JP3988321B2 - Gas sensor - Google Patents

Gas sensor Download PDF

Info

Publication number
JP3988321B2
JP3988321B2 JP17657799A JP17657799A JP3988321B2 JP 3988321 B2 JP3988321 B2 JP 3988321B2 JP 17657799 A JP17657799 A JP 17657799A JP 17657799 A JP17657799 A JP 17657799A JP 3988321 B2 JP3988321 B2 JP 3988321B2
Authority
JP
Japan
Prior art keywords
gas
conductive polymer
gas sensor
sensitive film
substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP17657799A
Other languages
Japanese (ja)
Other versions
JP2001004577A (en
Inventor
佳弘 青山
純一 喜多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP17657799A priority Critical patent/JP3988321B2/en
Publication of JP2001004577A publication Critical patent/JP2001004577A/en
Application granted granted Critical
Publication of JP3988321B2 publication Critical patent/JP3988321B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、導電性高分子からなる感応膜を用いてガスを測定し、定性や定量を行なうガスセンサに関するものである。
【0002】
【従来の技術】
ガスセンサは、空気又は供給された試料ガス中に含まれるにおい物質が、センサの感応面に付着することにより生ずるセンサの物理化学的変化を電気的に測定するものにも使用される。
ガスセンサとしては、酸化物半導体を用いたものが市販されている。
また、酸化物半導体ガスセンサを複数個用いた人工電子鼻と呼ばれるガス測定装置も市販が始められている。人工電子鼻は、「におい」を検知するシステムとして、食品や香料の品質検査、悪臭公害の定量基準、焦げ臭検知による火災警報機等への利用が試みられている。さらに高感度化して犬の鼻に匹敵するようになれば、人物の追跡、識別、認証や薬物の検査といった分野にも利用可能になる。
【0003】
しかし、酸化物半導体を用いたガスセンサの測定対象は、感応面で酸化還元反応を起こす物質に限られる。また、センサ部が高温でないと動作しないため、その熱によって熱分解を受ける物質は測定対象にならない。さらに、分析にあたり、センサの温度が動作温度まで上昇し安定するまで待つ必要があり、繰返し測定に時間がかかるという問題もあり、センサの表面状態により経時変化があるという欠点もある。
【0004】
酸化物半導体を用いたガスセンサに対し、ポリピロールやポリチオフェン等の導電性高分子からなる感応膜を用いたガスセンサは、室温で動作する。におい物質に含まれる各種成分の分子が感応面に付着すると、分子の直接的又は間接的な関与により導電性高分子の導電率が変化する。そこで、感応膜を挾んで設けた電極間の抵抗又はインピーダンスの変化を測定することにより、におい物質の検知を行なう。
【0005】
このように、導電性高分子を用いたガスセンサでは、測定対象を熱分解させることなく検出できるので、汎用性が広がる。さらに、センサ部の温度を上昇させるための予備時間は必要がなくなる。さらに、導電性高分子の種類が豊富であり、におい物質と導電性高分子との相互作用による電気特性の変化の他に、導電性高分子に注入されたドーパントとにおい物質との相互作用による電気特性の変化も生じるため、より多くの種類のにおい物質に対して感度を示すことが期待できる。
【0006】
【発明が解決しようとする課題】
におい識別装置を構成するためには、ガス応答特性の異なる複数のガスセンサが必要である。ガスセンサの多様性を広げるためには、ガスセンサの感応膜の種類を増やすことが一般的である。しかし、導電性高分子の種類は多くあるが、ガス応答性を持ち、かつ安定な導電性高分子は、ある程度限定される。また、新たな構造の導電性高分子の開発には膨大な時間や労力が必要である。
そこで本発明は、ガス応答特性の異なる種々のガスセンサを提供することを目的とするものである。
【0007】
【課題を解決するための手段】
本発明は、絶縁基板上に形成した電極間に導電性高分子からなる感応膜を設け、その感応膜にガス中の測定対象成分が付着した際の電極間の電気的変化を測定するガスセンサであって、その感応膜は、導電性高分子と同導電性高分子の膨潤度に影響を与える物質(以下、膨潤度変更物質という)とが共存したものである。
【0008】
導電性高分子のガス暴露による導電性の変化の機構の一つとして、測定対象成分による導電性高分子の膨潤が考えられる。ここでいう膨潤とは、導電性高分子の鎖の間隔が変化することをいう。
導電性高分子の膨潤を抑制又は増長させるために、感応膜中に膨潤度変更物質を共存させることにより、同じ組成の導電性高分子を主成分とする感応膜であっても導電性高分子の膨潤度を変えることができる。すなわち、導電性高分子に膨潤度変更物質を共存させ、導電性高分子の周囲にその膨潤度変更物質のマトリックスを構築させることによって導電性高分子の膨潤を抑制したり、膨潤度変更物質として膨潤性の高い物質を共存させ、その物質の膨潤によって導電性高分子の膨潤を増長させることができる。
つまり、感応膜に膨潤度変更物質を共存させることによって、測定対象成分が感応膜に付着した際の導電性高分子の膨潤度を変化させることができ、ガス応答特性の異なるガスセンサを作成することができる。
【0009】
【実施例】
まず、本発明を適用したガスセンサの一実施例であるガスセンサとそのガスセンサを用いたにおい測定装置を図1及び図2を参照して説明する。図1は本実施例のガスセンサ15の平面図であり、(A)は中間部を省略して全体を示したもの、(B)は金電極3の一部拡大図である。図2は、図1のガスセンサ15を用いたにおい測定装置の構成図である。
【0010】
まず、図1により、本実施例のガスセンサ15の構成を説明する。
絶縁体材料からなるガラス基板1上に、例えばリフトオフ法によって、2個の金電極3,3が3mm×3mmの領域に5μmスペースで櫛形状に形成されている。2個の金電極3,3は同じ材料からなる0.5mm幅のそれぞれの端子5に接続されている。金電極3,3の上面には金電極3,3全体を覆うように導電性高分子に膨潤度変更物質を共存させた感応膜7が形成されている。感応膜7は対向する電極3,3間に存在し、電極3,3間の感応膜7の電気的特性が測定される。感応膜7を構成する導電性高分子はポリ(3−ヘキシルチオフェン)であり、共存する膨潤度変更物質としてUV・熱硬化樹脂(スリーボンド3042、スリーボンド社の製品)、ドーパントとして12タンタングストりん酸が導入されている。
【0011】
次に、ガスセンサ15を用いたにおい測定装置を図2を用いて説明する。ボンベにより供給される乾燥窒素ガスの流路上にはバルブ9及びフローセル11が設けられ、ポンプ19の吸引によって乾燥窒素ガスが流路内に流通する。バルブ9にはにおい物質容器13に連なるガス流路が接続されており、バルブ9の操作により乾燥窒素ガス中に適宜量のにおい物質が混入されるようにしている。フローセル11内には図1のガスセンサ15が配置されており、センサ15には電極間の抵抗値を測定する抵抗計17が接続されている。
【0012】
次に、図1及び図2に示すにおい測定装置の動作を説明する。
バルブ9を操作してにおい物質容器13をガス流路に接続し、におい物質をバルブ9を介してフローセル11に送る。におい物質に含まれる各種成分の分子がセンサ15の感応膜7に付着すると、分子の直接的又は間接的な関与により感応膜7の導電率が変化する。そこで、抵抗計17によって2個の電極3,3間の抵抗変化を測定することにより、におい物質の検知を行なう。
【0013】
次に、本発明に係るガスセンサ15の製造方法を説明する。感応膜7を構成する導電性高分子としてポリ(3−ヘキシルチオフェン)を用い、共存させる膨潤度変更物質としてUV・熱硬化樹脂を用い、ドーパントとして12タングストりん酸を用いた。化学式1に、ポリ(3−ヘキシルチオフェン)の構造式を示す。
【0014】
【化1】

Figure 0003988321
【0015】
まず、UV・熱硬化樹脂を10%(v/v)の濃度でクロロホルムに溶かす。3−ヘキシルチオフェンを酸化重合法により重合し、ポリ(3−ヘキシルチオフェン)を作成する。そのポリ(3−ヘキシルチオフェン)をモノマー換算濃度で0.1Mとなるように、上記クロロホルムに溶かす。その溶液を例えば回転数1500rpm、時間10秒の条件で、金電極3が形成されたガラス基板1上にスピンコートして成膜する。
【0016】
次に、成膜した、UV・熱硬化樹脂を含むポリ(3−ヘキシルチオフェン)膜をガラス基板1及び金電極3とともに、12タングストりん酸を10mMの濃度で含むニトロメタン溶液中に60分間浸せきして、ポリ(3−ヘキシルチオフェン)膜に12タングストりん酸をドーパントとして導入する。そのポリ(3−ヘキシルチオフェン)膜にUVランプを5分間照射してUV・熱硬化樹脂を硬化させ、感応膜7を形成する。
このようにして、ポリ(3−ヘキシルチオフェン)とUV・熱硬化樹脂とが共存し、12タングストりん酸が導入された感応膜7を有するガスセンサ15を形成する。
【0017】
表1は、UV・熱硬化樹脂を添加して、又は添加せずに形成したガスセンサのにおい物質に対するガス応答率をそれぞれ示した表である。におい物質として、乾燥窒素ガスで希釈された酢酸ブチル、酪酸、ブタノン、ブタンチオール又はトリメチルアミンのガスを用いた。測定は、図2のにおい測定装置を用い、乾燥窒素ガスを200ミリリットル/分の流速でフローセル11を10秒間通過させた後、におい物質を同じ流速でフローセル11に5秒間通過させて行なった。抵抗値は抵抗計17により測定した。
応答率は、応答率(%)=(抵抗値の変化/変化前の抵抗値)×100で表される。
【0018】
【表1】
Figure 0003988321
【0019】
同じ組成の導電性高分子を主成分とする感応膜を用いたガスセンサであっても、UV・熱硬化樹脂を添加することによって、ガス応答特性の異なるガスセンサを得ることができる。
【0020】
【発明の効果】
本発明によるガスセンサでは、感応膜は、導電性高分子に膨潤度変更物質を共存させたので、同じ組成の導電性高分子を主成分とする感応膜を用いたガスセンサであってもガス応答特性の異なるガスセンサを作成することができる。
【図面の簡単な説明】
【図1】 一実施例のガスセンサ15の平面図であり、(A)は中間部を省略して全体を示したもの、(B)は金電極3の一部拡大図である。
【図2】 ガスセンサ15を用いたにおい測定装置の構成図である。
【符号の説明】
1 ガラス基板
3 金電極
5 端子
7 感応膜
15 ガスセンサ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a gas sensor that measures gas using a sensitive film made of a conductive polymer to perform qualitative and quantitative measurement.
[0002]
[Prior art]
The gas sensor is also used to electrically measure a physicochemical change of a sensor caused by an odorous substance contained in air or a supplied sample gas adhering to a sensitive surface of the sensor.
A gas sensor using an oxide semiconductor is commercially available.
A gas measuring device called an artificial electronic nose using a plurality of oxide semiconductor gas sensors has also been commercially available. Artificial electronic noses are used as systems for detecting "odor", such as quality inspections of foods and fragrances, quantitative standards for bad odor pollution, and fire alarms using burnt odor detection. If it becomes even more sensitive and matches the dog's nose, it can also be used in areas such as human tracking, identification, authentication and drug testing.
[0003]
However, the measurement target of the gas sensor using an oxide semiconductor is limited to a substance that causes a redox reaction on the sensitive surface. In addition, since the sensor unit does not operate unless the temperature is high, a substance that undergoes thermal decomposition by the heat is not a measurement target. Further, in the analysis, it is necessary to wait until the temperature of the sensor rises to the operating temperature and stabilizes, and there is a problem that it takes time for repeated measurement, and there is a drawback that there is a change with time depending on the surface state of the sensor.
[0004]
In contrast to a gas sensor using an oxide semiconductor, a gas sensor using a sensitive film made of a conductive polymer such as polypyrrole or polythiophene operates at room temperature. When molecules of various components contained in the odor substance adhere to the sensitive surface, the conductivity of the conductive polymer changes due to the direct or indirect involvement of the molecules. Therefore, the odor substance is detected by measuring a change in resistance or impedance between the electrodes provided with the sensitive film interposed therebetween.
[0005]
As described above, in the gas sensor using the conductive polymer, the measurement object can be detected without being thermally decomposed, so that versatility is widened. Furthermore, there is no need for a spare time for raising the temperature of the sensor unit. In addition, there are many types of conductive polymers. In addition to changes in electrical properties due to the interaction between odorous substances and conductive polymers, the interaction between dopants injected into conductive polymers and odorous substances. Since changes in electrical characteristics also occur, it can be expected to show sensitivity to more types of odorous substances.
[0006]
[Problems to be solved by the invention]
In order to construct an odor discriminating apparatus, a plurality of gas sensors having different gas response characteristics are required. In order to expand the variety of gas sensors, it is common to increase the types of sensitive films of the gas sensor. However, although there are many kinds of conductive polymers, the conductive polymers that have gas responsiveness and are stable are limited to some extent. In addition, development of a conductive polymer having a new structure requires a great deal of time and labor.
Accordingly, an object of the present invention is to provide various gas sensors having different gas response characteristics.
[0007]
[Means for Solving the Problems]
The present invention is a gas sensor that provides a sensitive film made of a conductive polymer between electrodes formed on an insulating substrate, and measures an electrical change between the electrodes when a measurement target component in the gas adheres to the sensitive film. The sensitive film is a film in which a conductive polymer and a substance that affects the degree of swelling of the conductive polymer (hereinafter referred to as a swelling degree changing substance) coexist.
[0008]
As one of the mechanisms of the change in conductivity due to the gas exposure of the conductive polymer, the swelling of the conductive polymer due to the component to be measured can be considered. The term “swell” as used herein means that the distance between conductive polymer chains changes.
In order to suppress or increase the swelling of the conductive polymer, the presence of a swelling degree-changing substance in the sensitive film allows the conductive polymer to be a sensitive film composed mainly of a conductive polymer of the same composition. The degree of swelling can be changed. In other words, the swelling of the conductive polymer is suppressed by causing the conductive polymer to coexist with the swelling degree-changing substance and constructing the matrix of the swelling degree-changing substance around the conductive polymer. A highly swellable substance can coexist and the swelling of the conductive polymer can be increased by the swelling of the substance.
In other words, by making the sensitive membrane coexist with the swell degree-changing substance, the degree of swelling of the conductive polymer when the component to be measured adheres to the sensitive membrane can be changed, and gas sensors with different gas response characteristics can be created. Can do.
[0009]
【Example】
First, a gas sensor which is an embodiment of a gas sensor to which the present invention is applied and an odor measuring apparatus using the gas sensor will be described with reference to FIGS. FIG. 1 is a plan view of a gas sensor 15 according to the present embodiment, in which (A) shows the whole without the intermediate portion, and (B) is a partially enlarged view of the gold electrode 3. FIG. 2 is a configuration diagram of an odor measuring apparatus using the gas sensor 15 of FIG.
[0010]
First, the configuration of the gas sensor 15 of this embodiment will be described with reference to FIG.
On the glass substrate 1 made of an insulating material, two gold electrodes 3 and 3 are formed in a comb shape with a space of 5 μm in an area of 3 mm × 3 mm by, for example, a lift-off method. The two gold electrodes 3 and 3 are connected to respective terminals 5 made of the same material and having a width of 0.5 mm. On the upper surface of the gold electrodes 3, 3, a sensitive film 7 in which a swelling degree changing substance coexists with a conductive polymer is formed so as to cover the entire gold electrodes 3, 3. The sensitive film 7 exists between the electrodes 3 and 3 facing each other, and the electrical characteristics of the sensitive film 7 between the electrodes 3 and 3 are measured. The conductive polymer constituting the sensitive film 7 is poly (3-hexylthiophene), a UV / thermosetting resin (ThreeBond 3042, a product of ThreeBond Co., Ltd.) as a coexisting swelling degree changing substance, and 12 tan tungstophosphoric acid as a dopant. Has been introduced.
[0011]
Next, an odor measuring apparatus using the gas sensor 15 will be described with reference to FIG. A valve 9 and a flow cell 11 are provided on the flow path of the dry nitrogen gas supplied by the cylinder, and the dry nitrogen gas circulates in the flow path by suction of the pump 19. A gas flow path connected to the odor substance container 13 is connected to the valve 9 so that an appropriate amount of the odor substance is mixed into the dry nitrogen gas by the operation of the valve 9. A gas sensor 15 of FIG. 1 is arranged in the flow cell 11, and an ohmmeter 17 for measuring a resistance value between the electrodes is connected to the sensor 15.
[0012]
Next, the operation of the odor measuring apparatus shown in FIGS. 1 and 2 will be described.
The valve 9 is operated to connect the odor substance container 13 to the gas flow path, and the odor substance is sent to the flow cell 11 through the valve 9. When molecules of various components contained in the odor substance adhere to the sensitive film 7 of the sensor 15, the conductivity of the sensitive film 7 changes due to the direct or indirect involvement of the molecules. Therefore, the odor substance is detected by measuring the resistance change between the two electrodes 3 and 3 by the resistance meter 17.
[0013]
Next, a method for manufacturing the gas sensor 15 according to the present invention will be described. Poly (3-hexylthiophene) was used as the conductive polymer constituting the sensitive film 7, UV / thermosetting resin was used as the coexisting swelling degree changing material, and 12 tungstophosphoric acid was used as the dopant. Chemical formula 1 shows the structural formula of poly (3-hexylthiophene).
[0014]
[Chemical 1]
Figure 0003988321
[0015]
First, a UV / thermosetting resin is dissolved in chloroform at a concentration of 10% (v / v). 3-Hexylthiophene is polymerized by oxidative polymerization to produce poly (3-hexylthiophene). The poly (3-hexylthiophene) is dissolved in the chloroform so that the monomer equivalent concentration is 0.1M. The solution is spin-coated on the glass substrate 1 on which the gold electrode 3 is formed, for example, under the conditions of a rotational speed of 1500 rpm and a time of 10 seconds.
[0016]
Next, the poly (3-hexylthiophene) film containing the UV / thermosetting resin is immersed in a nitromethane solution containing 12 tungstophosphoric acid at a concentration of 10 mM together with the glass substrate 1 and the gold electrode 60 for 60 minutes. Then, 12 tungstophosphoric acid is introduced as a dopant into the poly (3-hexylthiophene) film. The poly (3-hexylthiophene) film is irradiated with a UV lamp for 5 minutes to cure the UV / thermosetting resin, thereby forming a sensitive film 7.
In this manner, the gas sensor 15 having the sensitive film 7 in which poly (3-hexylthiophene) and the UV / thermosetting resin coexist and 12 tungstophosphoric acid is introduced is formed.
[0017]
Table 1 is a table showing gas response rates with respect to odorous substances of gas sensors formed with or without the addition of UV / thermosetting resin. As the odor substance, gas of butyl acetate, butyric acid, butanone, butanethiol or trimethylamine diluted with dry nitrogen gas was used. The measurement was performed using the odor measuring apparatus shown in FIG. 2 by passing dry nitrogen gas through the flow cell 11 at a flow rate of 200 ml / min for 10 seconds and then passing the odor substance through the flow cell 11 at the same flow rate for 5 seconds. The resistance value was measured with an ohmmeter 17.
The response rate is expressed as response rate (%) = (change in resistance value / resistance value before change) × 100.
[0018]
[Table 1]
Figure 0003988321
[0019]
Even with a gas sensor using a sensitive film having a conductive polymer of the same composition as a main component, gas sensors having different gas response characteristics can be obtained by adding a UV / thermosetting resin.
[0020]
【The invention's effect】
In the gas sensor according to the present invention, since the sensitive film coexists with the swelling degree-changing substance in the conductive polymer, even the gas sensor using the sensitive film composed mainly of the conductive polymer of the same composition has the gas response characteristic. Different gas sensors can be created.
[Brief description of the drawings]
1A and 1B are plan views of a gas sensor 15 according to an embodiment, in which FIG. 1A shows the whole without an intermediate portion, and FIG. 1B is a partially enlarged view of a gold electrode 3;
FIG. 2 is a configuration diagram of an odor measuring apparatus using a gas sensor 15;
[Explanation of symbols]
1 Glass substrate 3 Gold electrode 5 Terminal 7 Sensitive film 15 Gas sensor

Claims (1)

絶縁基板上に形成した電極間に導電性高分子からなる感応膜を設け、その感応膜にガス中の測定対象成分が付着した際の電極間の電気的変化を測定するガスセンサにおいて、
前記感応膜は、前記導電性高分子と、測定ガスが吸着した際の同導電性高分子の膨潤度に影響を与える物質とが共存したものであることを特徴とするガスセンサ。
In a gas sensor for measuring an electrical change between electrodes when a sensitive film made of a conductive polymer is provided between electrodes formed on an insulating substrate, and a component to be measured in the gas adheres to the sensitive film,
The gas sensor according to claim 1, wherein the sensitive film coexists with the conductive polymer and a substance that affects the degree of swelling of the conductive polymer when the measurement gas is adsorbed .
JP17657799A 1999-06-23 1999-06-23 Gas sensor Expired - Lifetime JP3988321B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17657799A JP3988321B2 (en) 1999-06-23 1999-06-23 Gas sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17657799A JP3988321B2 (en) 1999-06-23 1999-06-23 Gas sensor

Publications (2)

Publication Number Publication Date
JP2001004577A JP2001004577A (en) 2001-01-12
JP3988321B2 true JP3988321B2 (en) 2007-10-10

Family

ID=16016005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17657799A Expired - Lifetime JP3988321B2 (en) 1999-06-23 1999-06-23 Gas sensor

Country Status (1)

Country Link
JP (1) JP3988321B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3704685B2 (en) * 2002-07-29 2005-10-12 株式会社山武 Capacitance sensor

Also Published As

Publication number Publication date
JP2001004577A (en) 2001-01-12

Similar Documents

Publication Publication Date Title
Neethirajan et al. Development of carbon dioxide (CO2) sensor for grain quality monitoring
US6730212B1 (en) Sensor for chemical and biological materials
JP3963474B2 (en) Sensor array for detecting an analyte in a fluid
Gao et al. Detection and classification of volatile organic amines and carboxylic acids using arrays of carbon black-dendrimer composite vapor detectors
Dai et al. Highly sensitive ammonia sensor with organic vertical nanojunctions for noninvasive detection of hepatic injury
KR100224941B1 (en) Gas sensor
Partridge et al. Conducting polymer-based sensors
Pirsa Chemiresistive gas sensors based on conducting polymers
Conn et al. A Polyaniline‐Based Selective Hydrogen Sensor
JP4215510B2 (en) Use of said sensors in sensors and sensor systems for the analysis of mixtures with broad selectivity
De Wit et al. Chemiresistive sensors of electrically conducting poly (2, 5-thienylene vinylene) and copolymers: their responses to nine organic vapours
CN105044162A (en) Macromolecule-based resistance type humidity sensing element and preparation method thereof
CN104677767A (en) QCM (quartz crystal microbalance) based polypyrrole/ titanium dioxide frequency type film gas sensitive sensor and preparation method thereof
JP3988321B2 (en) Gas sensor
JP3726447B2 (en) Gas sensor
de Lacy Costello et al. Preparation of polypyrrole composites and the effect of volatile amines on their electrical properties
CN108152344A (en) Electrochemical detector
Zeng et al. Polymer coated QCM sensor with modified electrode for the detection of DDVP
WO2000033062A1 (en) Aligned particle based sensor elements
JP3855446B2 (en) Gas sensor
JP3755247B2 (en) Odor sensor
JP4007408B2 (en) Manufacturing method of gas measuring device
JP3921800B2 (en) GAS SENSOR, GAS MEASURING DEVICE, AND METHOD FOR MANUFACTURING GAS MEASURING DEVICE
JP3849302B2 (en) Manufacturing method of gas sensor etc.
WO2013109135A1 (en) A sensor for dissolved ammonia and a process of preparation thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070626

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070709

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 3988321

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130727

Year of fee payment: 6

EXPY Cancellation because of completion of term