JP3577652B2 - Bypass mixing water heater - Google Patents

Bypass mixing water heater Download PDF

Info

Publication number
JP3577652B2
JP3577652B2 JP12248796A JP12248796A JP3577652B2 JP 3577652 B2 JP3577652 B2 JP 3577652B2 JP 12248796 A JP12248796 A JP 12248796A JP 12248796 A JP12248796 A JP 12248796A JP 3577652 B2 JP3577652 B2 JP 3577652B2
Authority
JP
Japan
Prior art keywords
valve
water
pipe
bypass
shape memory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12248796A
Other languages
Japanese (ja)
Other versions
JPH09287826A (en
Inventor
敏宏 小林
Original Assignee
パロマ工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パロマ工業株式会社 filed Critical パロマ工業株式会社
Priority to JP12248796A priority Critical patent/JP3577652B2/en
Publication of JPH09287826A publication Critical patent/JPH09287826A/en
Application granted granted Critical
Publication of JP3577652B2 publication Critical patent/JP3577652B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、給水管と出湯管との間に熱交換器をバイパスするバイパス管を接続し、熱交換器で加熱された湯にバイパス管からの水を混合して所望の温度の湯を出湯させるバイパスミキシング式給湯器に関する。
【0002】
【従来の技術】
上記バイパスミキシング式給湯器においては、バイパス管に電磁弁や水モータを設け、これらをバーナコントローラで開閉制御又は駆動制御し、バイパス管からの水の流量(給湯器に入る全流量に対するバイパス比率)を変更して所望の温度の湯を出湯させることで、熱交換器の内胴出口から出湯される湯の温度(以下内胴出口温度という)を、熱交換器にドレンの発生や沸騰を起こさせない範囲に調整可能としていた。
【0003】
【発明が解決しようとする課題】
上記電磁弁や水モータを用いた場合、これらの開閉制御や駆動制御を行う制御回路を前記バーナコントローラに別途設ける必要が生じるため、器具全体のコストアップに繋がってしまう。又特に電磁弁では、バイパス比率が固定されるため、ドレン発生や沸騰の防止に対応できる領域が狭く、充分なバイパス管の活用ができていない。
【0004】
【課題を解決するための手段】
そこで本発明は、上記電磁弁や水モータを用いない簡単な構成で、バイパス比率の変更範囲を広くし、前記ドレンの発生や沸騰を好適に防止可能としたバイパスミキシング式給湯器を提供するもので、その構成は、バイパス管に、出湯管へ供給する水の流量を制御可能な制御弁を設ける一方、出湯管内におけるバイパス管からの水出口の上流側又は下流側と、バイパス管内とに、温度に応じて動作する形状記憶合金バネを、制御弁の弁体を挟んで、出湯管側の形状記憶合金バネが弁体の閉弁方向へ、バイパス管側の形状記憶合金バネが弁体の開弁方向へ夫々力を生じさせるように同軸で配置し、前記制御弁の弁体を前記両形状記憶合金バネの荷重がバランスする位置で停止させることで、制御弁の開閉制御を行うようにしたことを特徴とするものである。
【0005】
【発明の実施の形態】
以下本発明の実施の形態を図面に基いて説明する。
図1はバイパスミキシング式給湯器の概略を示すもので、バイパスミキシング式給湯器1は、上水道に接続される給水管2と、給水管2から導かれる水をガスバーナ3により加熱する熱交換器4と、その熱交換器4で加熱された湯を送り出す出湯管5とを備えている。又給水管2には、水量を検出する水量センサ6と入水温度を検出する入水温度センサ7が、出湯管5には、出湯温度を検出する出湯温度センサ8が夫々設けられて、これらは図示しないバーナコントローラに接続されている。バーナコントローラは、水量センサ6や入水温度センサ7及び、出湯温度センサ8から入力される検出信号に基いて、所望の出湯温度が得られるようにガスバーナ3へのガス流路に設けられた比例制御弁(図示せず)を制御するものである。
そして給水管2と出湯管5との間には、熱交換器4をバイパスするバイパス管9が接続され、このバイパス管9と出湯管5との接続部分に、ミキシングバルブ10が設けられている。このミキシングバルブ10は、まずバイパス管9に連通する弁室11を形成して、弁室11の水を水出口18から出湯管5側へ合流させる構成としている。又弁室11には、弁体12と弁座13とを設けており、前記弁体12の弁軸14には、バネ受け15を連結し、そのバネ受け15と弁体12側のバネ受け16との間に形状記憶合金バネ17を介在させている。一方水出口18の上流側には、バネ室19を形成し、そのバネ室19内においては、弁体12の弁軸14を伸長させて端部にバネ受け20を連結し、そのバネ受け20の弁体12側に、形状記憶合金バネ21を先の形状記憶合金バネ17と同軸に配置している。
【0006】
前記形状記憶合金バネは、図2のグラフに示すような温度に対する荷重特性(同図は形状記憶合金バネ21の荷重特性を示すものであり、上は長さ17mm、下は長さ20mmのものを示す)を有するものが採用されている。まず形状記憶合金バネ17は、バイパス管9から弁室11へ流れる水の温度に応じて荷重を変化させ、弁体12の開弁方向へ力を生じさせる。そして形状記憶合金バネ21は、熱交換器4の内胴出口温度に応じて荷重を変化させ、弁体12の閉弁方向へ力を生じさせる。このように両形状記憶合金バネは、夫々荷重を弁体12のストロークに変えるために利用されているが、夫々両バネの荷重は相反する方向へ加わる設定であるため、弁体12は両バネの荷重のバランスする位置で停止するものとなる。この弁体12の移動により弁開度を変化させて、給湯器に入る全流量Q にに対するバイパス管9内を流れる水の流量Q の比、即ちバイパス比率Q /Q を調整しているのである。
【0007】
又前記バイパス比率は、熱交換器4にドレンを発生させず、又沸騰させない温度範囲(ここでは45℃〜85℃とする)で内胴出口温度を維持するために設定される。図3のグラフは、給水管2から供給される水の温度(以下入水温度という)が5℃〜30℃の間で変化するものとして、この入水温度の推移に加えて、給湯器で設定可能な出湯温度が38℃〜70℃の範囲の場合、前記ドレン発生と沸騰防止が可能な内胴出口温度の範囲(45℃〜85℃)を維持するためのバイパス比率の限界ラインを示すもので、このグラフにおいて、aは38℃出湯時の沸騰限界ライン、bは同じく38℃出湯時のドレン限界ライン、又cは70℃出湯時の沸騰限界ラインを夫々示すもので、この各限界ラインより、バイパス比率は以下の表1に設定する必要がある。
【0008】
【表1】

Figure 0003577652
【0009】
前記表1を、出湯温度を横軸、バイパス比率を縦軸として表したのが図4のグラフで、実線の斜線で示す領域が入水温度5℃の場合、破線で示す領域が入水温度30℃の場合となる。よって両者の領域が重複する範囲内で、例えば図4のグラフに示す軌跡イ(最初は50%のバイパス比率から、出湯温度が45℃を越えた付近から減少させ、出湯温度70℃で18%となる)の如くバイパス比率が移行するように、2つの形状記憶合金バネ17,21の荷重のバランスによる弁体12のストロークが調整されるのである。
このように上記ミキシングバルブ10においては、入水温度と内胴出口温度との検知に形状記憶合金バネ17,21を用い、温度変化による荷重を直接弁体12に作用させて、ドレン発生と沸騰防止が可能な範囲内でバイパス比率を調整する構成としたことで、通水系側のみで適切なミキシングが可能となる。よって構成が簡略化し、電磁弁やモータに制御回路を組み合わせてバイパス比率の調整を行う従来の形態に比べて、大幅なコストダウンが達成できる。
【0010】
一方図3のグラフに示すように、バイパス比率は入水温度の上昇に従って上昇させる必要があるが、特にここでは、形状記憶合金バネ17により、入水温度の上昇に応じて弁体12に開弁方向へのストロークを与え、上記バイパス比率の上昇分をここで負担させる構成としているため、形状記憶合金バネ21単独によりバイパス比率の変動を負担させるのに比べて、安定したミキシングが可能となる。
具体的に説明すると、内胴出口側の形状記憶合金バネ21のみで上記ドレン限界、沸騰限界の領域を維持しようとすると、バイパス比率は、先の図4のグラフで、ドレン限界側で0〜47%(Δ47%)、沸騰限界側で19〜58.5%(Δ39.5%)変化させる必要がある。しかしこれだけ変化幅が大きくなると、流量変化や出湯温度の変更による内胴出口温度の変化時に、ハンチング現象が生じる。そこで本形態では、バイパス管9側に形状記憶合金バネ17を組み込んで、入水温度の変化0〜30℃の間でバイパス率を0〜20%変化させる構成としているため、先の内胴出口側の形状記憶合金バネ21が負担するバイパス比率は、ドレン限界側で0〜27%(Δ27%)、沸騰限界側で19〜38.5%(Δ19.5)の負担で済み、形状記憶合金バネ21単独によるバイパス比率の負担量が、27/47=0.57、19.5/39.5=0.49と少なくなり、ハンチング現象が発生せず、安定したミキシングが可能となるのである。
【0011】
尚上記実施の形態では、形状記憶合金バネ21を水出口18の上流に配して、熱交換器4の内胴出口温度を直接検知するものとしているが、図5に示すミキシングバルブ10aのように、水出口18を形状記憶合金バネ21の上流側に設けて、ミキシング後の湯の温度を検知するものとしても良い。
【0012】
又熱応動部材として、形状記憶合金バネに代えてサーモワックスを使用することもできる。この態様を図6に示すと、ミキシングバルブ10bには、サーモワックスを内蔵し、その温度上昇に伴う体積変動に従って弁軸23a,23bを突出させる熱応動体22a,22bを、夫々出湯管5側と、バイパス管9側に並設し、熱応動体22aの弁軸23aには、バイパス管9内で、バイパス管9と給水管2との境壁25に形成した弁座26aを開閉する弁体24aを連結する一方、熱応動体22bの弁軸23bには、給水管2内で、同じく境壁25に形成した弁座26bを開閉する弁体24bを連結している。又各弁体24a,24bには、弁体24aに対しては開弁方向へ、弁体24bに対しては閉弁方向へ夫々作用する戻しバネ27a,27bが備えられている。よって内胴出口側の熱応動体22aにおいては、内胴出口温度の上昇に従って弁体24aは閉弁方向へ移動して、戻しバネ27aとバランスする位置で停止し、バイパス管9側の熱応動体22bにおいては、バイパス管9内の入水温度の上昇に従って弁体24bは開弁方向へ移動して、戻しバネ27bとバランスする位置で停止し、両弁体24a,24bの開度でバイパス管9へ供給される水の流量Q が決定される。従ってここでは、2つの弁体によって決定されるバイパス比率を、図4のグラフで示した領域で変動させれば良いことになる。
尚この熱応動体22a,22bの並列配置は、先の形態の形状記憶合金バネ17,21において採用することも可能で、両タイプの組み合わせでも差し支えない。
【0013】
【発明の効果】
以上本発明によれば、制御弁の開閉制御を、制御弁の弁体を挟んで同軸で配置された2つの形状記憶合金バネで行うようにしたことで、バイパスミキシング構造が簡単に構成でき、コストダウンが達成できる。特に熱交換器の内胴出口側に加え、バイパス管側にも形状記憶合金バネを設けて、入水温度にも対応してバイパス比率を変化させる構成としているから、バイパス比率の設定の自由度が上昇すると共に、ハンチング現象も好適に防止でき、安定したミキシングが可能となるのである。
【図面の簡単な説明】
【図1】バイパスミキシング式給湯器の概略及びミキシングバルブの説明図である。
【図2】形状記憶合金バネの特性図である。
【図3】バイパス比率の設定領域を示すグラフである。
【図4】バイパス比率の設定領域を示すグラフである。
【図5】ミキシングバルブの変更例を示す説明図である。
【図6】サーモワックスを利用したミキシングバルブの変更例を示す説明図である。
【符号の説明】
1・・バイパスミキシング式給湯器、2・・給水管、3・・ガスバーナ、4・・熱交換器、5・・出湯管、9・・バイパス管、10,10a,10b・・ミキシングバルブ、12・・弁体、17,21・・形状記憶合金バネ、22a,22b・・熱応動体。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention connects a bypass pipe that bypasses a heat exchanger between a water supply pipe and a tapping pipe, and mixes the hot water heated by the heat exchanger with water from the bypass pipe to discharge hot water having a desired temperature. The present invention relates to a bypass mixing type water heater.
[0002]
[Prior art]
In the bypass mixing type water heater, an electromagnetic valve and a water motor are provided in the bypass pipe, and these are controlled to be opened and closed or driven by a burner controller, and the flow rate of water from the bypass pipe (bypass ratio to the total flow rate entering the water heater). To change the temperature of the hot water discharged from the inner body outlet of the heat exchanger (hereinafter referred to as the inner body outlet temperature) by causing drainage or boiling in the heat exchanger. It was possible to adjust to the range not to let.
[0003]
[Problems to be solved by the invention]
When the above-mentioned electromagnetic valve or water motor is used, it is necessary to separately provide a control circuit for performing opening / closing control and drive control of the burner controller, which leads to an increase in the cost of the entire apparatus. Particularly, in the case of the solenoid valve, since the bypass ratio is fixed, the area for preventing the generation of drain and boiling is narrow, and the bypass pipe cannot be sufficiently utilized.
[0004]
[Means for Solving the Problems]
Therefore, the present invention provides a bypass mixing type water heater that has a simple configuration that does not use the solenoid valve or the water motor, widens the range of change in the bypass ratio, and can appropriately prevent the generation and boiling of the drain. In the configuration, the bypass pipe is provided with a control valve capable of controlling the flow rate of water supplied to the tapping pipe, while the upstream or downstream side of the water outlet from the bypass pipe in the tapping pipe, and in the bypass pipe , A shape memory alloy spring that operates according to the temperature is sandwiched between the valve body of the control valve, the shape memory alloy spring on the tapping pipe side in the valve closing direction, and the shape memory alloy spring on the bypass pipe side is the valve body of the valve body. By arranging coaxially so as to generate a force in the valve opening direction, and by stopping the valve body of the control valve at a position where the loads of the shape memory alloy springs are balanced , opening and closing control of the control valve is performed. Characterized by Than it is.
[0005]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 schematically shows a bypass mixing type water heater. A bypass mixing type water heater 1 includes a water supply pipe 2 connected to a water supply system and a heat exchanger 4 for heating water guided from the water supply pipe 2 by a gas burner 3. And a tapping pipe 5 for sending out hot water heated by the heat exchanger 4. Further, the water supply pipe 2 is provided with a water amount sensor 6 for detecting a water amount and a water inlet temperature sensor 7 for detecting an incoming water temperature, and the tap water pipe 5 is provided with a tap water temperature sensor 8 for detecting a tap water temperature. Not connected to a burner controller. The burner controller is a proportional control provided in a gas flow path to the gas burner 3 so as to obtain a desired hot water temperature, based on detection signals input from the water amount sensor 6, the incoming water temperature sensor 7, and the hot water temperature sensor 8. It controls a valve (not shown).
A bypass pipe 9 that bypasses the heat exchanger 4 is connected between the water supply pipe 2 and the tapping pipe 5, and a mixing valve 10 is provided at a connection portion between the bypass pipe 9 and the tapping pipe 5. . The mixing valve 10 has a configuration in which a valve chamber 11 communicating with the bypass pipe 9 is first formed, and water in the valve chamber 11 is joined from the water outlet 18 to the tapping pipe 5 side. A valve body 12 and a valve seat 13 are provided in the valve chamber 11. A spring receiver 15 is connected to a valve shaft 14 of the valve body 12, and the spring receiver 15 and a spring receiver on the valve body 12 side are provided. 16 and a shape memory alloy spring 17 are interposed therebetween. On the other hand, a spring chamber 19 is formed on the upstream side of the water outlet 18. In the spring chamber 19, the valve shaft 14 of the valve body 12 is extended, and a spring receiver 20 is connected to an end portion. The shape memory alloy spring 21 is disposed coaxially with the shape memory alloy spring 17 on the valve body 12 side.
[0006]
The shape memory alloy spring has a load characteristic with respect to temperature as shown in the graph of FIG. 2 (the figure shows the load characteristic of the shape memory alloy spring 21; the upper one has a length of 17 mm and the lower one has a length of 20 mm). Are shown). First, the shape memory alloy spring 17 changes the load according to the temperature of the water flowing from the bypass pipe 9 to the valve chamber 11 to generate a force in the valve opening direction of the valve body 12. The shape memory alloy spring 21 changes the load according to the temperature of the inner body outlet of the heat exchanger 4 to generate a force in the valve closing direction of the valve body 12. As described above, the two shape memory alloy springs are used to change the load to the stroke of the valve body 12, respectively. However, since the loads of both springs are applied in opposite directions, the valve body 12 is It stops at the position where the load of the load balances. And the valve body 12 to change the valve opening by the movement of, by adjusting the ratio of flow rate to Q 1 water flowing through the bypass tube 9 for the total flow rate Q O entering the water heater, namely a bypass ratio Q 1 / Q O -ing
[0007]
The bypass ratio is set so as to maintain the temperature at the inner body outlet within a temperature range (here, 45 ° C. to 85 ° C.) in which drain is not generated in the heat exchanger 4 and boiling does not occur. The graph of FIG. 3 assumes that the temperature of the water supplied from the water supply pipe 2 (hereinafter referred to as the incoming water temperature) varies between 5 ° C. and 30 ° C. When the hot tap temperature is in the range of 38 ° C to 70 ° C, the limit line of the bypass ratio for maintaining the range of the inner body outlet temperature (45 ° C to 85 ° C) at which the generation of drain and the prevention of boiling can be prevented is shown. In this graph, a indicates a boiling limit line at 38 ° C hot water, b indicates a drain limit line at 38 ° C hot water, and c indicates a boiling limit line at 70 ° C hot water. , The bypass ratio must be set in Table 1 below.
[0008]
[Table 1]
Figure 0003577652
[0009]
FIG. 4 is a graph in which the horizontal axis represents the tapping temperature and the vertical axis represents the bypass ratio in Table 1, and the area indicated by the solid hatched area is the input water temperature of 5 ° C., and the area indicated by the broken line is the input water temperature of 30 ° C. Is the case. Therefore, within a range where both regions overlap, for example, the locus A shown in the graph of FIG. 4 (from a bypass ratio of 50% at the beginning, the tapping temperature is reduced from around 45 ° C., and 18% at a tapping temperature 70 ° C. Thus, the stroke of the valve body 12 is adjusted by the balance between the loads of the two shape memory alloy springs 17 and 21 so that the bypass ratio shifts as shown in FIG.
As described above, the mixing valve 10 uses the shape memory alloy springs 17 and 21 to detect the incoming water temperature and the inner body outlet temperature, and applies a load caused by a temperature change directly to the valve body 12 to prevent drain generation and boiling. By adjusting the bypass ratio within a range in which is possible, appropriate mixing can be performed only on the water flow system side. Therefore, the configuration is simplified, and a significant cost reduction can be achieved as compared with the conventional configuration in which the control circuit is combined with the solenoid valve or the motor to adjust the bypass ratio.
[0010]
On the other hand, as shown in the graph of FIG. 3, the bypass ratio needs to be increased in accordance with the rise of the incoming water temperature. In this case, the shape memory alloy spring 21 alone can bear the fluctuation of the bypass ratio, so that the mixing can be performed more stably.
More specifically, if the region of the drain limit and the boiling limit is to be maintained only by the shape memory alloy spring 21 on the inner body outlet side, the bypass ratio is 0 to 0 on the drain limit side in the graph of FIG. 47% (.DELTA.47%) and 19 to 58.5% (.DELTA.39.5%) on the boiling limit side. However, if the change width is so large, a hunting phenomenon occurs when the inner body outlet temperature changes due to a change in flow rate or a change in tapping temperature. Therefore, in the present embodiment, the shape memory alloy spring 17 is incorporated on the bypass pipe 9 side to change the bypass rate by 0 to 20% between 0 to 30 ° C. of the incoming water temperature. The shape memory alloy spring 21 has a bypass ratio of 0 to 27% (Δ27%) on the drain limit side and 19 to 38.5% (Δ19.5) on the boiling limit side. 21 alone reduces the burden on the bypass ratio to 27/47 = 0.57 and 19.5 / 39.5 = 0.49, so that hunting does not occur and stable mixing becomes possible.
[0011]
In the above-described embodiment, the shape memory alloy spring 21 is disposed upstream of the water outlet 18 to directly detect the temperature of the inner body outlet of the heat exchanger 4 as in the case of the mixing valve 10a shown in FIG. Alternatively, the water outlet 18 may be provided upstream of the shape memory alloy spring 21 to detect the temperature of the hot water after mixing.
[0012]
Thermo-wax may be used as the heat responsive member instead of the shape memory alloy spring. In this embodiment, as shown in FIG. 6, a thermo-wax is incorporated in the mixing valve 10b, and heat responsive members 22a and 22b for projecting the valve shafts 23a and 23b in accordance with a volume change due to a temperature rise thereof are connected to the tapping pipe 5 side, respectively. A valve that is arranged in parallel with the bypass pipe 9 side and that opens and closes a valve seat 26a formed on the boundary wall 25 between the bypass pipe 9 and the water supply pipe 2 in the bypass pipe 9 is provided on the valve shaft 23a of the heat responsive body 22a. While connecting the body 24a, the valve shaft 23b of the thermally responsive body 22b is connected to a valve body 24b that opens and closes a valve seat 26b formed on the boundary wall 25 in the water supply pipe 2. Each of the valve bodies 24a and 24b is provided with return springs 27a and 27b which act on the valve body 24a in the valve opening direction and on the valve body 24b in the valve closing direction, respectively. Therefore, in the heat responsive body 22a on the inner body outlet side, the valve body 24a moves in the valve closing direction as the inner body outlet temperature rises, stops at a position balanced with the return spring 27a, and the thermal responsiveness on the bypass pipe 9 side. In the body 22b, the valve body 24b moves in the valve opening direction in accordance with the rise of the incoming water temperature in the bypass pipe 9, and stops at a position balanced with the return spring 27b. flow rate Q 2 of the water supplied to the 9 is determined. Therefore, here, the bypass ratio determined by the two valve elements only has to be varied in the region shown by the graph in FIG.
The parallel arrangement of the heat responsive members 22a and 22b can be employed in the shape memory alloy springs 17 and 21 of the above embodiment, and a combination of both types may be used.
[0013]
【The invention's effect】
According to the present invention as described above, the opening and closing control of the control valve is performed by the two shape memory alloy springs coaxially arranged with the valve body of the control valve interposed therebetween, so that the bypass mixing structure can be easily configured, Cost reduction can be achieved. In particular, in addition to the inner body outlet side of the heat exchanger, a shape memory alloy spring is also provided on the bypass pipe side to change the bypass ratio according to the incoming water temperature, so the degree of freedom in setting the bypass ratio is increased. As the temperature rises, the hunting phenomenon can be suitably prevented, and stable mixing becomes possible.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of a bypass mixing type water heater and an explanatory diagram of a mixing valve.
FIG. 2 is a characteristic diagram of a shape memory alloy spring.
FIG. 3 is a graph showing a setting region of a bypass ratio.
FIG. 4 is a graph showing a setting region of a bypass ratio.
FIG. 5 is an explanatory view showing a modified example of a mixing valve.
FIG. 6 is an explanatory view showing a modified example of a mixing valve using thermowax.
[Explanation of symbols]
1. Bypass mixing type water heater, 2 .. water supply pipe, 3 ... gas burner, 4 ... heat exchanger, 5 ... hot water pipe, 9 ... bypass pipe, 10.10a, 10b ... mixing valve, 12. ..Valves, 17, 21 .. Shape memory alloy springs, 22a, 22b.

Claims (1)

ガスバーナを備えた熱交換器と、その熱交換器へ水を供給する給水管と、前記熱交換器で加熱された湯を送出する出湯管とを備える一方、前記給水管と出湯管との間に、前記熱交換器をバイパスするバイパス管を接続して、前記出湯管の湯に前記バイパス管の水を混合して所望の温度の湯を出湯させるバイパスミキシング式給湯器であって、
前記バイパス管に、前記出湯管へ供給する水の流量を制御可能な制御弁を設ける一方、前記出湯管内における前記バイパス管からの水出口の上流側又は下流側と、前記バイパス管内とに、温度に応じて動作する形状記憶合金バネを、前記制御弁の弁体を挟んで、前記出湯管側の形状記憶合金バネが前記弁体の閉弁方向へ、前記バイパス管側の形状記憶合金バネが前記弁体の開弁方向へ夫々力を生じさせるように同軸で配置し、前記制御弁の弁体を前記両形状記憶合金バネの荷重がバランスする位置で停止させることで、前記制御弁の開閉制御を行うようにしたことを特徴とするバイパスミキシング式給湯器。
A heat exchanger provided with a gas burner, a water supply pipe for supplying water to the heat exchanger, and a hot water pipe for sending out hot water heated by the heat exchanger; A bypass mixing type water heater that connects a bypass pipe that bypasses the heat exchanger, mixes the water of the bypass pipe with the hot water of the tapping pipe, and discharges hot water at a desired temperature,
The bypass pipe is provided with a control valve capable of controlling the flow rate of water supplied to the tapping pipe, while the upstream or downstream side of a water outlet from the bypass pipe in the tapping pipe and the inside of the bypass pipe have a temperature. The shape memory alloy spring that operates according to the above, the shape memory alloy spring on the tapping pipe side in the valve closing direction of the valve body with the valve body of the control valve interposed, the shape memory alloy spring on the bypass pipe side Opening and closing the control valve by arranging coaxially so as to generate a force in the valve opening direction of the valve element and stopping the valve element of the control valve at a position where the loads of the two shape memory alloy springs are balanced. A bypass mixing type water heater characterized in that control is performed.
JP12248796A 1996-04-20 1996-04-20 Bypass mixing water heater Expired - Fee Related JP3577652B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12248796A JP3577652B2 (en) 1996-04-20 1996-04-20 Bypass mixing water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12248796A JP3577652B2 (en) 1996-04-20 1996-04-20 Bypass mixing water heater

Publications (2)

Publication Number Publication Date
JPH09287826A JPH09287826A (en) 1997-11-04
JP3577652B2 true JP3577652B2 (en) 2004-10-13

Family

ID=14837071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12248796A Expired - Fee Related JP3577652B2 (en) 1996-04-20 1996-04-20 Bypass mixing water heater

Country Status (1)

Country Link
JP (1) JP3577652B2 (en)

Also Published As

Publication number Publication date
JPH09287826A (en) 1997-11-04

Similar Documents

Publication Publication Date Title
TW305016B (en)
JP3577652B2 (en) Bypass mixing water heater
JP2911989B2 (en) Hot water supply temperature control device
JP2586748B2 (en) Water heater
KR960004601B1 (en) Piping system for boiler
JPS59125325A (en) Heating control device
JP3769658B2 (en) Bypass mixing water heater
JP2005226957A (en) Heating device
JP2000065427A (en) Hot water supply apparatus and water flow rate regulation/switch valve used in the same
KR920006590Y1 (en) Thermo valve
JP3862830B2 (en) Water heater
JPH102609A (en) Hot-water supply apparatus
JP3862822B2 (en) Water heater
JP3824734B2 (en) Combustion device
JP3824394B2 (en) Bypass mixing water heater
JP3129035B2 (en) Water heater
JP2000121155A (en) Bypass mixing type hot water supply device
JP3046692U (en) Multi water heater
JPS5815696B2 (en) Danbo Souchi
JP3932226B2 (en) Bypass mixing water heater
JP3554576B2 (en) Water supply device
JP3757561B2 (en) Direct pressure oil water heater
JPH11108447A (en) Bypass mixing type hot water feeder
JP3824400B2 (en) Bypass mixing type gas water heater
JP2867758B2 (en) Operation control method of bath kettle with water heater

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040608

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040701

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070723

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100723

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 9

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees