以下に示す。
【0016】
【化3】
Figure 0003826569
【0017】
(3'−n−オクチル−2,2';5',2''−ターチオフェンの合成)
2.82ミリモルの2,5−ジブロモ−3−n−オクチルチオフェンを50mlのフラスコに入れ、10mlのジエチルエーテルを加えて撹拌した。さらに、10mgのジクロロ[1,3−ビス(ジフェニルホスフィノ)プロパン]ニッケル(II)([Ni(dppp)Cl2])を加えて撹拌した。この中に、グリニャール試薬を加えた。その後、撹拌し、続いて還流を行なった。その反応溶液に1N−HClを加えた。水層をジエチルエーテルで抽出した。その有機層を飽和NaCl水溶液で洗浄した後、乾燥し、濃縮して1.07gの粗生成物を得た。これをカラムクロマトグラフィーで精製し、75%の収率で3'−n−オクチル−2,2';5',2''−ターチオフェン(3'-n-octyl-2,2';5',2''-terthiophene、DTOTと略記する)(760mg)を得た。この化学反応式を以下に示す。
【0018】
【化4】
Figure 0003826569
【0019】
(重合)
50mlのフラスコに、1.38ミリモルのDTOT、その4倍当量の無水塩化第二鉄及び27mlのクロロホルムを入れ、3時間撹拌し、次いで、2日間撹拌した。反応混合物を300mlのメタノールに加え、ろ過した。固形物を真空乾燥し、PDTOTを500mg得た。この化学反応式を以下に示す。
【0020】
【化5】
Figure 0003826569
【0021】
このようにして得たPDTOT(FeCl3がドーパントとして含有されている)をガスセンサの感応膜として用い、熱安定性の検討を行なった。
PDTOT及び参考例としてのPOTにそれぞれFeCl3を導入したものを大気中、100℃で1時間放置し、それらの抵抗値の変化を測定した。PDTOTの抵抗値変化は2.0倍であったのに対し、POTの抵抗値変化は6.2倍であった。この結果から、PDTOTは感応膜として熱に対して安定性が高いことが分かる。また、FeCl3を導入したPDTOTを感応膜に用いたガスセンサの感度も良好であった。
【0022】
【発明の効果】
本発明では、ガスセンサの感応膜としてπ共役系を形成する主鎖に対し一定の間隔をおいて置換基が導入された導電性高分子からなるものであり、例えばポリ(3'−n−オクチル−2,2';5',2''−ターチオフェン)を用いるので、ガスセンサの熱安定性を向上させることができる。
【図面の簡単な説明】
【図1】 一実施例のガスセンサを示す図であり、(A)は平面図、(B)はその電極部の一部拡大図である。
【図2】 図1のガスセンサを用いるガス測定装置の構成図である。
【符号の説明】
1 ガラス基板
3 金電極
5 端子
7 感応膜[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a gas sensor that detects a component to be measured in a gas using a sensitive film made of a conductive polymer. The present invention can also be used for an odor sensor that identifies odors using a plurality of gas sensors, for example.
[0002]
[Prior art]
The gas sensor is also used to electrically measure a physical and chemical change of a sensor caused by an odor substance contained in air or supplied sample gas adhering to a sensitive surface of the sensor.
A gas sensor using an oxide semiconductor is commercially available.
A gas measuring device called an artificial electronic nose using a plurality of oxide semiconductor gas sensors has also been commercially available. Artificial electronic noses are used as systems for detecting "odor", such as quality inspections of foods and fragrances, quantitative standards for bad odor pollution, and fire alarms using burnt odor detection.
[0003]
However, the measurement target of the gas sensor using an oxide semiconductor is limited to a substance that causes a redox reaction on the sensitive surface. In addition, since the sensor unit does not operate unless the temperature is high, a substance that undergoes thermal decomposition by the heat is not a measurement target. Further, in the analysis, it is necessary to wait until the temperature of the sensor rises to the operating temperature and stabilizes, and there is a problem that it takes time for repeated measurement, and there is a drawback that there is a change with time depending on the surface state of the sensor.
[0004]
Other gas sensors include those using a sensitive film made of a conductive polymer such as polyacetylene, polypyrrole, or polythiophene. In a gas sensor using a conductive polymer film, when a gas component such as an odor substance adheres to a sensitive surface, the conductivity of the conductive polymer changes due to the direct or indirect participation of molecules. Therefore, the gas component can be detected by measuring a change in resistance or impedance between the electrodes provided with the sensitive film interposed therebetween.
The conductive polymer used for the sensitive film was polyacetylene, polypyrrole, polythiophene, etc., which were insoluble in a solvent and poor in workability at the initial stage, but by introducing an alkyl group into them, polyalkylacetylene, polyalkylpyrrole, As polyalkylthiophene, it has been improved to be soluble and have good processability.
[0005]
[Problems to be solved by the invention]
However, no sensitive film is yet satisfactory in terms of thermal stability in a state where a dopant is introduced.
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to improve the thermal stability of a gas sensor using a conductive polymer film.
[0006]
[Means for Solving the Problems]
According to the present invention, a sensitive film made of a conductive polymer is provided between two or more electrodes formed on an insulating substrate, and the electric current between the electrodes when a measurement target component in a gas adheres to the sensitive film. Gas sensor for measuring a component to be measured by a mechanical change, comprising poly (3′-n-octyl-2,2 ′; 5 ′, 2 ″ -terthiophene) (poly (3′-n-octyl-2, 2 ′; 5 ′, 2 ″ -terthiophene), abbreviated as PDTOT), is used for the sensitive membrane.
[0007]
In recent years, studies of thermal stability at doped state of the conductive polymer has been reported (Q. Pei, O. Inganas, G.Gustafsson and M.Granstrom, Synth Met, 55 -.. 57, 1221-1226 ( . 1993), MR Andersson, Q. Pei, T. Hjertberg, O. Inganas, O. Wennerstrom and J.-E. Osterholm, Synth Met, 55 -. 57, reference 1227-1231 (1993)). According to these studies, a conductive polymer having one substituent per residue such as poly (3-n-octylthiophene) (abbreviated as poly (3-n-octylthiophene), POT), or poly (3- Random polymers such as 3′-n-octyl-2,2′-bithiophene (abbreviated as poly (3′-n-octyl-2,2′-bithiophene), PTOT) Therefore, the dopant is easily moved by the thermal motion of the main chain and the side chain, and the thermal stability is impaired. The structural formulas of POT, PTOT and PDTOT are shown in the following chemical formulas (A), (B) and (C), respectively.
[0008]
[Chemical 1]
Figure 0003826569
[0009]
Since PDTOT has side chains every two residues as compared to POT, there is a spatial margin for the presence of a dopant. In addition, since the position of the side chain is regular in PDTOT compared to PTOT, the randomness of the dopant distribution is also reduced. This concept is called Free Volume Theory, and it is thought that the size and arrangement of this space give thermal stability.
[0010]
【Example】
FIG. 1 shows an example of a gas sensor to which the present invention is applied. (A) is a plan view, and (B) is a partially enlarged view of the electrode portion.
On the glass substrate 1, two gold electrodes 3, 3 ′ are formed in a comb shape with a space of 5 μm in a region of 2 mm × 3 mm, and these electrodes 3, 3 ′ are made of the same material and have a width of 0.5 mm. Connected to terminals 5 and 5 ', respectively. The electrodes 3 and 3 ′ and the terminals 5 and 5 ′ are formed by patterning a gold thin film by, for example, a lift-off method. A sensitive film 7 made of a conductive polymer (PDTOT) is formed on the upper surfaces of the electrodes 3 and 3 ′ so as to cover the entire electrodes 3 and 3 ′. There is a sensitive film 7 between the opposing electrode pairs, and the electrical resistance value of the sensitive film 7 between these electrode pairs is measured between the terminals 5 and 5 '.
[0011]
FIG. 2 shows an example of a gas measuring apparatus to which the present invention is applied. A valve 9 and a flow cell 11 are provided on the flow path of the dry nitrogen gas supplied from the cylinder, and the dry nitrogen gas flows through the flow path by suction of a pump (not shown). A gas flow path connected to the odor substance container 13 is connected to the valve 9, and an appropriate amount of odor substance is mixed into the dry nitrogen gas by the operation of the valve 9. A sensor 15 is installed in the flow cell 11. The sensor 15 includes a plurality of gas sensors shown in FIG. 1, and these gas sensors have different gas response characteristics. Each gas sensor is connected to an ohmmeter 17 for measuring a resistance value between the electrodes 3 and 3 '.
[0012]
Next, the operation of this gas measuring device will be described. First, dry nitrogen gas is allowed to flow through the flow cell 11, the valve 9 is switched, and the odor substance is sent from the odor substance container 13 to the flow cell 11. When molecules of various components contained in the odorous substance adhere to the sensitive film 7 of the sensor 15, the conductivity of the sensitive film 7 of the conductive polymer changes due to the direct or indirect involvement of the molecules, and the resistance meter 17 The resistance change between 3, 3 'is measured. The odor substance includes a plurality of components, and these components are detected simultaneously by a plurality of gas sensors included in the sensor 15. The detection output of each gas sensor does not correspond to any component, but each gas sensor has sensitivity to multiple components, so each gas sensor detects multiple components simultaneously with sensitivity corresponding to each gas response characteristic And output. Although not shown in the figure, the data processing apparatus performs multivariate analysis based on the outputs of those gas sensors, and qualitatively quantifies a plurality of components simultaneously.
[0013]
PDTOT was manufactured in the following steps.
(Synthesis of 2,5-dibromo-3-n-octylthiophene)
6.35 mmol of N-bromosuccinimide was dissolved in 10 ml of dimethylformamide and stirred. 10 ml of dimethylformamide solution containing 2.54 mmol of 3-n-octylthiophene was added and stirred. The reaction mixture was added to 50 ml water and extracted with dichloromethane to give the crude product. The crude product was purified by chromatography to obtain 850 mg (yield 94.5%) of 2,5-dibromo-3-n-octylthiophene. This chemical reaction formula is shown below.
[0014]
[Chemical 2]
Figure 0003826569
[0015]
(Synthesis of Grignard reagent)
A 50 ml flask was charged with 8.3 mmol of magnesium and N 2 substitution was performed. To it was added 10 ml diethyl ether and 7.36 mmol 2-bromothiophene was added. After the reaction was completed, the mixture was further heated and refluxed. Magnesium was almost dissolved, and a Grignard reagent was obtained. This chemical reaction formula is shown below.
[0016]
[Chemical 3]
Figure 0003826569
[0017]
(Synthesis of 3′-n-octyl-2,2 ′; 5 ′, 2 ″ -terthiophene)
2.82 mmol of 2,5-dibromo-3-n-octylthiophene was placed in a 50 ml flask and 10 ml of diethyl ether was added and stirred. Furthermore, 10 mg of dichloro [1,3-bis (diphenylphosphino) propane] nickel (II) ([Ni (dppp) Cl 2 ]) was added and stirred. In this, Grignard reagent was added. The mixture was then stirred and subsequently refluxed. 1N-HCl was added to the reaction solution. The aqueous layer was extracted with diethyl ether. The organic layer was washed with saturated aqueous NaCl, dried and concentrated to give 1.07 g of crude product. This was purified by column chromatography, and 3′-n-octyl-2,2 ′; 5 ′, 2 ″ -terthiophene (3′-n-octyl-2,2 ′; 5) in 75% yield. ', 2''-terthiophene, abbreviated as DTOT) (760 mg). This chemical reaction formula is shown below.
[0018]
[Formula 4]
Figure 0003826569
[0019]
(polymerization)
A 50 ml flask was charged with 1.38 mmol of DTOT, 4 equivalents of anhydrous ferric chloride and 27 ml of chloroform and stirred for 3 hours and then for 2 days. The reaction mixture was added to 300 ml of methanol and filtered. The solid was vacuum dried to obtain 500 mg of PDTOT. This chemical reaction formula is shown below.
[0020]
[Chemical formula 5]
Figure 0003826569
[0021]
The thus obtained PDTOT (containing FeCl 3 as a dopant) was used as a sensitive film of the gas sensor, and the thermal stability was examined.
PDTOT and POT as a reference example were respectively introduced with FeCl 3 and allowed to stand in the atmosphere at 100 ° C. for 1 hour, and the change in their resistance values was measured. The change in resistance value of PDTOT was 2.0 times, whereas the change in resistance value of POT was 6.2 times. From this result, it can be seen that PDTOT has high heat stability as a sensitive film. Moreover, the sensitivity of the gas sensor using PDTOT into which FeCl 3 was introduced as the sensitive film was also good.
[0022]
【The invention's effect】
In the present invention, it is composed of a conductive polymer having a substituent introduced at a certain interval with respect to the main chain forming a π-conjugated system as a sensitive film of a gas sensor, for example, poly (3′-n-octyl). −2, 2 ′; 5 ′, 2 ″ -terthiophene), the thermal stability of the gas sensor can be improved.
[Brief description of the drawings]
1A and 1B are views showing a gas sensor according to an embodiment, in which FIG. 1A is a plan view and FIG. 1B is a partially enlarged view of an electrode portion thereof.
FIG. 2 is a configuration diagram of a gas measuring device using the gas sensor of FIG.
[Explanation of symbols]
1 Glass substrate 3 Gold electrode 5 Terminal 7 Sensitive film

Claims (1)

絶縁基板上に形成された2個以上の電極間に導電性高分子からなる感応膜が設けられ、その感応膜にガス中の測定対象成分が付着した際の前記電極間の電気的変化により測定対象成分を測定するガスセンサにおいて、
前記感応膜は、ポリ(3'−n−オクチル−2,2';5',2''−ターチオフェン)を主成分とするものであることを特徴とするガスセンサ。
Measured by an electrical change between the electrodes when a sensitive film made of a conductive polymer is provided between two or more electrodes formed on an insulating substrate, and the component to be measured in the gas adheres to the sensitive film. In the gas sensor that measures the target component,
The gas sensor according to claim 1, wherein the sensitive film is mainly composed of poly (3'-n-octyl-2,2 ';5', 2 ''-terthiophene).
JP16384998A 1998-06-10 1998-06-11 Gas sensor Expired - Fee Related JP3826569B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16384998A JP3826569B2 (en) 1998-06-10 1998-06-11 Gas sensor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP16199198 1998-06-10
JP10-161991 1998-06-10
JP16384998A JP3826569B2 (en) 1998-06-10 1998-06-11 Gas sensor

Publications (2)

Publication Number Publication Date
JP2000065772A JP2000065772A (en) 2000-03-03
JP3826569B2 true JP3826569B2 (en) 2006-09-27

Family

ID=26487930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16384998A Expired - Fee Related JP3826569B2 (en) 1998-06-10 1998-06-11 Gas sensor

Country Status (1)

Country Link
JP (1) JP3826569B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1325907C (en) * 2001-02-21 2007-07-11 巴西农业研究公司 Sensor for analysis of mixtures by global selectivity and its use in sensor system

Also Published As

Publication number Publication date
JP2000065772A (en) 2000-03-03

Similar Documents

Publication Publication Date Title
US5519147A (en) Derivatized polythiophenes and devices comprising same
EP0724721B1 (en) Sensors for neutral molecules
JP3826569B2 (en) Gas sensor
Li et al. A selective conductive polymer-based sensor for volatile halogenated organic compounds (VHOC)
Kar et al. Application of sulfuric acid doped poly (m-aminophenol) as aliphatic alcohol vapor sensor material
Mouffouk et al. Electrosynthesis and characterization of biotin-functionalized poly (terthiophene) copolymers, and their response to avidin
Rosa et al. Conducting Polymer‐Based Chemiresistive Sensor for Organic Vapours
CN103753926B (en) Polythiophene conductive coating of a kind of high conductivity and preparation method thereof and application
Zeng et al. Polymer coated QCM sensor with modified electrode for the detection of DDVP
JP3849302B2 (en) Manufacturing method of gas sensor etc.
JP4513161B2 (en) Gas sensor manufacturing method and gas sensor
JP4007408B2 (en) Manufacturing method of gas measuring device
JP3855446B2 (en) Gas sensor
Alizadeh et al. Gas sensing ability of a nanostructured conducting polypyrrole film prepared by catalytic electropolymerization on Cu/Au interdigital electrodes
US20240067773A1 (en) Organic conducting polymers and uses thereof
Li et al. Low cost selective sensor for carbonyl compounds in air based on a novel conductive poly (p-xylylene) derivative
JP3921800B2 (en) GAS SENSOR, GAS MEASURING DEVICE, AND METHOD FOR MANUFACTURING GAS MEASURING DEVICE
JP4423404B2 (en) Chemical sensor material
JP2005003544A (en) Carbon dioxide sensor and its manufacturing method
JP3988321B2 (en) Gas sensor
JP4042810B2 (en) Manufacturing method of gas measuring device
Park et al. All-solid-state ion-selective silicone rubber membrane electrodes with a new conducting polymer
Chabbah et al. Impedimetric sensors based on diethylphosphonate‐containing poly (arylene ether nitrile) s films for the detection of lead ions
US11714057B2 (en) Method of manufacturing gas sensor device
JP2004361335A (en) Carbon dioxide sensitive material and carbon dioxide sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041008

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060328

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060626

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100714

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100714

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110714

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110714

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120714

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120714

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130714

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees