JPH0323822B2 - - Google Patents

Info

Publication number
JPH0323822B2
JPH0323822B2 JP57089186A JP8918682A JPH0323822B2 JP H0323822 B2 JPH0323822 B2 JP H0323822B2 JP 57089186 A JP57089186 A JP 57089186A JP 8918682 A JP8918682 A JP 8918682A JP H0323822 B2 JPH0323822 B2 JP H0323822B2
Authority
JP
Japan
Prior art keywords
temperature
hot water
water
heat exchanger
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57089186A
Other languages
Japanese (ja)
Other versions
JPS58205043A (en
Inventor
Yutaka Aoki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Paloma Kogyo KK
Original Assignee
Paloma Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Paloma Kogyo KK filed Critical Paloma Kogyo KK
Priority to JP57089186A priority Critical patent/JPS58205043A/en
Publication of JPS58205043A publication Critical patent/JPS58205043A/en
Publication of JPH0323822B2 publication Critical patent/JPH0323822B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1051Arrangement or mounting of control or safety devices for water heating systems for domestic hot water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/10Control of fluid heaters characterised by the purpose of the control
    • F24H15/174Supplying heated water with desired temperature or desired range of temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/212Temperature of the water
    • F24H15/219Temperature of the water after heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/305Control of valves
    • F24H15/31Control of valves of valves having only one inlet port and one outlet port, e.g. flow rate regulating valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/355Control of heat-generating means in heaters
    • F24H15/36Control of heat-generating means in heaters of burners

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluid Mechanics (AREA)
  • Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、オートミキサーを備えた瞬時式の
ミキシング型給湯器に関する。 瞬間式のミキシング型給湯器において通常、一
定最少量の水を熱交換器に流通させないと熱交換
器が異常高温となつて沸騰水の吐出あるいは器具
の焼損失事故等が発生する危険があり、また、熱
交換器に流通する水量が多過ぎるとドレンが発生
してその耐久性が低下する欠点があるため、従来
では熱交換器への給水量を一定最少量に保ちつつ
燃料供給路を設定出湯温度と出湯温度との温度差
に応じて比例的に開閉して温度制御するミキシン
グ型湯沸器が提案されており、その湯温検出器は
熱交換器の出口付近に設けられているものとミキ
サーの後流側に設けられているものとがあるが、
前者のものにあつてはバイパス路の給水量、給水
温度に大きく影響されて温度の安定は得難く後者
のものにあつては熱交換器に流れる水量とバイパ
ス路に流れる水量比(混合比)が一定固定的であ
る為、バーナの加熱能力に制限されて出湯温度幅
を大きくし得ず、給水温度が高いと得られる出湯
温度域が非常に高く、給水温度が低いと得られる
出湯温度域が非常に低いと言う欠点があつた。 この発明は、上記瞬間式のミキシング型給湯器
の特異性に鑑み、通常は熱交換器より流出する高
温湯の温度を一定の高温に保つてドレン発生を防
いで器具の耐久性の高め、低温出湯を欲する場合
には熱交換器からの高温湯の設定温度を設定出湯
温度と連動してドレンの発生の殆ど起きない範囲
で対応する温度まで低下可能として、特に、瞬間
式給湯器では出湯温度と出湯量との関連におい
て、限られた範囲の出湯しかできなかつたものを
幅広い出湯を可能とし、併せて、高温湯の流過量
をオートミキサー内の湯水混合弁装置にて給湯器
の加熱能力を超えない極大値に制限して給湯器の
能力オーバーを防止し、かつ、出湯温度の温度制
御における迅速な応答による信頼性の向上と相ま
つて実際の使用にあたり便益としたものである。 上記目的を達成するために、この発明の一番目
の発明は、冷水が熱交換器において調節加熱され
て熱交換器出口温度Tが一定温度T1に温度制御
された高温湯と給水管より分岐するバイパス路を
流れる冷水とが湯水混合弁装置にてその混合比が
調節されて設定出湯温度tに温度制御されるとと
もに、設定出湯温度tが比較的低い温度t1以下の
場合において前記熱交換器出口温度Tが一定温度
T1から設定出湯温度tの低下に連動してドレン
発生の殆ど起きない範囲で対応する温度に低下調
節設定されることを特徴とするものであり、2番
目の発明は、冷水が熱交換器において調節加熱さ
れて熱交換器出口温度Tが一定温度T1に温度制
御された高温湯と給水管より分岐するバイパス路
を流れる冷水とが湯水混合弁装置にてその混合比
が調節されて設定出湯温度tに温度制御されると
ともに、設定出湯温度tが比較的低い温度t1以下
の場合において前記熱交換器出口温度Tが一定温
度T1から設定出湯温度tの低下に連動して低下
調節設定され、更に湯水調節弁装置の作動範囲に
おいて高温湯の流量が給湯器の加熱能力を起えな
い極大値に制限されることを特徴とするものであ
る。 この発明の1番目の発明は、上記構成としたか
ら、高温湯の熱交換器出口温度を設定出湯温度の
低下にともなつてドレン発生の生じない一定範囲
で対応させて低下させることにより、バイパス路
への給水量を絞つて高温の出湯が可能であるは勿
論、低温域も拡大されて適正な出湯温度が容易に
得られるので、安定出湯が可能である。 2番目の発明は、上記構成としたから、湯水調
節弁装置における湯側の開度を給湯器の加熱能力
を超えない極大値とし、かつ、供給水圧がさらに
上昇した場合は湯側の開度が絞られるので、能力
オーバーによる不本意な出湯温度の低下を防止す
る。 以下この発明のオートミキサーを備えた瞬間式
給湯器の一実施例を図面に基づき説明すると、第
1図はオートミキサーを備えたミキシング型の瞬
間式ガス湯沸器を例示した概略構成図であつて、
1はフインアンドチユーブ式の熱交換器、2は該
熱交換器1の加熱源たるガスバーナで、熱交換器
1の出口の近くの給湯管3に給湯温度を感知する
サーミスター4を挿設し、このサーミスター4と
ガスバーナ2への供給ガス量を調節する比例制御
弁Vとを制御器5を介して接続せしめて熱交換器
1を流通する流水量が変化しても給湯管3を流れ
る高温湯の温度が常に一定温度(例えば80℃)に
保たれるよう制御器5によつて比例制御弁Vの開
度を調節してガスバーナ2への供給ガス量を調節
制御するようになしている。Aは熱交換器1から
の高温湯と給水管6から分岐するバイパス路7か
らの冷水とを混合し、その混合比を自動調節する
オートミキサーで、その混合湯の出口の近くの出
湯管8にオートミキサーAからの混合湯温を感知
するサーミスター9を挿設し、このサーミスター
9とオートミキサーAの後記する湯水調節弁装置
Eを駆動するサーボモータMとを制御器5を介し
て接続せしめて混合湯温が設定出湯温度となるよ
う制御器5からの指令でサーボモータMを駆動し
て湯水調節弁装置Eを作動することによりオート
ミキサーAにおける高温湯と冷水の混合比を自動
調節制御し、常に所望出湯温度の湯が出湯管8か
ら得られるようにしている。オートミキサーAの
湯水調節弁装置Eとしては、例えば、第2図に示
したような2バルブ3シート型式のものを用い
る。すなわち、第2図においてEは湯水調節弁装
置、10は両側にバルブ面を備えた一定最少流量
を許容する通孔11を穿設した湯側両面バルブ、
12は片側に湯側両面バルブ10と反対向きにバ
ルブ面を有する水側片面バルブで、サーボモータ
ーMにより進退する弁軸13に湯側両面バルブ1
0と水側片面バルブ12とを一定の間隔を保つて
発条14で離反する方向へ付勢して備え、かつ、
湯側弁室15内には湯側両面バルブ10に対応す
る2つの湯側シート16,17を対向し配設し、
混合室18に水側片面バルブ12に対応する水側
シート19を設け、弁軸13の進退動作で湯側両
面バルブ10が2つの湯側シート16,17に接
離するとともに、水側片面バルブ12は水側シー
ト19に接離するようになし、さらに、水側片面
バルブ12の水側シート19との接離関係を湯側
両面バルブ10の混合室18に近い一方の湯側バ
ルブと湯側シート17とを接離関係より先着する
ようになし、他方の湯側バルブの湯側シート16
との接離関係とは反対とした構造としている。そ
して、混合室18の出口近くの出湯管8に挿着さ
れているサーミスター9の検出温度が出湯温設定
器20にて設定された設定出湯温度となるよう制
御器5を介してサーボモーターMを正、逆回転せ
しめて給湯管3からの高温湯とバイパス路7から
の冷水との混合比を自動的に変化調節制御する。 前記2バルブ3シート方式とし湯水調節弁装置
Eにおいて、バルブ位置と各バルブの開度の関係
を第2図及び第3図のグラフに基づき説明する
と、左端から中央までは、水側片面バルブ12の
開口面積Scは次第に小さくなり、反対に湯側両
面バルブ10の開口面積Shは次第に大きくなる。
湯側両面バルブ10の開口面積Shは中央で極大
値となるが、この極大値は給湯器の加熱能力を超
えない値に制限されている。また、中央から右端
までは、水側片面バルブ12の開口面積Scはさ
らに小さくなり、湯側両面バルブ10の開口面積
Shも次第に小さくなる。したがつて、各バルブ
10,12の位置が左端→中央→右端に移動する
ことによりその開口面積Sh,Scを大小に変換し
て混合湯温の調節を行い、しかも、湯側両面バル
ブ10は中央で極大値となり、供給水圧がさらに
増すと右側へ発条14に抗して移動しその開口面
積Shを絞り能力オーバーを確実に防止する。つ
まり供給水圧が低圧のときは中央より左側で制御
し、高圧になると右側で制御することになる。よ
つて、たとえば、中央位置では、低圧時は高温の
混合湯温となり、高圧時は中温となる。ここに、
能力オーバーとは、供給水圧が高すぎた場合、所
定の流量より大きな流量となるため、給湯器の加
熱能力を超えた流量が熱交換器を流通するから、
設定湯温が得られない状態をいう。 以上説明したバルブ位置と各バルブの開度の関
係をまとめると、表1に示したとおりである。
The present invention relates to an instantaneous mixing type water heater equipped with an automixer. In an instantaneous mixing type water heater, if a certain minimum amount of water is not passed through the heat exchanger, there is a risk that the heat exchanger will reach an abnormally high temperature and cause boiling water to be discharged or equipment to burn out. In addition, if the amount of water flowing through the heat exchanger is too large, drainage will occur and its durability will decrease, so in the past, the fuel supply path was set while keeping the amount of water supplied to the heat exchanger at a certain minimum amount. A mixing type water heater has been proposed that controls the temperature by opening and closing proportionally depending on the temperature difference between the hot water temperature and the hot water temperature, and the water temperature sensor is installed near the outlet of the heat exchanger. There are also those installed on the downstream side of the mixer.
In the former case, it is difficult to stabilize the temperature as it is greatly affected by the water supply amount and temperature of the bypass passage, and in the latter case, the ratio of the water quantity flowing to the heat exchanger and the water quantity flowing to the bypass passage (mixing ratio) is fixed, so it is not possible to widen the hot water temperature range because it is limited by the heating capacity of the burner, and when the water supply temperature is high, the hot water temperature range that can be obtained is very high, and when the water supply temperature is low, the hot water temperature range that can be obtained is very high. The disadvantage was that it was very low. In view of the uniqueness of the instantaneous mixing type water heater, this invention maintains the temperature of the high-temperature hot water that normally flows out from the heat exchanger at a constant high temperature, prevents the generation of condensate, increases the durability of the appliance, and lowers the temperature. When hot water is desired, the set temperature of high-temperature hot water from the heat exchanger can be lowered to the corresponding temperature within a range where almost no drainage occurs, in conjunction with the set hot water temperature. In relation to the amount of hot water dispensed, we have made it possible to dispense hot water over a wide range instead of a limited range, and at the same time, the amount of high-temperature hot water flowing through can be controlled by the hot water mixing valve device in the auto mixer to increase the heating capacity of the water heater. This prevents overcapacity of the water heater by limiting it to a maximum value that does not exceed , and improves reliability due to quick response in temperature control of hot water output temperature, which is a benefit in actual use. In order to achieve the above object, the first aspect of the present invention is to branch from a hot water and water supply pipe in which cold water is regulated and heated in a heat exchanger so that the temperature T at the outlet of the heat exchanger is controlled to a constant temperature T1 . The mixing ratio of the cold water flowing through the bypass path is adjusted by the hot water mixing valve device, and the temperature is controlled to the set hot water outlet temperature t, and when the set hot water outlet temperature t is a relatively low temperature t1 or less, the heat exchange is performed. The temperature T at the outlet is constant
The second invention is characterized in that as the set hot water temperature t decreases from T 1 , the temperature is adjusted to decrease within a range in which almost no drainage occurs. The high-temperature hot water, which has been adjusted and heated to a constant temperature T1 at the outlet of the heat exchanger, and the cold water flowing through the bypass path branching from the water supply pipe are mixed at a mixing ratio that is adjusted and set by a hot water mixing valve device. The temperature is controlled to the hot water outlet temperature t, and when the set hot water outlet temperature t is a relatively low temperature t1 or less, the heat exchanger outlet temperature T is lowered from a constant temperature T1 in conjunction with the decrease of the set hot water outlet temperature t. Furthermore, the flow rate of high-temperature hot water is limited to a maximum value that does not affect the heating capacity of the water heater within the operating range of the hot water control valve device. The first invention of the present invention has the above-mentioned configuration, so that by lowering the outlet temperature of the heat exchanger for high-temperature hot water within a certain range in which condensate does not occur as the set hot water temperature decreases, bypass bypass is achieved. Not only can high-temperature hot water be produced by restricting the amount of water supplied to the channel, but the low-temperature range can also be expanded to easily obtain a suitable hot water temperature, making stable hot water supply possible. Since the second invention has the above configuration, the opening degree on the hot water side of the hot water regulating valve device is set to a maximum value that does not exceed the heating capacity of the water heater, and when the supply water pressure further increases, the opening degree on the hot water side is set to a maximum value that does not exceed the heating capacity of the water heater. Since the water is throttled down, it is possible to prevent the temperature of the hot water from dropping unintentionally due to overcapacity. An embodiment of an instantaneous water heater equipped with an automixer according to the present invention will be described below based on the drawings. FIG. 1 is a schematic configuration diagram illustrating a mixing type instantaneous gas water heater equipped with an automixer. hand,
1 is a fin-and-tube heat exchanger, 2 is a gas burner as a heating source for the heat exchanger 1, and a thermistor 4 for sensing the temperature of hot water is inserted into the hot water pipe 3 near the outlet of the heat exchanger 1. The thermistor 4 and a proportional control valve V that adjusts the amount of gas supplied to the gas burner 2 are connected via a controller 5, so that even if the amount of water flowing through the heat exchanger 1 changes, the water flows through the hot water supply pipe 3. The controller 5 adjusts the opening degree of the proportional control valve V to control the amount of gas supplied to the gas burner 2 so that the temperature of the hot water is always maintained at a constant temperature (for example, 80°C). There is. A is an automixer that mixes high-temperature hot water from the heat exchanger 1 and cold water from a bypass path 7 branching from the water supply pipe 6, and automatically adjusts the mixing ratio. A thermistor 9 that senses the mixed water temperature from the automixer A is inserted into the automixer A, and this thermistor 9 and a servo motor M that drives a hot water regulating valve device E to be described later in the automixer A are connected via the controller 5. The mixing ratio of hot water and cold water in the auto mixer A is automatically adjusted by driving the servo motor M and operating the hot water control valve device E according to a command from the controller 5 so that the mixed water temperature becomes the set hot water temperature. Adjustments are made so that hot water at a desired hot water temperature can always be obtained from the hot water tap 8. As the hot water regulating valve device E of the automixer A, for example, a two-valve, three-seat type as shown in FIG. 2 is used. That is, in FIG. 2, E denotes a hot water regulating valve device, 10 denotes a hot water side double-sided valve having valve surfaces on both sides and having a through hole 11 that allows a constant minimum flow rate;
Reference numeral 12 denotes a water side single-sided valve which has a hot water side double-sided valve 10 on one side and a valve face facing opposite to the hot water side double-sided valve 1 on the valve shaft 13 that moves forward and backward by a servo motor M.
0 and the water-side single-sided valve 12 are biased in the direction of separation by a spring 14 while maintaining a constant interval, and
In the hot water side valve chamber 15, two hot water side seats 16 and 17 corresponding to the hot water side double-sided valve 10 are disposed facing each other,
A water side seat 19 corresponding to the water side single-sided valve 12 is provided in the mixing chamber 18, and the hot water side double-sided valve 10 approaches and separates from the two hot water side seats 16 and 17 by advancing and retreating movement of the valve shaft 13, and the water side single-sided valve 12 is arranged so that it comes into contact with and separates from the water side seat 19, and furthermore, the contact and separation relationship between the water side single-sided valve 12 and the water side seat 19 is made such that one hot water side valve near the mixing chamber 18 of the hot water side double-sided valve 10 and the hot water side valve 10 The hot water side seat 16 of the other hot water side valve
It has a structure that is opposite to the connection and separation relationship with. Then, the servo motor M is operated via the controller 5 so that the temperature detected by the thermistor 9 inserted in the hot water outlet pipe 8 near the outlet of the mixing chamber 18 becomes the set hot water temperature set by the hot water temperature setting device 20. is rotated in the forward and reverse directions to automatically change and control the mixing ratio of the hot water from the hot water supply pipe 3 and the cold water from the bypass path 7. The relationship between the valve position and the opening degree of each valve in the 2-valve 3-seat type hot water control valve device E is explained based on the graphs of FIGS. 2 and 3. From the left end to the center, the water side single-sided valve 12 The opening area Sc of the hot water side double-sided valve 10 gradually becomes smaller, and on the contrary, the opening area Sh of the hot water side double-sided valve 10 gradually becomes larger.
The opening area Sh of the double-sided valve 10 on the hot water side reaches a maximum value at the center, but this maximum value is limited to a value that does not exceed the heating capacity of the water heater. Moreover, from the center to the right end, the opening area Sc of the water side single-sided valve 12 becomes smaller, and the opening area of the hot water side double-sided valve 10 becomes smaller.
Sh also gradually decreases. Therefore, by moving the position of each valve 10, 12 from the left end to the center to the right end, the opening areas Sh and Sc are changed to large and small to adjust the mixed water temperature, and the double-sided valve 10 on the hot water side It reaches its maximum value at the center, and as the supply water pressure increases further, it moves to the right against the spring 14, reducing its opening area Sh to reliably prevent overcapacity. In other words, when the supply water pressure is low, it is controlled to the left of the center, and when the pressure is high, it is controlled to the right. Therefore, for example, at the center position, the mixed water temperature is high when the pressure is low, and the temperature is medium when the pressure is high. Here,
Overcapacity means that if the supply water pressure is too high, the flow rate will be higher than the specified flow rate, and the flow rate will flow through the heat exchanger in excess of the heating capacity of the water heater.
A condition in which the set water temperature cannot be obtained. The relationship between the valve position and the opening degree of each valve explained above is summarized in Table 1.

【表】 しかして、2バルブ3シート方式としたことに
より湯側シート16,17の中間で湯側両面バル
ブ10の開度を極大値にして熱交換器1を流通す
る水量の流れを一定量に抑制して常に、安定した
出湯が保たれ、しかも、供給水圧がさらに上昇し
た場合は湯側両面バルブ10の開度を絞るように
して給湯器の加熱能力を超える能力オーバーによ
る温度低下を防止し、さらに、湯側両面バルブ1
0の絞り通孔11により所要の高温湯量を確保し
て熱交換器1における過熱沸騰を防止して熱交換
器1の耐久性を向上するようにしたものである。 次に制御器5において高温湯の熱交換器出口温
度Tを設定出湯温度tが高い場合には略80℃の一
定温度T1となし、設定出湯温度tが略40℃の低
い温度t1以下において 熱交換器出口温度Tを T=t+α となるよう設定出湯温度tに連動変化させ、略60
℃の一定温度T2まで低下変化させる構成となす。 そこで、給水温度が30℃と高く、高温湯の熱交
換器出口温度Tが80℃である場合、設定出湯温度
tを40℃とすると、最大出湯総量4/分として
熱交換器1を通過する最少水量1/分、バイパ
ス路7の通過水量を最大の3/分に混合調節し
て得られる出湯温度tは t=30℃×3/分+80℃×1/分/4/分 =90+80/4(℃)42.5℃ となつて所望の出湯温度40℃が得られなかつたの
が、高温湯の熱交換器出口温度を40℃+20℃=60
℃に設定すると同様にして得られる出湯温度tは t=30℃×3/分+60℃×1/分/4/分 =90+60/4(℃)37.5℃ となり水側片面バルブ12、湯側両面バルブ10
を出湯温の最低位置、即ち、37.5℃位置より若干
高温側位置で所望の出湯温度40℃が得られる。前
記高温湯の熱交換器出口温度Tと設定出湯温度t
との温度差α℃と低温側の設定出湯温度t1℃は給
水温度や熱交換器1の最少通過水量等から高温湯
の熱交換出口温度をドレンの発生の殆ど起きな
い、例えば、略60℃〜80℃の範囲となるよう適宜
決定するものである。 また、設定出湯温度が高い場合は高温湯の熱交
換器の出口温度を80℃まで高く設定され、水側片
面バルブ12の開度を小さくしてバイパス路7の
冷水量を絞ることにより、高温湯の熱交換出口温
度である80℃までの高い出湯温度を得ることもで
きる。 この発明は以上説明したように、ミキシング型
給湯器に出湯温度の制御機能を有する瞬間式給湯
器において、従前、熱交換器からの必要な少量の
高温湯をミキシングして得られる出湯温度は低温
域が狭かつたが高温湯の熱交換器出口温度を設定
出湯温度の低下にともなつてドレンの発生の生じ
ない一定範囲で対応させて低下させることによ
り、バイパス路への給水量を絞つて高温の出湯は
可能であることは勿論、低温域も拡大されて適正
な出湯温度が容易に得られるので、常に安定した
出湯が可能である。そして、熱交換器からのドレ
ン発生がなくて器具の耐久性も図りうる。また、
ガス側と水側の開度調節を併せ行うため、出湯温
制御における応答が早く出湯特性もよくなるなど
の特有の効果を奏する。 2番目の発明では湯水調節弁装置における湯側
の開度を給湯器の加熱能力を超えない一定の極大
値に抑え、かつ、水圧がさらに上昇した場合は湯
側の開度を絞るから、能力オーバーによる不本意
な出湯温度の低下を防止する効果があり、使用上
便益な瞬間式給湯器である。
[Table] However, by adopting the 2-valve 3-seat system, the opening degree of the double-sided valve 10 on the hot water side is set to the maximum value between the hot water side seats 16 and 17, so that the flow of water flowing through the heat exchanger 1 is kept constant. In addition, when the supply water pressure increases further, the opening degree of the double-sided valve 10 on the hot water side is narrowed to prevent a temperature drop due to overcapacity exceeding the heating capacity of the water heater. In addition, hot water side double-sided valve 1
The required amount of high-temperature hot water is ensured by the zero throttle through-hole 11 to prevent overheating and boiling in the heat exchanger 1, thereby improving the durability of the heat exchanger 1. Next, the controller 5 sets the heat exchanger outlet temperature T of the high-temperature hot water.If the hot water outlet temperature t is high, it is set to a constant temperature T1 of about 80℃, and when the set hot water outlet temperature t is a low temperature T1 of about 40℃ or less. The heat exchanger outlet temperature T is changed in conjunction with the set hot water temperature t so that T = t + α, approximately 60
The structure is such that the temperature is lowered to a constant temperature T 2 of °C. Therefore, when the water supply temperature is as high as 30°C and the heat exchanger outlet temperature T of high-temperature hot water is 80°C, if the set hot water temperature t is 40°C, the maximum total amount of hot water that flows through the heat exchanger 1 is 4/min. The hot water temperature t obtained by mixing and adjusting the minimum water flow rate of 1/min and the maximum water flow rate of the bypass passage 7 to 3/min is t = 30°C x 3/min + 80°C x 1/min/4/min = 90 + 80/ 4 (℃) 42.5℃, and the desired outlet temperature of 40℃ could not be obtained.
℃, the hot water temperature t obtained in the same way is t = 30℃ x 3/min + 60℃ x 1/min/4/min = 90 + 60/4 (℃) 37.5℃, and the water side single-sided valve 12 and the hot water side double-sided. valve 10
The desired hot water outlet temperature of 40°C can be obtained at the lowest point of the hot water outlet temperature, that is, a position slightly higher than the 37.5°C position. The heat exchanger outlet temperature T of the high-temperature hot water and the set hot water outlet temperature t
The temperature difference between the temperature difference α℃ and the set hot water outlet temperature t1 ℃ on the low temperature side is determined by the water supply temperature, the minimum amount of water passing through the heat exchanger 1, etc., so that the heat exchange outlet temperature of high temperature hot water is set so that almost no drainage occurs, for example, about 60℃. The temperature is appropriately determined to be within the range of 80°C to 80°C. In addition, when the set hot water outlet temperature is high, the outlet temperature of the heat exchanger for hot water is set as high as 80°C, and the opening degree of the water side single-sided valve 12 is reduced to throttle the amount of cold water in the bypass passage 7. It is also possible to obtain hot water outlet temperatures as high as 80℃, which is the heat exchange outlet temperature of hot water. As explained above, this invention is based on an instantaneous water heater that has a mixing type water heater with a hot water temperature control function. Although the range is narrow, the amount of water supplied to the bypass path can be reduced by lowering the outlet temperature of the heat exchanger for high-temperature hot water within a certain range where condensate does not occur as the outlet temperature decreases. Not only is it possible to tap hot water at a high temperature, but the low temperature range is also expanded and an appropriate tap temperature can be easily obtained, so hot water can always be tapped stably. Furthermore, since no condensate is generated from the heat exchanger, the durability of the equipment can be improved. Also,
Since the openings are adjusted on the gas side and water side at the same time, it has unique effects such as faster response in hot water temperature control and better hot water tap characteristics. In the second invention, the degree of opening on the hot water side of the hot water regulating valve device is suppressed to a certain maximum value that does not exceed the heating capacity of the water heater, and if the water pressure increases further, the degree of opening on the hot water side is reduced, thereby increasing the capacity. This is an instant water heater that is convenient to use and has the effect of preventing an inadvertent drop in hot water temperature due to overheating.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明に係わる一実施例を示す概略
構成図、第2図は同オートミキサーの湯水調節弁
装置の一実施例を示す断面図、第3図はバルブ位
置と各バルブの開度の関係を示したグラフであ
る。 A……オートミキサー、4……熱交換器側のサ
ーミスター、9……オートミキサー側のサーミス
ター、V……比例制御弁、5……制御器、20…
…出湯温設定器。
Fig. 1 is a schematic configuration diagram showing an embodiment of the present invention, Fig. 2 is a sectional view showing an embodiment of the hot water control valve device of the automixer, and Fig. 3 is a valve position and opening degree of each valve. This is a graph showing the relationship between A...Automixer, 4...Thermistor on the heat exchanger side, 9...Thermistor on the automixer side, V...Proportional control valve, 5...Controller, 20...
...Bout water temperature setting device.

Claims (1)

【特許請求の範囲】 1 冷水が熱交換器において調節加熱されて熱交
換器出口温度(T)が一定温度(T1)に温度制
御された高温湯と給水管より分岐するバイパス路
を流れる冷水とが湯水混合弁装置にてその混合比
が調節されて設定出湯温度(t)に温度制御され
るとともに、設定出湯温度(t)が比較的低い温
度(t1)以下の場合において前記熱交換器出口温
度(T)が一定温度(T1)から設定出湯温度
(t)の低下に連動してドレン発生の殆ど起きな
い範囲で対応する温度に低下調節設定されること
を特徴とするオートミキサーを備えた瞬間式給湯
器。 2 冷水が熱交換器において調節加熱されて熱交
換器出口温度(T)が一定温度(T1)に温度制
御された高温湯と給水管より分岐するバイパス路
を流れる冷水とが湯水混合弁装置にてその混合比
が調節されて設定出湯温度(t)に温度制御され
るとともに、設定出湯温度(t)が比較的低い温
度(t1)以下の場合において前記熱交換器出口温
度(T)が一定温度(T1)から設定出湯温度
(t)の低下に連動して低下調節設定され、更に
湯水調節弁装置の作動範囲において高温湯の流量
が給湯器の加熱能力を超えない極大値に制限され
ることを特徴とするオートミキサーを備えた瞬間
式給湯器。
[Scope of Claims] 1 Cold water is controlled and heated in a heat exchanger so that the temperature at the exit of the heat exchanger (T) is controlled to a constant temperature (T 1 ), and the hot water flows through a bypass path branching from a water supply pipe. The mixing ratio is adjusted by the hot water mixing valve device to control the temperature to the set hot water outlet temperature (t), and when the set hot water outlet temperature (t) is below a relatively low temperature (t 1 ), the heat exchange is performed. An automixer characterized in that the outlet temperature (T) is adjusted to decrease from a constant temperature (T 1 ) to a corresponding temperature within a range where almost no drainage occurs in conjunction with a decrease in the set outlet temperature (t). Instant water heater with. 2 A hot water mixing valve device in which cold water is regulated and heated in a heat exchanger so that the temperature at the outlet of the heat exchanger (T) is controlled to a constant temperature (T 1 ), and cold water flowing through a bypass path branching from a water supply pipe. The mixing ratio is adjusted to control the temperature to the set hot water outlet temperature (t), and when the set hot water outlet temperature (t) is below a relatively low temperature (t 1 ), the heat exchanger outlet temperature (T) is set to decrease from a constant temperature (T 1 ) in conjunction with a decrease in the set hot water temperature (t), and furthermore, within the operating range of the hot water control valve device, the flow rate of high-temperature hot water reaches a maximum value that does not exceed the heating capacity of the water heater. An instantaneous water heater with an automixer, characterized in that it is limited.
JP57089186A 1982-05-26 1982-05-26 Tap-controlled type hot-water supplying machine equipped with automatic mixer Granted JPS58205043A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57089186A JPS58205043A (en) 1982-05-26 1982-05-26 Tap-controlled type hot-water supplying machine equipped with automatic mixer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57089186A JPS58205043A (en) 1982-05-26 1982-05-26 Tap-controlled type hot-water supplying machine equipped with automatic mixer

Publications (2)

Publication Number Publication Date
JPS58205043A JPS58205043A (en) 1983-11-29
JPH0323822B2 true JPH0323822B2 (en) 1991-03-29

Family

ID=13963698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57089186A Granted JPS58205043A (en) 1982-05-26 1982-05-26 Tap-controlled type hot-water supplying machine equipped with automatic mixer

Country Status (1)

Country Link
JP (1) JPS58205043A (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62242730A (en) * 1986-04-14 1987-10-23 Mitsubishi Electric Corp Hot water heater device
JPS62252848A (en) * 1986-04-24 1987-11-04 Rinnai Corp Heat exchanger
JPH0434360Y2 (en) * 1986-06-16 1992-08-17
JPH0330755Y2 (en) * 1986-07-07 1991-06-28
JPH0422211Y2 (en) * 1987-01-30 1992-05-20
JPS63213747A (en) * 1987-03-02 1988-09-06 Noritsu Co Ltd Hot water supplier
JPS63286656A (en) * 1987-05-18 1988-11-24 Noritsu Co Ltd Hot-water supplier
JPS63311040A (en) * 1987-06-12 1988-12-19 Noritsu Co Ltd Hot water feeding control apparatus
JPH01167554A (en) * 1987-12-22 1989-07-03 Rinnai Corp Heat exchanger of hot water feed appliance
JP2634624B2 (en) * 1988-03-28 1997-07-30 株式会社ガスター Hot water outlet temperature control method
JP2547836B2 (en) * 1989-01-13 1996-10-23 高木産業 株式会社 Hot water supply control method for instant water heater
JPH02263038A (en) * 1989-03-31 1990-10-25 Harman Co Ltd Hot water feeding device
JPH02290464A (en) * 1989-04-28 1990-11-30 Takagi Ind Co Ltd Instantaneous water heater
JP2605153B2 (en) * 1989-12-30 1997-04-30 高木産業 株式会社 Instant water heater hot water supply mechanism
JPH03204556A (en) * 1989-12-30 1991-09-06 Takagi Ind Co Ltd Instantaneous water heater
JP2574047B2 (en) * 1989-12-30 1997-01-22 高木産業 株式会社 Instant water heater hot water supply mechanism
JP2529763B2 (en) * 1990-07-31 1996-09-04 高木産業 株式会社 Water heater
JPH0729365Y2 (en) * 1990-08-21 1995-07-05 株式会社ノーリツ Low NO ▲ Lower x ▼ Combustion device
JP3061516B2 (en) * 1993-09-10 2000-07-10 パロマ工業株式会社 Gas water heater
JPH09137999A (en) * 1996-04-18 1997-05-27 Takagi Ind Co Ltd Tap-controlled water heater and controlling method therefor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS575656B2 (en) * 1977-06-14 1982-02-01
JPS5749755A (en) * 1980-09-09 1982-03-23 Paloma Ind Ltd Control apparatus for mixing type instantaneous water heater

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS575656U (en) * 1980-06-12 1982-01-12

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS575656B2 (en) * 1977-06-14 1982-02-01
JPS5749755A (en) * 1980-09-09 1982-03-23 Paloma Ind Ltd Control apparatus for mixing type instantaneous water heater

Also Published As

Publication number Publication date
JPS58205043A (en) 1983-11-29

Similar Documents

Publication Publication Date Title
JPH0323822B2 (en)
JPS60259855A (en) Hot water supplying temperature control device of gas-fired water heater
JP2911989B2 (en) Hot water supply temperature control device
JPS59125325A (en) Heating control device
JPS603721A (en) Mixing device of hot water and cold water
JPS603722A (en) Mixing device of hot water and cold water
JPS6231231B2 (en)
JP2529763B2 (en) Water heater
JP2005226957A (en) Heating device
JP3539046B2 (en) Gas water heater of bypass mixing type and water temperature sensitive type constant flow valve for bypass mixing used therein
JPS58224246A (en) Heating controller
JP3719292B2 (en) Water heater
JPH102609A (en) Hot-water supply apparatus
JPS60259854A (en) Control device for hot water supply
JP2988875B2 (en) Instant water heater
JP3792365B2 (en) Water heater with bypass
JPH02183760A (en) Hot water feeding temperature control in water heater
JPS5852111B2 (en) hot water mixing device
JP2570920B2 (en) Bypass mixing method
JP3061516B2 (en) Gas water heater
JPH0621715B2 (en) Water heater
JPS5974425A (en) Hot water supply control device
JPS62252848A (en) Heat exchanger
JPH0799489B2 (en) Hot water mixing device
JPH04340050A (en) By-pass control valve of hot water supply device