JP3824400B2 - Bypass mixing type gas water heater - Google Patents

Bypass mixing type gas water heater Download PDF

Info

Publication number
JP3824400B2
JP3824400B2 JP27347597A JP27347597A JP3824400B2 JP 3824400 B2 JP3824400 B2 JP 3824400B2 JP 27347597 A JP27347597 A JP 27347597A JP 27347597 A JP27347597 A JP 27347597A JP 3824400 B2 JP3824400 B2 JP 3824400B2
Authority
JP
Japan
Prior art keywords
water
bypass
temperature
pipe
hot water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27347597A
Other languages
Japanese (ja)
Other versions
JPH1194361A (en
Inventor
敏宏 小林
英夫 稲垣
Original Assignee
パロマ工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パロマ工業株式会社 filed Critical パロマ工業株式会社
Priority to JP27347597A priority Critical patent/JP3824400B2/en
Publication of JPH1194361A publication Critical patent/JPH1194361A/en
Application granted granted Critical
Publication of JP3824400B2 publication Critical patent/JP3824400B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、バイパスミキシング方式のガス給湯器に関し、さらに詳しくは、給水管を流れる水を熱交換器に送ってガスバーナにより加熱し出湯管へ導く本給水系の他に、その給水管を流れる水の一部を直接出湯管へ導くバイパス管路を備え、熱交換器で加熱された湯をバイパス管路より送り込まれた水で薄めて出湯するバイパスミキシング方式のガス給湯器に関するものである。
【0002】
【従来の技術】
従来のガス給湯器においては、給水管を流れる水を熱交換器に送ってガスバーナにより加熱し出湯管へ導く本給水系の他に、その給水管を流れる水の一部を直接出湯管へ導くバイパス管路を備え、熱交換器で加熱された湯をバイパス管路より送り込まれた水で薄めて出湯する、いわゆるバイパスミキシング方式のガス給湯器が既に知られている。
【0003】
バイパスミキシング方式のガス給湯器は、通常、バイパス管路に電磁弁を備え、出湯温度が高い場合は、電磁弁を閉じて熱交換器から排出される湯をそのまま出湯し(ストレート出湯)、出湯温度が低い場合は、電磁弁を開いて熱交換器から排出される湯とバイパス管路から供給される冷水とを混合した後出湯する(バイパス出湯)ように構成されている。そのため、バイパスミキシング方式のガス給湯器は、出湯温度が低い場合であっても熱交換器の温度が常に高温に保たれるので、熱交換器内にドレンが発生しにくいという利点がある。
【0004】
また、上述の構成を有するバイパスミキシング方式のガス給湯器であっても、給水管に導入される総入水量に対するバイパス管路を流れる流水量の比率(バイパス率)が固定されていると、設定温度が低く、かつ入水温度が高い場合には、バイパス出湯であっても熱交換器内にドレンが発生するおそれがあるという問題あった。さらに、ガスバーナの最大火力に上限があるため、給水管に導入される流水量が固定されていると、その値によっては、給水管への入水温度が低い場合には、出湯温度が設定温度に達しないおそれがあるという問題があった。
【0005】
そのため、本願発明者は、上述のバイパスミキシング方式のガス給湯器に、さらに入水温度に応じて給水管に流れる総入水量とバイパス率とを同時に可変制御しうる水温感応型定流量弁を備えたバイパスミキシング方式のガス給湯器を既に提案しており(特願平8−53750号)、上述の問題の解決を図っている。
【0006】
ところで、電磁弁とそのON−OFF制御機構をガス給湯器に設けることは、ガス給湯器のコストアップにつながるという欠点がある。従って、ドレン発生の防止と低コスト化の双方を満足させるという点からすれば、電磁弁を用いたストレート出湯/バイパス出湯切替方式とするのではなく、全出湯温度範囲においてバイパス出湯方式とすることが望ましい。
【0007】
【発明が解決しようとする課題】
しかしながら、本願発明者により提案された、入水温度により総入水量及びバイパス率を制御する水温感応型定流量弁を備えたバイパスミキシング方式のガス給湯器(特願平8−53750号)であっても、ドレンの発生とボイルの発生の双方を回避しつつ、全温度範囲にわたってバイパス出湯方式とすることは困難である。
【0008】
すなわち、上述の水温感応型定流量弁を備えたバイパスミキシング方式のガス給湯器のバイパス率を、出湯温度が38℃の場合におけるドレンが発生しない最低の値となるように制御した場合には、出湯温度が60℃以下かつ入水温度が25℃以下の条件を満たす条件下においては、ドレン発生とボイル発生の双方を回避できるが、入水温度が25℃を越えた場合には、熱交換器内の温度が85℃を越え、ボイル発生のおそれがあった。
【0009】
そのため、特に出湯温度として60℃以上の高温が要求されるガス給湯器においては、上述の水温感応型定流量弁を備えたのみでは、ドレン発生とボイル発生の双方を回避することができず、電磁弁を用いたストレート出湯/バイパス出湯切替方式の採用が不可欠であるという問題があった。
【0010】
本発明が解決しようとする課題は、電磁弁を用いたストレート出湯/バイパス出湯切替方式を採用することなく、ドレン発生とボイル発生の双方を回避することができ、全出湯温度範囲に渡ってバイパス出湯方式とすることが可能なバイパスミキシング方式のガス給湯器を提供することにある。
【0011】
【課題を解決するための手段】
上記課題を解決するために、本発明に係るバイパスミキシング方式のガス給湯器は、給水管及び出湯管が配設される熱交換器と、前記給水管を流れる水を前記熱交換器を介さずに直接前記出湯管へ導くバイパス管路と、前記熱交換器を加熱するガスバーナとを備えたガス給湯器であって、前記給水管と前記バイパス管路との分岐部には、前記給水管を流れる水の温度に応じて、前記給水管に流入する総入水量を可変制御すると同時に、前記給水管から前記バイパス管路へ流入する水の抵抗を可変制御する水温感応手段を有する水温感応型定流量弁を備えると共に、前記出湯管と前記バイパス管路との合流部には、前記出湯管を流れる湯水混合前又は湯水混合後の湯の温度に応じて、前記バイパス管路から前記出湯管に排出される水の抵抗を可変制御する湯温感応手段を有するバイパス率制御弁を備えたことを要旨とするものである。
【0012】
上記構成を有するバイパスミキシング方式のガス給湯器によれば、バイパス管路の分岐部において、給水管を流れる水の温度(以下、「入水温度」という)に応じて、給水管からバイパス管路に流入する水の抵抗が制御されると同時に、バイパス管路の合流部において、出湯管を流れる湯水混合前又は湯水混合後の湯の温度(以下、「熱交換器出口温度」又は「出湯温度」という)に応じてバイパス管路から出湯管に排出される水の抵抗が制御され、これらの合成抵抗により、ガス給湯器のバイパス率が決定される。
【0013】
すなわち、本発明に係るガス給湯器のバイパス率は、入水温度と熱交換器出口温度又は出湯温度の2つの独立変数を用いて広範囲に渡って制御されるものである。これにより、電磁弁を用いたストレート出湯/バイパス出湯切替方式を採用することなく、ドレン発生とボイル発生の双方を回避でき、全温度範囲に渡ってバイパス出湯方式とすることが可能となる。
【0014】
しかも、バイパス管路の分岐部においては、同時に、入水温度に応じて給水管に流入する総入水量が可変制御されるので、入水温度が低い場合であっても、出湯温度が設定温度に達しないというおそれもない。
【0015】
具体的には、前記水温感応型定流量弁は、給水管を流れる水の温度が低いときには、給水管に流入する総入水量を減少させると同時に、給水管からバイパス管路に流入する水の抵抗を増加させ、給水管を流れる水の温度が高くなるにつれて、給水管に流入する総入水量を増加させると同時に、バイパス管路に流入する水の抵抗を減少させるように構成すればよい。
【0016】
また、前記バイパス率制御弁は、具体的には、熱交換器出口温度又は出湯温度が低いときには、バイパス管路から出湯管に排出される水の抵抗を減少させ、熱交換器出口温度又は出湯温度が高くなるにつれて、バイパス管路から排出される水の抵抗を増加させるように構成すればよい。
【0017】
このように構成することにより、入水温度が低くかつ出湯温度が高い場合であってもボイル発生を回避でき、また、入水温度が高くかつ出湯温度が低い場合であってもドレン発生を回避できるからである。
【0018】
また、前記湯温感応手段及び/又は前記水温感応手段は、形状記憶合金からなる温度感応部材により構成されていることが望ましい。形状記憶合金からなる温度感応部材を用いれば、温度変化のみを駆動力として弁の開閉操作が可能となり、複雑な制御機構が不要となるからである。具体的には、水温変化に応じてバネ荷重(バネ常数)が増減するタイプのいわゆる二方向性の形状記憶合金バネなどが好適なものとして挙げられる。
【0019】
【発明の実施の形態】
以下、本発明の好適な一実施の形態を図面を参照して説明する。図1は、本発明が適用されるバイパスミキシング方式の給湯器の典型例を示したものである。この図示されるバイパスミキシング方式のガス給湯器10は、給水管12と出湯管14とが熱交換器16を介して継がれ、該熱交換器16が内胴18内に配設されるとともに、この内胴18内にはさらに前記熱交換器16を流れる水を加熱するためのガスバーナ20が該熱交換器16の下方部位に配設されている。
【0020】
そして、前記給水管12には水の流れを検知する水量センサ−22の他、該給水管12を流れる水の温度Ti を検知する入水温サーミスタ24が設けられている。
【0021】
また、前記ガスバーナ20のガス管28には、元電磁弁30、メイン電磁弁32及び該ガス管28を流れるガスの流量を制御するガス比例弁34がそれぞれ設けられ、さらに前記ガスバーナ20に燃焼用空気を供給するための送風ファン36が設けられている。
【0022】
前記給水管12と出湯管14との間には、給水管12を流れる水を前記熱交換器16を通さずに出湯管14へ直接導くバイパス管路38が設けられている。また、バイパス管路38と給水管12との分岐部には、水温感応型定流量弁(以下、「水ガバナ」という)44が設けられ、バイパス管路38と出湯管14との合流部には、バイパス率制御弁40が設けられている。
【0023】
前記バイパス率制御弁40の下流側には、前記熱交換器16を介して出湯管14へ導かれた湯と、前記バイパス管路38を介して出湯管14へ導かれた水とを混合(ミキシング)した後の湯の温度(出湯温度TH0) を検知する出湯温サーミスタ42が設けられている。また、出湯管14の先端には、給湯栓92が設けられている。
【0024】
さらに、入水温サーミスタ24及び出湯温サーミスタ42から信号を受け、元電磁弁30、メイン電磁弁32、ガス比例弁34及び送風ファン36を制御するバーナコントローラ88を有している。バーナコントローラ88は、公知のCPU、ROM、RAM等により構成され、そのROMには、出湯温度制御等を行うための種々のプログラム類が格納されている。また、バーナコントローラ88は、リモコン90により遠隔操作できるようになっている。
【0025】
次に、このように構成されたバイパスミキシング方式のガス給湯器10の一般的動作について説明する。まず、給湯栓92を開くと、水量センサー22がオンし、バーナーコントローラ88からの指令により送風ファン36が駆動し、ガスバーナ20へ燃焼用空気が供給されるとともに、ガスバーナ20の元電磁弁30、メイン電磁弁32、及びガス比例弁34が順次開かれて、燃焼ガスがガスバーナ20に供給され、イグナイタ(図示せず)による点火動作によってガスバーナ20が点火される。
【0026】
そして、このガスバーナ20の点火初期動作段階では、給水管12を流れる水の温度がその給水管12に設けられる入水温サーミスタ24により検知され、バーナコントローラ88によって出湯管14を流れる湯の出湯温度TH0 が設定温度Ts に近づくように、ガスバーナ20へ供給するガス量を調節するガス比例弁34の開度が調節される。
【0027】
ガスバーナ20の燃焼が安定状態になった以降は、出湯温サーミスタ42で検出される出湯温度TH0が設定温度Tsに維持されるように、バーナコントローラ88により、ガス比例弁34の比例弁電流回路と送風ファン駆動回路に信号が送られ、ガス比例弁34の開度と送風ファン36のファン回転数との比例制御が行われることによって、運転の管理がなされるものである。
【0028】
次に、水ガバナ44の構成について説明する。図2は、水ガバナ44の内部構造を拡大して示したものである。図示されているように、この水ガバナ44は、給水管12の本管よりガバナ本体46の流入口へ導入された水を熱交換器16に通じる本給水系に導く流水路の他に、その水の一部をバイパス管路38に導く流水路を備えている。
【0029】
これを具体的に説明すると、ガバナ本体46内が隔壁48により大きく2つに仕切られており、一方の隔壁空間には、カップ状の固定弁体50が、その内壁面にシール部材52、52を介して密着された状態で、かつ移動不能に設けられている。また、前記固定弁体50の内側には、可動弁体54がやはりシール部材56を介して、固定弁体50の内壁面に密着された状態で可動自在に、かつ可動弁体54と前記固定弁体50の内壁面に設けられる弁座58との間の流水間隙g1 が可変となるように設けられている。
【0030】
そして、前記固定弁体50の内底面と可動弁体54の頭頂部との間には、該ガバナ本体46内に導かれる水の圧力に抗して、前記流体間隙g1 を押し広げる方向に前記可動弁体54を押圧付勢するコイルバネ部材60が介設されている。尚、前記可動弁体54は、前記固定弁体50の下端内壁面に設けられるストッパリング62により不用意に抜脱されないようになっている。
【0031】
一方、このガバナ本体46の前記隔壁48により仕切られる他方の隔壁空間には、弁軸64がシール部材66を介してその内壁面に摺動自在に設けられ、該弁軸64の一端には、前記給水管12の本管より流入される水の流量を変えるための流量可変ニードル68が、前記隔壁空間内に設けられる弁座70との間の流水間隙g2 が可変となるように設けられている。また、前記弁軸64の他端には、前記バイパス管路38へ導かれる水の流量を変えるためのバイパス率可変ニードル72が、やはりその隔壁空間の内壁面に設けられ、弁座74との間の流水間隙g3が可変となるように設けられている。
【0032】
前記弁軸64には、前記流量可変ニードル68と弁座70との間の流水間隙g2 を押し広げ、かつ前記バイパス率可変ニードル72と弁座74とのとの流水間隙g3 をも押し広げる方向に付勢された形状記憶合金バネ76が介設されている。また、該形状記憶合金バネ76の付勢力に抗して前記流量可変ニードル68と弁座70との間の流水間隙g2 、及び前記バイパス率可変ニードル72と弁座74との間を流水間隙g3 を押し狭める方向に付勢されたバイアスバネ78が併せて介設されている。
【0033】
前記形状記憶合金バネ76は、そのバネ特性が水温が高くなるにつれてバネ荷重が増大し、水温が低くなるにつれてバネ荷重も減少する、いわゆる双方向性の形状記憶特性を有する材料が用いられている。
【0034】
一方、前記隔壁48及び固定弁体50の壁面には、前記流量可変ニードル68と弁座70との間の流水間隙g2 を通る水が前記固定弁体50の内部空間へ導かれるように、それぞれ連通孔80及び82が設けられている。また、該固定弁体50の壁面には、該固定弁体50内に導かれた水を前記熱交換器16へ向けて送り出すための開口84が設けられている。さらに、前記隔壁48には、該固定弁体50の開口84より外へ送り出された水の一部を前記バイパス率可変ニードル72と弁座74との間の流水間隙g3 を通ってバイパス管路38へ送り出されるように連通孔86が設けられている。
【0035】
次に、図2に示す水ガバナ44の動作について説明する。ガス給湯器10の給湯栓92が開かれ運転状態となると、給水管12により水ガバナ44に導入された水は、ガバナ本体46内に設けられる流量可変ニードル68と弁座70との流水間隙g2 を通って、さらに隔壁48及び固定弁本体50に形成される連通孔80及び82を通過し、固定弁本体50の内部空間へ導かれる。
【0036】
そして、固定弁本体50内へ導かれた水は、可動弁本体54と弁座58との間の流水間隙g1 を通り、さらに固定弁本体50の開口84を通って、その一部は、熱交換器16へ通じる本給湯系へ導かれ、残りの水は、隔壁48に形成される連通孔86を通ってさらにバイパス率可変ニードル72と弁座74との間の流水間隙g3を通過してバイパス管路38へ送り出される。
【0037】
この時、水ガバナ44内を流れる水の温度によって、水ガバナ44内に設けられた形状記憶合金バネ76のバネ荷重が変動し、これにより前記流量可変ニードル68と弁座70との間の流水間隙g2が変更される。また、流水間隙g2が変動すると、可動弁体54底部にかかる水圧も変動するので、これに伴って可動弁体54と弁座58との間の流水間隙g1 も変更され、これらの相乗的作動により、該水ガバナ44を流れるトータルの流水量が制御される。
【0038】
さらに、流水間隙g2 が変更されることに伴い、バイパス率可変ニードル72と弁座74との間の流水間隙g3 も同時に変更され、これによりバイパス管路38へ流入する水の抵抗が変動する。具体的には、水温が低い場合には、形状記憶合金バネ76のバネ荷重が減少するので、バイアスバネ78の反発力に抗しきれずに流水間隙g3 が減少し、バイパス管路38へ流入する水の抵抗は増大する。一方、水温が高くなるにつれて、バネ荷重は増加するので、バイアスバネ78の反発力に抗して流水間隙g3 は増加し、バイパス管路38へ流入する水の抵抗が減少するものである。
【0039】
次に、バイパス率制御弁40の構成について説明する。図3は、このバイパス率制御弁40の内部構造を拡大して示したものである。図示されるように、このバイパス率制御弁40は、出湯管14よりバイパス率制御弁40の流入口へ導入された湯を給湯栓92へ導く流水路(以下、「主路」という)と、バイパス管路38により供給される水を出湯管14に導く流水路(以下、「副路」という)とを備えている。
【0040】
これを具体的に説明すると、バイパス率制御弁40は、T字型を呈しており、T字の横棒部分が主路100を構成し、その両端は出湯管14と連結され、ガスバーナ20を用いて熱交換器16内で加熱された湯が主路100を通って給湯栓92に導かれるようになっている。また、T字の縦棒部分が副路102を構成し、その端部はバイパス管路38に連結されており、給水管12に導入された水の内、水ガバナ44によりバイパス管路38に分配された水が副路102に導かれるようになっている。
【0041】
主路100と副路102の境目には、仕切板104が設けられている。仕切板104は、主路100の出口付近で途切れて冷水導入口106を形成し、副路102を通った冷水が主路100の出口付近で熱交換器16から排出された湯と混合されるようになっている。
【0042】
バイパス率制御弁40の内部には、副路102方向に弁軸108が備えられ、仕切板104に設けられた軸受部110に、シール材112を介して摺動自在となるように挿入されている。また、弁軸108の両端には、バネ受け皿114及び116が設けられると共に、弁軸108のほぼ中央には、流水抵抗可変ニードル118が設けられている。さらに、流水抵抗可変ニードル118の下流側に位置する副路102の内壁面には、弁座120が設けられ、流水抵抗可変ニードル118と弁座120との間の流水間隙g4が可変となるようになっている。
【0043】
バネ受け皿114と仕切板104との間には、流水抵抗可変ニードル118と弁座120との間の流水間隙g4 を押し狭める方向に付勢された形状記憶合金バネ122が介設されている。この形状記憶合金バネ122は、そのバネ特性が水温が高くなるにつれてバネ荷重が増大し、水温が低くなるにつれてバネ荷重も減少する、いわゆる双方向性の形状記憶特性を有する材料が用いられている。
【0044】
また、副路102の内壁には、弁座120より上流側に段付部124が設けられ、その段付部124とバネ受け皿116の間には、流水抵抗可変ニードル118と弁座120との間の流水間隙g4 を押し広げる方向に付勢されたバイアスバネ126が介設されている。
【0045】
次に、バイパス率制御弁40の動作について説明する。本給水系に導かれた水は、熱交換器16を通る間にガスバーナ20により加熱されて所定温度を有する湯として出湯管14に排出され、バイパス率制御弁40の主路100に導かれる。
【0046】
一方、バイパス管路38に導かれた水は、バイパス率制御弁40の副路102に導かれ、流水抵抗可変ニードル118と弁座120との間の流水間隙g4 を通り、さらに冷水導入口106を通って出湯管14に排出される。そこで、主路100を通ってきた湯と副路102を通ってきた水とが混合され、予め設定された温度を有する湯として給湯栓92から出湯される。
【0047】
この時、主路100内を流れる湯の温度(熱交換器出口温度THm) によって、形状記憶合金バネ122のバネ荷重が変動し、これにより流水抵抗可変ニードル118と弁座120との間の流水間隙g4 が変更される。具体的には、熱交換器出口温度THm が低い場合には、バネ荷重が減少するので、バイアスバネ126の反発力に抗しきれずに流水間隙g4 が増加し、バイパス管路38から排出される水の抵抗は減少する。一方、熱交換器出口温度がTHm 高くなるにつれて、バネ荷重は増加するので、バイアスバネ126の反発力に抗して流水間隙g4 は減少し、バイパス管路38から排出される水の抵抗が増加するものである。
【0048】
次に、上記構成を有する水ガバナ44とバイパス率制御弁40により、ガス給湯器10のバイパス率がどのように決定されるかについて説明する。給湯器10への入水温度をTi(℃)、熱交換器出口温度をTHm(℃)、湯水混合後の出湯温度をTH0 (℃)、バイパス率をx(%)とすると、バイパス率xと入水温度Tiとの関係は、次の数1の式により表される。
【0049】
【数1】

Figure 0003824400
【0050】
図4は、数1の式を用いて、熱交換器出口温度THm及び出湯温度TH0が異なる場合における入水温度Ti とバイパス率xとの関係を求め、これを図示したものである。図4において、線ABは、出湯温度TH0 が38℃の時に熱交換器出口温度THmが85℃となるような、入水温度Ti(℃)とパイパス率x(%)との組み合わせを示したもの(以下、「ボイル限界線」という)であり、出湯温度が38℃及び入水温度がTi の時に、バイパス率xが線ABより大きい値に設定された場合には、熱交換器出口温度THm が85℃を越え、ボイル発生のおそれがあることを意味している。
【0051】
また、図4において、線CDは、出湯温度TH0 が38℃の時に熱交換器出口温度THmが47℃となるような、入水温度Ti(℃)とパイパス率x(%)との組み合わせを示したもの(以下、「ドレン限界線」という)であり、出湯温度が38℃及び入水温度がTi の時に、バイパス率xが線CDより小さい値に設定された場合には、熱交換器出口温度THm が47℃を下回り、ドレン発生のおそれがあることを意味している。
【0052】
従って、出湯温度が38℃の場合には、線ABと線CDにより挟まれる領域内に収まるように、入水温度Ti に応じてバイパス率xを制御すれば、ドレン発生とボイル発生の双方を回避できることになる。
【0053】
仮に、上述の形状記憶合金バネ76を備えた水ガバナ44のみを用いて給水管12とバイパス管路38との分岐部の水の抵抗を増減することにより、ガス給湯器のバイパス率xを図4の線CDに従うように制御したとする。線CDは、出湯温度が38℃の場合におけるドレン限界線であるので、この線CDに従って給湯器のバイパス率を制御する限り、出湯温度が38℃を越えてもドレン発生のおそれがないことになる。
【0054】
ここで、出湯温度TH0 を50℃とした場合におけるボイル限界線は、線KLで示され、常に線CDの上方に位置している。従って、ガス給湯器のバイパス率を線CDに従って制御する限り、入水温度Ti が5℃から30℃まで変動しても、ボイル発生のおそれはない。
【0055】
一方、出湯温度TH0 を60℃とした場合におけるボイル限界線は、線MNで示され、入水温度Ti が25℃の時に線CDと交差する。従って、水ガバナ44のみを用い、バイパス率xを線CDに沿って制御すると、入水温度Ti が25℃以下の場合はボイル発生のおそれはないが、入水温度Ti が25℃を越えると熱交換器出口温度THm が85℃を越え、ボイル発生のおそれがあることがわかる。
【0056】
さらに、出湯温度TH0 を70℃とした場合におけるボイル限界線は、線IJで示され、常に線CDの下方に位置している。従って、水ガバナ44のみを用い、バイパス率xを線CDに沿って制御すると、入水温度Ti によらず、常にボイル発生のおそれがあることがわかる。
【0057】
これに対し、上述の形状記憶合金バネ76を備えた水ガバナ44を用いてバイパス管路38の分岐部に流入する水の抵抗を制御すると共に、形状記憶合金バネ122を備えたバイパス率制御弁40を用いてバイパス管路38の合流部から排出される水の抵抗を制御し、これらの合成抵抗によりバイパス率を決定するようにすれば、上述の問題を回避することができる。
【0058】
図5は、入水温度Ti とバイパス率xとの関係を示したものであり、図5中、線AB、線CD及び線IJは、図4に示した線と同一のものである。まず、図5に示すように、水ガバナ44のみを用いた場合に、ガス給湯器のバイパス率xが、入水温度Ti に応じて線EFに沿って制御されるように、水ガバナ44を設計する。線EFは、線ABと線CDのほぼ中央を通る曲線であるので、少なくとも出湯温度が38℃の場合には、入水温度がどのように変動しても、ドレン発生及びボイル発生のおそれはない。
【0059】
一方、入水温度Ti が一定の場合、水ガバナ44に備えられた形状記憶合金バネ76のバネ荷重は一定であるので、水ガバナ44内の流水間隙g3 は、一定に保たれたままである。そのため、出湯温度TH0 が増加するに従って、熱交換器出口温度THm が増加し、ボイル発生のおそれが生じてくる。
【0060】
そこで、バイパス率制御弁40により、熱交換器出口温度THm が高くなるにつれて、出湯管14とバイパス管路38との合流部の水の抵抗を増加させるようにし、水ガバナ44とバイパス率制御弁40の合成抵抗により、バイパス率xを決定するようにすれば、ボイル発生を回避できることになる。
【0061】
例えば、出湯温度TH0 が70℃の場合におけるボイル限界線は、線IJで示され、常に線EFを下回っており、バイパス率xが線EFに従って制御される限り、ボイル発生のおそれがある。従って、この場合、出湯温度TH0 が70℃の時のバイパス率xが、出湯温度TH0 が38℃の時のバイパス率xの約30%となるような温度特性を有するバイパス率制御弁40を設計すればよい。
【0062】
このような温度特性を有する水ガバナ44及びバイパス率制御弁40の双方を備えたガス給湯器10によれば、出湯温度TH0 が70℃におけるバイパス率xは、入水温度Ti に応じて線GHのように制御され、常に線IJを下回ることになるので、入水温度Ti がどのように変動しても、ボイル発生のおそれはないことがわかる。なお、入水温度Ti及び熱交換器出口温度THmを用いて線GHに従ってバイパス率xを制御し、出湯温度TH0 が70℃の湯を出湯したとすると、熱交換器出口温度THmは、入水温度Tiによらず約80℃に保たれることになる。
【0063】
同様に、例えば、出湯温度TH0が60℃の時のバイパス率xを出湯温度TH0が38℃の時の50%、出湯温度TH0が50℃のバイパス率xを出湯温度TH0が38℃の時の75%等、となるように、出湯温度TH0 が低下(すなわち、熱交換器出口温度THm が低下)するにつれて、バイパス管路の合流部から排出される水の抵抗を単調に減少させるような温度特性を備えたバイパス率制御弁40を設計すれば、バイパス率は常にボイル限界線を下回る値に設定されることになるので、あらゆる温度範囲においてバイパス出湯方式とすることが可能となる。
【0064】
図6は、本発明の他の実施の形態に係るガス給湯器10に使用されるバイパス率制御弁40の内部構造を拡大したものである。図6に示すバイパス率制御弁40は、図3に示すバイパス率制御弁40と内部構造は全く同一であるが、主路100の接続を図3の場合と逆にしたものである。
【0065】
図6によれば、熱交換器16から出湯管14を通って主路100に導かれた湯は、まず、バイパス管路38及び副路102を通って主路100の上流側に設けられた冷水導入口106から排出される水と混合され、次いで湯水混合後の湯が形状記憶合金バネ122と接触し、これにより流水間隙g4が決定される。
【0066】
すなわち、図3に示すバイパス率制御弁40は、熱交換器出口温度THm に応じてバイパス管路38から排出される水の抵抗を変動させるものであるのに対し、図6に示したバイパス率制御弁40は、出湯温度TH0 により水の抵抗を変動させるものである。上記のように構成することによっても、全出湯温度範囲においてバイパス方式とすることが可能となる。
【0067】
以上のように、本発明に係るガス給湯器によれば、給湯器のバイパス率を入水温度と熱交換器出口温度又は出湯温度の2つの変数により制御するようにしたので、電磁弁を用いたストレート出湯/バイパス出湯切替方式としなくても、ドレン発生とボイル発生の双方を回避しつつ、全温度範囲においてバイパス出湯方式とすることが可能となる。
【0068】
なお、本発明は、上記実施の形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の改変が可能である。例えば、上記実施の形態では、入水温度に応じて、バイパス管路に流入する際の水の抵抗を制御すると同時に給水管に導かれる総入水量をも制御する水ガバナを用いているが、ガスバーナの火力が十分であれば、水の抵抗のみを制御する水ガバナを用いても良い。
【0069】
また、図4において、水ガバナの特性を線EFに示すように、入水温度に対して下に凸の曲線状にバイパス率が変化するように構成しているが、入水温度に対して直線的にバイパス率が変化したり、あるいは上に凸の曲線状にバイパス率が変動するようにしても良く、これにより上記実施の形態と同様の効果が得られる。
【0070】
【発明の効果】
本発明に係るバイパスミキシング方式のガス給湯器によれば、給湯器のバイパス率を入水温度と熱交換器出口温度又は出湯温度の2つの独立変数により制御するようにしたので、ドレン発生とボイル発生の双方を回避しつつ、全温度範囲においてバイパス出湯方式とすることが可能となるという効果がある。
【0071】
また、電磁弁を用いたストレート出湯/バイパス出湯切替方式とする必要がないので、電磁弁とそのON−OFF制御機構が不要となり、ガス給湯器の低コスト化が可能となるという効果がある。
【0072】
さらに、入水温度に応じて、給水管からバイパス管路に流入する水の抵抗を制御すると同時に、給水管に流入する総入水量を制御するようにしたので、入水温度が低い場合でも、出湯温度が設定温度に達しないというおそれもない。
【図面の簡単な説明】
【図1】本発明に係るバイパスミキシング方式の給湯器の概略構成図である。
【図2】本発明に使用される水温感応型定流量弁の内部構造を示す図である。
【図3】本発明に係るバイパス率制御弁の内部構造を示す図である。
【図4】入水温度とバイパス率の関係を示す図である。
【図5】入水温度とバイパス率の関係を示す図である。
【図6】本発明の第2の実施の形態に係るバイパス率制御弁の内部構造を示す図である。
【符号の説明】
10 ガス給湯器
12 給水管
14 出湯管
16 熱交換器
20 ガスバーナ
38 バイパス管路
40 バイパス率制御弁
44 水温感応型定流量弁[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a gas water heater of a bypass mixing system, and more specifically, in addition to the main water supply system which sends water flowing through a water supply pipe to a heat exchanger and is heated by a gas burner to lead to a hot water discharge pipe, the water flowing through the water supply pipe The present invention relates to a by-pass mixing type gas water heater that includes a bypass pipe line that directly leads a part of the hot water to a hot water discharge pipe and dilutes hot water heated by a heat exchanger with water fed from the bypass pipe.
[0002]
[Prior art]
In the conventional gas water heater, in addition to the main water supply system which sends water flowing through the water supply pipe to the heat exchanger and is heated by the gas burner to lead to the hot water discharge pipe, part of the water flowing through the water supply pipe is directly led to the hot water discharge pipe. 2. Description of the Related Art A so-called bypass mixing type gas water heater is already known that includes a bypass pipe and dilutes hot water heated by a heat exchanger with water fed from the bypass pipe.
[0003]
Bypass mixing type gas water heaters are usually equipped with a solenoid valve in the bypass pipe, and when the temperature of the hot water is high, the hot water discharged from the heat exchanger is closed by closing the solenoid valve (straight hot water). When the temperature is low, the solenoid valve is opened so that hot water discharged from the heat exchanger and cold water supplied from the bypass pipe are mixed and then discharged (bypass hot water). Therefore, the bypass mixing type gas water heater has an advantage that the temperature of the heat exchanger is always kept high even when the tapping temperature is low, so that drain is hardly generated in the heat exchanger.
[0004]
Moreover, even if it is a gas water heater of the bypass mixing system which has the above-mentioned structure, if the ratio (bypass rate) of the flowing water quantity which flows through a bypass pipe line with respect to the total water intake amount introduced into a water supply pipe is fixed When the temperature is low and the incoming water temperature is high, there is a problem that drain may be generated in the heat exchanger even if the hot water is bypassed. In addition, since there is an upper limit on the maximum heating power of the gas burner, if the amount of flowing water introduced into the water supply pipe is fixed, depending on the value, the temperature of the hot water will reach the set temperature when the incoming water temperature to the water supply pipe is low. There was a problem that it might not reach.
[0005]
Therefore, the inventor of the present application is provided with a water temperature-sensitive constant flow valve capable of variably controlling the total amount of water flowing into the water supply pipe and the bypass rate according to the water temperature, in addition to the above-described bypass mixing type gas water heater. A gas water heater of the bypass mixing system has already been proposed (Japanese Patent Application No. 8-53750), and the above-mentioned problems are solved.
[0006]
By the way, providing a solenoid valve and its ON-OFF control mechanism in a gas water heater has the fault that it leads to the cost increase of a gas water heater. Therefore, in terms of satisfying both prevention of drain generation and cost reduction, instead of using a straight hot water / bypass hot water switching method using a solenoid valve, a bypass hot water method should be used in the entire hot water temperature range. Is desirable.
[0007]
[Problems to be solved by the invention]
However, the present invention proposes a bypass mixing type gas water heater (Japanese Patent Application No. 8-53750) provided with a water temperature sensitive constant flow valve that controls the total incoming water amount and the bypass rate according to the incoming water temperature. However, it is difficult to adopt a bypass hot-water system over the entire temperature range while avoiding both the generation of drain and the generation of boil.
[0008]
That is, when the bypass rate of the gas water heater of the bypass mixing system provided with the above-described water temperature sensitive constant flow valve is controlled to be the lowest value at which drainage does not occur when the tapping temperature is 38 ° C., Under conditions where the temperature of the hot water is 60 ° C. or less and the temperature of the incoming water is 25 ° C. or less, both draining and boiling can be avoided, but if the incoming water temperature exceeds 25 ° C., the inside of the heat exchanger The temperature exceeded 85 ° C, and there was a risk of boiling.
[0009]
Therefore, particularly in a gas water heater that requires a high temperature of 60 ° C. or more as a tapping temperature, it is not possible to avoid both drain generation and boil generation only by providing the above-described water temperature sensitive constant flow valve, There was a problem that it was indispensable to adopt a straight hot water / bypass hot water switching method using a solenoid valve.
[0010]
The problem to be solved by the present invention is that it is possible to avoid both drain generation and boil generation without adopting a straight hot water / bypass hot water switching method using a solenoid valve, and bypass the entire hot water temperature range. An object of the present invention is to provide a gas water heater of a bypass mixing system that can be a hot water system.
[0011]
[Means for Solving the Problems]
In order to solve the above-described problem, a gas water heater of a bypass mixing type according to the present invention includes a heat exchanger in which a water supply pipe and a hot water discharge pipe are disposed, and water flowing through the water supply pipe without passing through the heat exchanger. A gas water heater provided with a bypass pipe directly leading to the hot water pipe and a gas burner for heating the heat exchanger, wherein the water pipe is provided at a branch portion between the water pipe and the bypass pipe. A water temperature sensitive type control means having water temperature sensitive means for variably controlling the total amount of water flowing into the water supply pipe according to the temperature of the flowing water and at the same time variably controlling the resistance of water flowing into the bypass pipe from the water supply pipe. In addition to the flow valve, the junction between the hot water pipe and the bypass pipe is connected from the bypass pipe to the hot water pipe according to the temperature of hot water before or after hot water mixing flowing through the hot water pipe. Allow resistance of discharged water It is an gist further comprising a bypass ratio control valve having a water temperature sensitive means for controlling.
[0012]
According to the gas water heater of the bypass mixing system having the above-described configuration, the water supply pipe is changed from the water supply pipe to the bypass pipe at the branch portion of the bypass pipe in accordance with the temperature of the water flowing through the water supply pipe (hereinafter referred to as “water temperature”). At the same time that the resistance of the inflowing water is controlled, the temperature of hot water before or after mixing hot water flowing through the tapping pipe or after mixing with hot water (hereinafter referred to as “heat exchanger outlet temperature” or “tapping temperature”) at the junction of the bypass pipe The resistance of the water discharged from the bypass pipe to the outlet pipe is controlled according to the above, and the bypass rate of the gas water heater is determined by these combined resistances.
[0013]
That is, the bypass rate of the gas water heater according to the present invention is controlled over a wide range using two independent variables of the incoming water temperature and the heat exchanger outlet temperature or the outlet temperature. Thereby, both drain generation and boil generation can be avoided without adopting a straight hot water / bypass hot water switching method using a solenoid valve, and the bypass hot water method can be used over the entire temperature range.
[0014]
Moreover, at the same time, the total amount of incoming water flowing into the water supply pipe is variably controlled according to the incoming water temperature at the branch part of the bypass pipe, so that the tapping temperature reaches the set temperature even when the incoming water temperature is low. There is no fear of not doing it.
[0015]
Specifically, when the temperature of the water flowing through the water supply pipe is low, the water temperature sensitive constant flow valve reduces the total amount of water flowing into the water supply pipe, and at the same time, the water flowing into the bypass pipe from the water supply pipe. What is necessary is just to comprise so that resistance may be increased and the resistance of the water which flows into a bypass line may be decreased simultaneously with the increase in the total amount of water flowing into a water supply pipe as the temperature of the water which flows through a water supply pipe becomes high.
[0016]
Further, the bypass rate control valve specifically reduces the resistance of water discharged from the bypass pipe to the hot water outlet pipe when the heat exchanger outlet temperature or the hot water temperature is low. What is necessary is just to comprise so that resistance of the water discharged | emitted from a bypass line may be increased as temperature becomes high.
[0017]
By configuring in this way, boil generation can be avoided even when the incoming water temperature is low and the outgoing hot water temperature is high, and drain generation can be avoided even when the incoming water temperature is high and the outgoing hot water temperature is low. It is.
[0018]
Further, it is desirable that the hot water temperature sensing means and / or the water temperature sensing means is constituted by a temperature sensitive member made of a shape memory alloy. This is because if a temperature-sensitive member made of a shape memory alloy is used, the valve can be opened and closed using only a temperature change as a driving force, and a complicated control mechanism is not required. Specifically, a so-called bidirectional shape memory alloy spring of a type in which the spring load (spring constant) increases or decreases according to a change in the water temperature is preferable.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a preferred embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows a typical example of a bypass mixing type water heater to which the present invention is applied. The bypass mixing type gas water heater 10 shown in the figure has a water supply pipe 12 and a hot water discharge pipe 14 connected via a heat exchanger 16, and the heat exchanger 16 is disposed in an inner cylinder 18. A gas burner 20 for heating the water flowing through the heat exchanger 16 is further disposed in the lower part of the heat exchanger 16 in the inner cylinder 18.
[0020]
In addition to the water amount sensor 22 for detecting the flow of water, the water supply pipe 12 has a temperature T of water flowing through the water supply pipe 12. i An incoming water temperature thermistor 24 is provided.
[0021]
Further, the gas pipe 28 of the gas burner 20 is provided with an original solenoid valve 30, a main solenoid valve 32, and a gas proportional valve 34 for controlling the flow rate of the gas flowing through the gas pipe 28, respectively. A blower fan 36 for supplying air is provided.
[0022]
A bypass pipe 38 is provided between the water supply pipe 12 and the hot water supply pipe 14 to directly guide the water flowing through the water supply pipe 12 to the hot water supply pipe 14 without passing through the heat exchanger 16. In addition, a water temperature sensitive constant flow valve (hereinafter referred to as “water governor”) 44 is provided at a branch portion between the bypass pipe 38 and the water supply pipe 12, and is formed at a junction of the bypass pipe 38 and the outlet pipe 14. A bypass rate control valve 40 is provided.
[0023]
On the downstream side of the bypass rate control valve 40, hot water led to the hot water discharge pipe 14 via the heat exchanger 16 and water guided to the hot water discharge pipe 14 via the bypass pipe 38 are mixed ( Hot water temperature after mixing (Tapping temperature TH) 0 The hot water temperature thermistor 42 is provided. Further, a hot water tap 92 is provided at the tip of the hot water outlet pipe 14.
[0024]
Further, it has a burner controller 88 that receives signals from the incoming water temperature thermistor 24 and the hot water temperature thermistor 42 and controls the original electromagnetic valve 30, the main electromagnetic valve 32, the gas proportional valve 34, and the blower fan 36. The burner controller 88 is constituted by a known CPU, ROM, RAM, and the like, and various programs for performing hot water temperature control and the like are stored in the ROM. The burner controller 88 can be remotely operated by a remote controller 90.
[0025]
Next, the general operation of the gas water heater 10 of the bypass mixing system configured as described above will be described. First, when the hot-water tap 92 is opened, the water amount sensor 22 is turned on, the blower fan 36 is driven by a command from the burner controller 88, and combustion air is supplied to the gas burner 20, and the original solenoid valve 30 of the gas burner 20, The main electromagnetic valve 32 and the gas proportional valve 34 are sequentially opened, the combustion gas is supplied to the gas burner 20, and the gas burner 20 is ignited by an ignition operation by an igniter (not shown).
[0026]
At the initial ignition operation stage of the gas burner 20, the temperature of the water flowing through the water supply pipe 12 is detected by the incoming water temperature thermistor 24 provided in the water supply pipe 12, and the hot water discharge temperature TH flowing through the hot water discharge pipe 14 by the burner controller 88. 0 Is set temperature T s The degree of opening of the gas proportional valve 34 that adjusts the amount of gas supplied to the gas burner 20 is adjusted so as to approach.
[0027]
After the combustion of the gas burner 20 becomes stable, the hot water temperature TH detected by the hot water temperature thermistor 42 is detected. 0 Is set temperature T s The burner controller 88 sends a signal to the proportional valve current circuit of the gas proportional valve 34 and the blower fan drive circuit so that the opening degree of the gas proportional valve 34 and the fan rotational speed of the blower fan 36 are proportional to each other. Operation is managed by performing control.
[0028]
Next, the configuration of the water governor 44 will be described. FIG. 2 is an enlarged view of the internal structure of the water governor 44. As shown in the figure, the water governor 44 has a water channel that leads water introduced from the main pipe of the water supply pipe 12 to the inlet of the governor body 46 to the main water supply system that leads to the heat exchanger 16. A flowing water channel for guiding a part of the water to the bypass conduit 38 is provided.
[0029]
More specifically, the governor body 46 is largely divided into two parts by a partition wall 48. A cup-shaped fixed valve body 50 is provided in one partition wall space with seal members 52, 52 on the inner wall surface thereof. It is provided in a state where it is in close contact with each other and immovable. Further, inside the fixed valve body 50, the movable valve body 54 is also movable in a state of being in close contact with the inner wall surface of the fixed valve body 50 through the seal member 56, and fixed to the movable valve body 54. Flowing water gap g between the valve seat 58 provided on the inner wall surface of the valve body 50 1 Is provided to be variable.
[0030]
And between the inner bottom surface of the fixed valve body 50 and the top of the movable valve body 54, the fluid gap g is resisted against the pressure of water guided into the governor body 46. 1 A coil spring member 60 that presses and urges the movable valve body 54 in the direction of expanding the pressure is interposed. The movable valve body 54 is not inadvertently pulled out by a stopper ring 62 provided on the inner wall surface at the lower end of the fixed valve body 50.
[0031]
On the other hand, in the other partition space partitioned by the partition wall 48 of the governor body 46, a valve shaft 64 is provided slidably on the inner wall surface via a seal member 66, and at one end of the valve shaft 64, The flow rate variable needle 68 for changing the flow rate of water flowing in from the main pipe of the water supply pipe 12 has a flowing water gap g between the valve seat 70 provided in the partition wall space. 2 Is provided to be variable. Further, a bypass rate variable needle 72 for changing the flow rate of water guided to the bypass pipe 38 is provided on the inner wall surface of the partition wall at the other end of the valve shaft 64, Gap between running water g Three Is provided to be variable.
[0032]
The valve shaft 64 includes a flowing water gap g between the flow rate variable needle 68 and the valve seat 70. 2 And a flowing water gap g between the bypass rate variable needle 72 and the valve seat 74. Three A shape memory alloy spring 76 urged in the direction of expanding the pressure is interposed. Also, a flowing water gap g between the flow rate variable needle 68 and the valve seat 70 against the urging force of the shape memory alloy spring 76. 2 And a gap between the bypass rate variable needle 72 and the valve seat 74. Three A bias spring 78 urged in the direction of pushing and narrowing is also interposed.
[0033]
The shape memory alloy spring 76 is made of a material having a so-called bidirectional shape memory characteristic in which the spring load increases as the water temperature increases, and the spring load decreases as the water temperature decreases. .
[0034]
On the other hand, on the wall surfaces of the partition wall 48 and the fixed valve body 50, a flowing water gap g between the flow rate variable needle 68 and the valve seat 70 is provided. 2 Communication holes 80 and 82 are respectively provided so that water passing through can be guided to the internal space of the fixed valve body 50. In addition, an opening 84 for sending water guided into the fixed valve body 50 toward the heat exchanger 16 is provided on the wall surface of the fixed valve body 50. Furthermore, in the partition wall 48, a part of the water sent out from the opening 84 of the fixed valve body 50 is allowed to flow between the bypass variable needle 72 and the valve seat 74. Three A communication hole 86 is provided so as to be sent out to the bypass pipe line 38.
[0035]
Next, the operation of the water governor 44 shown in FIG. 2 will be described. When the hot-water tap 92 of the gas water heater 10 is opened and is in an operating state, the water introduced into the water governor 44 through the water supply pipe 12 is the flow gap g between the flow rate variable needle 68 provided in the governor body 46 and the valve seat 70. 2 Further, it passes through communication holes 80 and 82 formed in the partition wall 48 and the fixed valve main body 50, and is guided to the internal space of the fixed valve main body 50.
[0036]
Then, the water introduced into the fixed valve body 50 is a flowing water gap g between the movable valve body 54 and the valve seat 58. 1 Through the opening 84 of the fixed valve body 50, a part of which is led to the hot water supply system leading to the heat exchanger 16, and the remaining water passes through the communication hole 86 formed in the partition wall 48. Furthermore, a flowing water gap g between the variable bypass rate needle 72 and the valve seat 74 is shown. Three And is sent out to the bypass line 38.
[0037]
At this time, the spring load of the shape memory alloy spring 76 provided in the water governor 44 varies depending on the temperature of the water flowing in the water governor 44, thereby flowing water between the flow rate variable needle 68 and the valve seat 70. Gap g 2 Is changed. Also, running water gap g 2 As the pressure fluctuates, the water pressure applied to the bottom of the movable valve body 54 also fluctuates. 1 These synergistic operations control the total amount of water flowing through the water governor 44.
[0038]
Furthermore, running water gap g 2 Is changed, the flowing water gap g between the bypass rate variable needle 72 and the valve seat 74 is changed. Three Are also changed at the same time, whereby the resistance of the water flowing into the bypass line 38 fluctuates. Specifically, when the water temperature is low, the spring load of the shape memory alloy spring 76 decreases, so that the flowing water gap g cannot be resisted by the repulsive force of the bias spring 78. Three Decreases and the resistance of water flowing into the bypass line 38 increases. On the other hand, since the spring load increases as the water temperature increases, the flowing water gap g against the repulsive force of the bias spring 78. Three Increases and the resistance of the water flowing into the bypass line 38 decreases.
[0039]
Next, the configuration of the bypass rate control valve 40 will be described. FIG. 3 is an enlarged view of the internal structure of the bypass rate control valve 40. As shown in the figure, the bypass rate control valve 40 includes a flowing water channel (hereinafter referred to as a “main channel”) that introduces hot water introduced from the outlet pipe 14 to the inlet of the bypass rate control valve 40 to the hot water tap 92. It has a flowing water channel (hereinafter referred to as “sub-channel”) that guides the water supplied by the bypass conduit 38 to the tap water pipe 14.
[0040]
More specifically, the bypass rate control valve 40 has a T-shape, and a T-shaped horizontal bar portion constitutes the main path 100, and both ends thereof are connected to the hot water discharge pipe 14, and the gas burner 20 is connected. The hot water used and heated in the heat exchanger 16 is led to the hot-water tap 92 through the main path 100. Further, the T-shaped vertical bar portion constitutes the secondary passage 102, and the end thereof is connected to the bypass conduit 38. Of the water introduced into the water supply pipe 12, the water governor 44 connects the bypass conduit 38 to the bypass conduit 38. The distributed water is led to the subway 102.
[0041]
A partition plate 104 is provided at the boundary between the main path 100 and the sub-path 102. The partition plate 104 is interrupted near the outlet of the main path 100 to form a cold water inlet 106, and the cold water passing through the sub path 102 is mixed with hot water discharged from the heat exchanger 16 near the outlet of the main path 100. It is like that.
[0042]
Inside the bypass rate control valve 40, a valve shaft 108 is provided in the direction of the secondary path 102, and is inserted into a bearing portion 110 provided on the partition plate 104 so as to be slidable through a seal material 112. Yes. Further, spring trays 114 and 116 are provided at both ends of the valve shaft 108, and a flowing water resistance variable needle 118 is provided at substantially the center of the valve shaft 108. Further, a valve seat 120 is provided on the inner wall surface of the secondary passage 102 located on the downstream side of the flow resistance variable needle 118, and a flow gap g between the flow resistance resistance needle 118 and the valve seat 120. Four Is designed to be variable.
[0043]
Between the spring receiving plate 114 and the partition plate 104, a flowing water gap g between the flowing water resistance variable needle 118 and the valve seat 120 is provided. Four A shape memory alloy spring 122 biased in the direction of pushing and narrowing is interposed. The shape memory alloy spring 122 is made of a material having a so-called bidirectional shape memory characteristic in which the spring load increases as the water temperature increases and the spring load decreases as the water temperature decreases. .
[0044]
Further, a stepped portion 124 is provided on the inner wall of the secondary passage 102 on the upstream side of the valve seat 120, and the flow resistance resistance needle 118 and the valve seat 120 are between the stepped portion 124 and the spring tray 116. Gap between running water g Four A bias spring 126 urged in the direction of pushing out is interposed.
[0045]
Next, the operation of the bypass rate control valve 40 will be described. The water guided to the water supply system is heated by the gas burner 20 while passing through the heat exchanger 16, discharged as hot water having a predetermined temperature to the hot water discharge pipe 14, and guided to the main path 100 of the bypass rate control valve 40.
[0046]
On the other hand, the water led to the bypass pipe 38 is led to the sub-path 102 of the bypass rate control valve 40 and the flowing water gap g between the flowing water resistance variable needle 118 and the valve seat 120. Four , And further through the cold water inlet 106 and discharged to the hot water pipe 14. Therefore, the hot water that has passed through the main path 100 and the water that has passed through the auxiliary path 102 are mixed and discharged from the hot water tap 92 as hot water having a preset temperature.
[0047]
At this time, the temperature of hot water flowing in the main path 100 (heat exchanger outlet temperature TH m ) Causes the spring load of the shape memory alloy spring 122 to fluctuate, whereby the flowing water gap g between the flowing water resistance variable needle 118 and the valve seat 120 is changed. Four Is changed. Specifically, heat exchanger outlet temperature TH m When is low, the spring load decreases, so that the flowing water gap g cannot be resisted against the repulsive force of the bias spring 126. Four Increases and the resistance of water discharged from the bypass line 38 decreases. On the other hand, the heat exchanger outlet temperature is TH m As the load increases, the spring load increases, so that the flow gap g against the repulsive force of the bias spring 126 is increased. Four Decreases and the resistance of water discharged from the bypass line 38 increases.
[0048]
Next, how the bypass rate of the gas water heater 10 is determined by the water governor 44 and the bypass rate control valve 40 having the above configuration will be described. The temperature of water entering the water heater 10 is T i (℃), heat exchanger outlet temperature is TH m (℃), the hot water temperature after mixing with hot water is TH 0 (° C), where the bypass rate is x (%), the bypass rate x and the incoming water temperature T i Is expressed by the following equation (1).
[0049]
[Expression 1]
Figure 0003824400
[0050]
FIG. 4 shows the heat exchanger outlet temperature TH using the equation (1). m And hot water temperature TH 0 Incoming water temperature T i And the bypass ratio x are obtained and illustrated. In FIG. 4, the line AB indicates the tapping temperature TH. 0 Heat exchanger outlet temperature TH when is 38 ° C m Water temperature T such that the temperature is 85 ° C i (° C.) and the bypass rate x (%) are shown in combination (hereinafter referred to as “boil limit line”), the tapping temperature is 38 ° C., and the incoming water temperature is T. i When the bypass rate x is set to a value larger than the line AB, the heat exchanger outlet temperature TH m Is over 85 ° C., meaning that there is a risk of boiling.
[0051]
Moreover, in FIG. 4, line CD shows the tapping temperature TH. 0 Heat exchanger outlet temperature TH when is 38 ° C m Water temperature T such that the temperature is 47 ° C. i (° C.) and the bypass rate x (%) are shown in combination (hereinafter referred to as “drain limit line”), the tapping temperature is 38 ° C., and the incoming water temperature is T. i When the bypass rate x is set to a value smaller than the line CD, the heat exchanger outlet temperature TH m Is below 47 ° C., meaning that there is a risk of drainage.
[0052]
Therefore, when the tapping temperature is 38 ° C., the incoming water temperature T is set so as to be within the region sandwiched between the line AB and the line CD. i If the bypass rate x is controlled according to the above, it is possible to avoid both drain generation and boil generation.
[0053]
Temporarily, by using only the water governor 44 provided with the shape memory alloy spring 76 described above, the resistance of the water at the branch portion between the water supply pipe 12 and the bypass pipe line 38 is increased or decreased to show the bypass rate x of the gas water heater. It is assumed that control is performed so as to follow the line CD of 4. Since the line CD is a drain limit line when the tapping temperature is 38 ° C., there is no possibility of draining even if the tapping temperature exceeds 38 ° C. as long as the bypass rate of the water heater is controlled according to this line CD. Become.
[0054]
Where tapping temperature TH 0 The boil limit line when the temperature is 50 ° C. is indicated by the line KL and is always located above the line CD. Therefore, as long as the bypass rate of the gas water heater is controlled according to the line CD, the incoming water temperature T i Even if the temperature fluctuates from 5 ° C. to 30 ° C., there is no fear of occurrence of boil.
[0055]
Meanwhile, hot water temperature TH 0 The boil limit line when the temperature is 60 ° C. is indicated by the line MN, and the incoming water temperature T i Intersects line CD when is 25 ° C. Therefore, if only the water governor 44 is used and the bypass rate x is controlled along the line CD, the incoming water temperature T i If the temperature is 25 ° C or lower, there is no risk of boiling. i When the temperature exceeds 25 ° C, the heat exchanger outlet temperature TH m It can be seen that the temperature exceeds 85 ° C. and there is a risk of occurrence of boil.
[0056]
Furthermore, the hot water temperature TH 0 The boil limit line when the temperature is 70 ° C. is indicated by the line IJ and is always located below the line CD. Therefore, if only the water governor 44 is used and the bypass rate x is controlled along the line CD, the incoming water temperature T i Regardless of this, it can be seen that there is always the risk of boiling.
[0057]
On the other hand, while controlling the resistance of the water which flows into the branch part of the bypass line 38 using the water governor 44 provided with the above-mentioned shape memory alloy spring 76, the bypass rate control valve provided with the shape memory alloy spring 122 If the resistance of the water discharged from the junction part of the bypass pipe line 38 is controlled using 40 and the bypass rate is determined by these combined resistances, the above-mentioned problem can be avoided.
[0058]
FIG. 5 shows the incoming water temperature T i The line AB, the line CD, and the line IJ in FIG. 5 are the same as the lines shown in FIG. First, as shown in FIG. 5, when only the water governor 44 is used, the bypass rate x of the gas water heater is equal to the incoming water temperature T. i The water governor 44 is designed to be controlled along line EF accordingly. Since the line EF is a curve that passes through approximately the center of the line AB and the line CD, at least when the tapping temperature is 38 ° C., there is no possibility of draining and boiling regardless of how the incoming water temperature varies. .
[0059]
Meanwhile, incoming water temperature T i Is constant, since the spring load of the shape memory alloy spring 76 provided in the water governor 44 is constant, the flowing water gap g in the water governor 44 is constant. Three Remains constant. Therefore, tapping temperature TH 0 As the temperature increases, the heat exchanger outlet temperature TH m This increases the risk of boiling.
[0060]
Therefore, the heat exchanger outlet temperature TH is controlled by the bypass rate control valve 40. m As the flow rate becomes higher, the resistance of the water at the junction of the outlet pipe 14 and the bypass pipe 38 is increased, and the bypass ratio x is determined by the combined resistance of the water governor 44 and the bypass ratio control valve 40. In this case, the occurrence of boil can be avoided.
[0061]
For example, tapping temperature TH 0 The boil limit line in the case of 70 ° C. is indicated by the line IJ, which is always below the line EF, and as long as the bypass rate x is controlled according to the line EF, there is a risk of boil. Therefore, in this case, the tapping temperature TH 0 The bypass rate x when the temperature is 70 ° C is the tapping temperature TH 0 What is necessary is just to design the bypass rate control valve 40 which has a temperature characteristic so that it may become about 30% of the bypass rate x when is 38 degreeC.
[0062]
According to the gas water heater 10 including both the water governor 44 and the bypass rate control valve 40 having such temperature characteristics, the tapping temperature TH 0 The bypass rate x at 70 ° C is the incoming water temperature T i Is controlled as shown by the line GH and always falls below the line IJ. i It can be seen that no matter how the fluctuates, there is no risk of occurrence of boil. Incoming water temperature T i And heat exchanger outlet temperature TH m Is used to control the bypass rate x according to the line GH, and the hot water temperature TH 0 Suppose that 70 ° C hot water is discharged, heat exchanger outlet temperature TH m Is the incoming water temperature T i Regardless, it will be kept at about 80 ° C.
[0063]
Similarly, for example, tapping temperature TH 0 The bypass rate x when the temperature is 60 ° C is the tapping temperature TH 0 50% when temperature is 38 ℃, tapping temperature TH 0 Has a bypass rate x of 50 ° C and tapping temperature TH 0 Tapping temperature TH so that it becomes 75% at 38 ° C 0 (Ie, heat exchanger outlet temperature TH m If the bypass rate control valve 40 having a temperature characteristic that monotonously reduces the resistance of water discharged from the junction of the bypass pipe is designed, the bypass rate is always below the boil limit line. Since it is set to a value, it becomes possible to use a bypass hot water discharge system in any temperature range.
[0064]
FIG. 6 is an enlarged view of the internal structure of the bypass rate control valve 40 used in the gas water heater 10 according to another embodiment of the present invention. The bypass rate control valve 40 shown in FIG. 6 has exactly the same internal structure as the bypass rate control valve 40 shown in FIG. 3, but the connection of the main path 100 is reversed from that in FIG.
[0065]
According to FIG. 6, the hot water led from the heat exchanger 16 through the hot water pipe 14 to the main path 100 is first provided on the upstream side of the main path 100 through the bypass pipe 38 and the auxiliary path 102. The hot water after being mixed with the water discharged from the cold water inlet 106 and then mixed with the hot water contacts the shape memory alloy spring 122, and thereby the flowing water gap g Four Is determined.
[0066]
That is, the bypass rate control valve 40 shown in FIG. m In contrast, the resistance of the water discharged from the bypass pipe 38 is varied, whereas the bypass rate control valve 40 shown in FIG. 0 The resistance of water is changed by this. Also by configuring as described above, it is possible to adopt a bypass system in the entire hot water temperature range.
[0067]
As described above, according to the gas water heater according to the present invention, since the bypass rate of the water heater is controlled by the two variables of the incoming water temperature and the heat exchanger outlet temperature or the hot water temperature, the solenoid valve is used. Even if the straight hot water / bypass hot water switching method is not used, the bypass hot water method can be used in the entire temperature range while avoiding both the generation of drain and boil.
[0068]
The present invention is not limited to the above embodiment, and various modifications can be made without departing from the gist of the present invention. For example, in the above embodiment, a water governor is used which controls the resistance of water when flowing into the bypass pipe according to the incoming water temperature and at the same time controls the total incoming water amount led to the water supply pipe. If the heating power is sufficient, a water governor that controls only the resistance of water may be used.
[0069]
Further, in FIG. 4, the water governor characteristic is configured such that the bypass rate changes in a downward convex curve shape with respect to the incoming water temperature as indicated by a line EF, but is linear with respect to the incoming water temperature. Alternatively, the bypass rate may be changed, or the bypass rate may be changed in an upwardly convex curve shape, whereby the same effect as in the above embodiment can be obtained.
[0070]
【The invention's effect】
According to the gas water heater of the bypass mixing system according to the present invention, since the bypass rate of the water heater is controlled by two independent variables of the incoming water temperature and the heat exchanger outlet temperature or the hot water temperature, drain generation and boil generation There is an effect that it is possible to adopt the bypass hot water discharge method in the entire temperature range while avoiding both of the above.
[0071]
Further, since there is no need to use a straight hot water / bypass hot water switching method using a solenoid valve, there is no need for a solenoid valve and its ON-OFF control mechanism, and the cost of the gas water heater can be reduced.
[0072]
Furthermore, the resistance of water flowing from the water supply pipe to the bypass line is controlled according to the incoming water temperature, and at the same time, the total amount of water flowing into the water supply pipe is controlled, so even if the incoming water temperature is low, the tapping temperature There is also no fear that will not reach the set temperature.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a bypass mixing type water heater according to the present invention.
FIG. 2 is a diagram showing an internal structure of a water temperature sensitive constant flow valve used in the present invention.
FIG. 3 is a diagram showing an internal structure of a bypass rate control valve according to the present invention.
FIG. 4 is a diagram showing the relationship between the incoming water temperature and the bypass rate.
FIG. 5 is a graph showing the relationship between the incoming water temperature and the bypass rate.
FIG. 6 is a diagram showing an internal structure of a bypass rate control valve according to a second embodiment of the present invention.
[Explanation of symbols]
10 Gas water heater
12 Water supply pipe
14 Hot water pipe
16 Heat exchanger
20 Gas burner
38 Bypass pipeline
40 Bypass rate control valve
44 Water temperature sensitive constant flow valve

Claims (2)

給水管及び出湯管が配設される熱交換器と、前記給水管を流れる水を前記熱交換器を介さずに直接前記出湯管へ導くバイパス管路と、前記熱交換器を加熱するガスバーナとを備えたガス給湯器であって、
前記給水管と前記バイパス管路との分岐部には、前記給水管を流れる水の温度に応じて、前記給水管に流入する総入水量を可変制御すると同時に、前記給水管から前記バイパス管路へ流入する水の抵抗を可変制御する水温感応手段を有する水温感応型定流量弁を備えると共に、
前記出湯管と前記バイパス管路との合流部には、前記出湯管を流れる湯水混合前又は湯水混合後の湯の温度に応じて、前記バイパス管路から前記出湯管に排出される水の抵抗を可変制御する湯温感応手段を有するバイパス率制御弁を備えたことを特徴とするバイパスミキシング方式のガス給湯器。
A heat exchanger in which a water supply pipe and a hot water discharge pipe are arranged, a bypass pipe for directly leading water flowing through the water supply pipe to the hot water discharge pipe without going through the heat exchanger, a gas burner for heating the heat exchanger, A gas water heater comprising:
At the branch portion between the water supply pipe and the bypass pipe, the total amount of water flowing into the water supply pipe is variably controlled according to the temperature of the water flowing through the water supply pipe, and at the same time from the water supply pipe to the bypass pipe A water temperature sensitive constant flow valve having water temperature sensitive means for variably controlling the resistance of water flowing into the water,
At the junction between the hot water pipe and the bypass pipe, resistance of water discharged from the bypass pipe to the hot water pipe according to the temperature of hot water before or after hot water mixing flowing through the hot water pipe A bypass water mixing type gas water heater comprising a bypass rate control valve having hot water temperature sensing means for variably controlling the temperature.
前記水温感応手段及び/又は前記湯温感応手段が、形状記憶合金からなる温度感応部材により構成されていることを特徴とする請求項1に記載されるバイパスミキシング方式のガス給湯器。The bypass water mixing type gas water heater according to claim 1, wherein the water temperature sensitive means and / or the hot water temperature sensitive means is constituted by a temperature sensitive member made of a shape memory alloy.
JP27347597A 1997-09-19 1997-09-19 Bypass mixing type gas water heater Expired - Fee Related JP3824400B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27347597A JP3824400B2 (en) 1997-09-19 1997-09-19 Bypass mixing type gas water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27347597A JP3824400B2 (en) 1997-09-19 1997-09-19 Bypass mixing type gas water heater

Publications (2)

Publication Number Publication Date
JPH1194361A JPH1194361A (en) 1999-04-09
JP3824400B2 true JP3824400B2 (en) 2006-09-20

Family

ID=17528440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27347597A Expired - Fee Related JP3824400B2 (en) 1997-09-19 1997-09-19 Bypass mixing type gas water heater

Country Status (1)

Country Link
JP (1) JP3824400B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108061374B (en) * 2017-07-26 2023-11-21 宁波方太厨具有限公司 Dual-purpose gas constant temperature water heater for direct drinking water and bath

Also Published As

Publication number Publication date
JPH1194361A (en) 1999-04-09

Similar Documents

Publication Publication Date Title
JPH0323822B2 (en)
JP3824400B2 (en) Bypass mixing type gas water heater
KR0180270B1 (en) Solenoid valve device
JP2911989B2 (en) Hot water supply temperature control device
JP3539046B2 (en) Gas water heater of bypass mixing type and water temperature sensitive type constant flow valve for bypass mixing used therein
JPS59125325A (en) Heating control device
JPS603721A (en) Mixing device of hot water and cold water
JP3862830B2 (en) Water heater
JPH08121866A (en) Hot water supply device
JP3836953B2 (en) Water heater
JPH102609A (en) Hot-water supply apparatus
JP3824734B2 (en) Combustion device
JP3932226B2 (en) Bypass mixing water heater
JP3932227B2 (en) Bypass mixing water heater
JP3904742B2 (en) Bypass mixing water heater
KR950009264B1 (en) Gas boiler
JP2529763B2 (en) Water heater
JP3577652B2 (en) Bypass mixing water heater
JPH0429233Y2 (en)
JP3765917B2 (en) Water heater
JPH02213645A (en) Instantaneous hot water boiler
JPH0830609B2 (en) Bypass mixing control method
JP3783168B2 (en) Bypass mixing water heater
JP3922788B2 (en) Hot water supply method and hot water supply apparatus
JP2002206810A (en) Automatic hot water supply apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060614

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060627

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090707

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120707

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120707

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120707

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150707

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees