JPS60259854A - Control device for hot water supply - Google Patents
Control device for hot water supplyInfo
- Publication number
- JPS60259854A JPS60259854A JP59115037A JP11503784A JPS60259854A JP S60259854 A JPS60259854 A JP S60259854A JP 59115037 A JP59115037 A JP 59115037A JP 11503784 A JP11503784 A JP 11503784A JP S60259854 A JPS60259854 A JP S60259854A
- Authority
- JP
- Japan
- Prior art keywords
- water
- hot water
- amount
- control valve
- bypass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 167
- 238000010438 heat treatment Methods 0.000 claims abstract description 29
- 230000001105 regulatory effect Effects 0.000 claims abstract description 5
- 238000000034 method Methods 0.000 abstract description 3
- 230000000694 effects Effects 0.000 description 4
- 238000009835 boiling Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000002485 combustion reaction Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 230000001052 transient effect Effects 0.000 description 2
- 235000009827 Prunus armeniaca Nutrition 0.000 description 1
- 244000018633 Prunus armeniaca Species 0.000 description 1
- 241001233037 catfish Species 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N1/00—Regulating fuel supply
- F23N1/08—Regulating fuel supply conjointly with another medium, e.g. boiler water
- F23N1/082—Regulating fuel supply conjointly with another medium, e.g. boiler water using electronic means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N5/00—Systems for controlling combustion
- F23N5/18—Systems for controlling combustion using detectors sensitive to rate of flow of air or fuel
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は家庭用瞬間式給湯装置の水量制御に関瞬間式給
湯装置は出湯温度や給水量を検出し、加熱量や給水量を
制御する方法が知られている。[Detailed Description of the Invention] Industrial Field of Application The present invention relates to the control of water flow rate in household instant hot water heaters. Are known.
また公知の技術として通水の圧力損失を低減させる目的
で熱交換器をう回するバイパス路を設け、熱交換器で加
熱された湯と混合して給湯するバイパス水回路方式があ
る。出湯温度制御や給水量制御とバイパス水回路方式と
を組み合わせると、(1)出湯温度の設定が高くかつバ
イパス水量の比率が大きいと熱交換器で沸騰を生じる。Further, as a known technique, there is a bypass water circuit system in which a bypass path is provided to bypass a heat exchanger in order to reduce the pressure loss of flowing water, and the water is mixed with hot water heated by the heat exchanger and then supplied. When the hot water outlet temperature control and water supply amount control are combined with the bypass water circuit method, (1) boiling occurs in the heat exchanger when the hot water outlet temperature setting is high and the ratio of the bypass water amount is large.
(2)バイパス水量を大きくしないと圧力損失を低減さ
せる効果が小さい。(2) The effect of reducing pressure loss is small unless the amount of bypass water is increased.
(3)給水量制御とバイパス制御のため2つの駆動3べ
−−
装置が必要となる。(3) Two drive 3-base devices are required for water supply control and bypass control.
などの欠点があった。There were drawbacks such as.
発明の目的
本発明は給湯装置の総給水量と熱交換器のバイパス水量
の制御を1個の駆動装置で行なわせ、かつ出湯温度の設
定と関連させて駆動装置を駆動させたもので、給水回路
の圧力損失を減少させるばかりでなく出湯温度の安定化
を図ることを目的とする。Purpose of the Invention The present invention controls the total amount of water supplied to a hot water supply system and the amount of bypass water of a heat exchanger with one drive device, and drives the drive device in conjunction with the setting of the hot water temperature. The purpose is not only to reduce pressure loss in the circuit, but also to stabilize the hot water temperature.
発明の構成
この目的を達成するために本発明は、加熱装置で加熱さ
れる熱交換器と、この熱交換器をう回するバイパス路と
、給水量を検出する水量検出器と、給水量を制御する主
制御弁と、バイパス路に設けられたバイパス制御弁とか
らなる水量制御器と、この水量制御器の駆動装置とを有
し、水量検出器の信号によって駆動装置を操作して給水
量を制御すると共にバイパス制御弁の開度を調節させ、
かつ出湯温度設定器の信−号に応じて駆動装着の最大操
作量、すなわちバイパス制御弁の最大開度を規制させた
ものである。Structure of the Invention In order to achieve this object, the present invention includes a heat exchanger heated by a heating device, a bypass path that goes around the heat exchanger, a water amount detector that detects the amount of water supplied, and a water amount detector that detects the amount of water supplied. It has a water flow controller consisting of a main control valve to control and a bypass control valve installed in a bypass path, and a drive device for this water flow controller, and the drive device is operated by a signal from the water flow detector to control the water supply amount. and adjust the opening degree of the bypass control valve,
In addition, the maximum operating amount of the drive mounting, that is, the maximum opening degree of the bypass control valve, is regulated in accordance with the signal from the outlet hot water temperature setting device.
実施例の説明
本発明をガス瞬間式給湯装置に適用した実施例について
説明する。第1図において1は水量制御器で、水は入水
路2から流入し、水量検出器aを通って入口弁室4に入
り、主制御弁5と主制御孔6との隙間を通って出口弁室
7へ流入する。水流は出口弁室7から二方向に分流し、
一方は熱交換器8へ流れ、他方はバイパス制御弁9とバ
イパス制御孔10との隙間を通ってバイパス路11へ流
れ、熱交換器8の出湯管12と合流する。混合部13に
は出湯温度検出器14がある。水量検出器3は水流の速
度に比例して回転数が変化する羽根車15と、その羽根
車15の回転数を検出する回転検出素子16から構成さ
れている。17は駆動装置でモーフ18、減速器19、
弁位置検出器20、リンク機前21から成り、弁棒22
を介してバイパス制御弁9と主制御弁5をそれぞれ操作
する。弁棒22はバイパス制御弁9の内孔を摺動するが
、弁棒22に固定された係止リング23がバイパス制御
弁9に当接すると復帰ばね24によって弁僕22とバイ
パス制御弁9とは一体に動く。DESCRIPTION OF EMBODIMENTS An embodiment in which the present invention is applied to a gas instantaneous water heater will be described. In Fig. 1, 1 is a water flow controller, in which water flows in from an inlet channel 2, passes through a water flow detector a, enters an inlet valve chamber 4, passes through a gap between a main control valve 5 and a main control hole 6, and exits through a gap between a main control valve 5 and a main control hole 6. It flows into the valve chamber 7. The water flow is divided into two directions from the outlet valve chamber 7,
One flows to the heat exchanger 8 , and the other flows to the bypass path 11 through the gap between the bypass control valve 9 and the bypass control hole 10 , and joins the outlet pipe 12 of the heat exchanger 8 . The mixing section 13 has a hot water temperature detector 14 . The water amount detector 3 includes an impeller 15 whose rotation speed changes in proportion to the speed of water flow, and a rotation detection element 16 which detects the rotation speed of the impeller 15. 17 is a drive device including a morph 18, a decelerator 19,
Consists of valve position detector 20, link machine front 21, valve stem 22
The bypass control valve 9 and the main control valve 5 are respectively operated through the control valve 9 and the main control valve 5. The valve stem 22 slides in the inner hole of the bypass control valve 9, but when the locking ring 23 fixed to the valve stem 22 comes into contact with the bypass control valve 9, the return spring 24 causes the valve valve 22 and the bypass control valve 9 to be separated. moves as one.
同様に復帰はね25によって弁棒22の動きに従って常
時主制御弁5が変位する。図からも明らかなように主制
御弁5が所定の角度に開口した後バイパス制御弁9が開
口するように配置されている。Similarly, the return spring 25 constantly displaces the main control valve 5 in accordance with the movement of the valve stem 22. As is clear from the figure, the bypass control valve 9 is arranged so as to open after the main control valve 5 opens at a predetermined angle.
ガスはガス供給路26から加熱制御器27でガス量を調
節されて加熱装置28へ供給され、燃焼し熱交換器8を
加熱する。29はサーミスタなどの入水温度検出器であ
り、30は可変抵抗器などで構成される出湯温度設定器
である。31はマイクロプロセッサなどからなる給湯制
御器で、水量検出器3、出湯温度検出器14、入水温度
検出器29、出湯温度設定器30からの信号を入力とし
、駆動装置17、加熱制御器27へ信号を出力する。The gas is supplied from the gas supply path 26 to the heating device 28 with the gas amount adjusted by the heating controller 27, where it is combusted and heats the heat exchanger 8. 29 is an inlet water temperature detector such as a thermistor, and 30 is an outlet water temperature setting device composed of a variable resistor or the like. 31 is a hot water supply controller consisting of a microprocessor, etc., which inputs signals from a water flow rate detector 3, a hot water outlet temperature detector 14, an incoming water temperature detector 29, and a hot water outlet temperature setting device 30, and sends the signals to a drive device 17 and a heating controller 27. Output a signal.
次に動作の概要について説明する。第1図において電源
が投入されて通水が開始されると、水量検出器3の信号
が読み込まれ加熱装置28に燃料が供給されて燃焼が開
始する。そして熱交換器8入りnM+−)r判杏爪μバ
ノパス鯰11を涌っ介フに入の6 ・
混合湯温か出湯温度検出器14で検出され、この信号と
出湯温度設定器30の信号の偏差によって加熱制御器2
7が駆動され、加熱装置28の加熱量を制御する。また
給水量は水量検出器3の信号により駆動装置17が駆動
されて制御される。Next, an overview of the operation will be explained. In FIG. 1, when the power is turned on and water flow starts, a signal from the water amount detector 3 is read, fuel is supplied to the heating device 28, and combustion starts. And heat exchanger 8 nM + -) r size apricot nail μ Vanopas catfish 11 is put into the pump. Heating controller 2 by deviation
7 is driven to control the heating amount of the heating device 28. Further, the amount of water supplied is controlled by driving a drive device 17 based on a signal from the water amount detector 3.
次に制御動作について第2図でさらに詳細に説明する。Next, the control operation will be explained in more detail with reference to FIG.
電源が投入され使用者によって出湯温度が設定されると
、出湯温度設定器30の信号が給湯制御器31に読み込
まれ、給湯制御器31の内部にある駆動リミッタ31a
で演算され、出湯温度設定に応じて駆動装置17の最大
駆動量、すなわちバイパス制御弁9の最大開度を演算す
る。また給湯制御器31の水量設定演算部31bは、出
湯温度設定器30と入水温度検出器29との信号差と、
あらかじめ設定された加熱装置28の加熱能力との演算
を行ない、出湯温度設定器30で設定された出湯温度が
保証される最大水量を設定する。しかる後通水が開始さ
れると、水量検出器3が給水量を検出し給水量(点火開
始水量)以上に達すると、加熱装置28へ燃料を供給し
点火操作を行なって加熱装置28の燃焼が開始する。点
火開始水量はあらかじめ設定された一定値あるいは出湯
温度設定器30の信号によって変化させることができる
。主制御弁5では熱交換器8とバイパス路11に分流す
る以前の総給水量を制御し、バイパス制御弁9は熱交換
器8とバイパス路11との分流の比率を制御する。第1
図においてはバイパス制御弁9が全閉状態にあり、水流
は全て熱交換器8に流れる。この状態から水量設定演算
部31bで設定された値よりも給水量が大であれば、水
量検出器3の信号と比ククされ水量rllI+御演算部
31cで演算された値に応じて駆動装置17を駆動させ
て主制御弁5を閉方向に移動させて給水量を減少させる
。逆に給水量が設定値より小さい場合には主制御弁5を
開いて給水量を増加させるが、給水圧力が低く給水量が
十分でない場合には駆動装置17がさらに駆動されて係
止リング23がバイパス制御弁9に当接し、主制御弁5
を開きながら、かつバイパス制御弁9を開方向に移動さ
せ、バイパス路11側への通水を開始する。したがって
圧力損失の高い熱交換器8をう回するバイパス路11へ
の給水が行なわれることにより、低水圧でも大水量を確
保することができる。When the power is turned on and the hot water temperature is set by the user, the signal from the hot water temperature setting device 30 is read into the hot water supply controller 31, and the drive limiter 31a inside the hot water supply controller 31 is read.
The maximum drive amount of the drive device 17, that is, the maximum opening degree of the bypass control valve 9, is calculated according to the hot water temperature setting. In addition, the water amount setting calculation unit 31b of the hot water supply controller 31 detects the signal difference between the hot water temperature setting device 30 and the incoming water temperature detector 29,
A calculation is performed with the preset heating capacity of the heating device 28 to set the maximum amount of water at which the hot water temperature set by the hot water temperature setting device 30 is guaranteed. After that, when the water flow is started, the water amount detector 3 detects the amount of water supplied, and when it reaches the amount of water supplied (ignition start water amount) or more, fuel is supplied to the heating device 28 and the ignition operation is performed to start the combustion of the heating device 28. starts. The amount of water at which the ignition starts can be changed by a preset constant value or by a signal from the hot water temperature setting device 30. The main control valve 5 controls the total amount of water supplied before being divided into the heat exchanger 8 and the bypass path 11, and the bypass control valve 9 controls the ratio of water distribution between the heat exchanger 8 and the bypass path 11. 1st
In the figure, the bypass control valve 9 is in a fully closed state, and all water flows to the heat exchanger 8. In this state, if the water supply amount is larger than the value set by the water amount setting calculation unit 31b, the driving device 17 is driven to move the main control valve 5 in the closing direction to reduce the water supply amount. Conversely, if the water supply amount is smaller than the set value, the main control valve 5 is opened to increase the water supply amount, but if the water supply pressure is low and the water supply amount is not sufficient, the drive device 17 is further driven to close the locking ring 23. contacts the bypass control valve 9, and the main control valve 5
While opening, the bypass control valve 9 is moved in the opening direction to start water flow to the bypass path 11 side. Therefore, by supplying water to the bypass passage 11 that bypasses the heat exchanger 8 which has a high pressure loss, a large amount of water can be secured even at low water pressure.
加熱装置28の加熱量は加熱制御器27によって調節さ
れる。加熱制御器27は、出湯温度設定器30の信号と
入水温度検出器29との信号差と、水量検出器3の信号
によって湯温制御演算部31dで演算される加熱負荷の
値で制御され、さらに出湯温度設定器30と出湯温度検
出器14との偏差信号で補正され、最終的には出湯温度
設定値と等しい出湯温度を得る。The heating amount of the heating device 28 is adjusted by the heating controller 27. The heating controller 27 is controlled by the heating load value calculated by the hot water temperature control calculation unit 31d based on the signal difference between the output water temperature setting device 30 and the incoming water temperature detector 29, and the signal from the water amount detector 3. Further, correction is made using a deviation signal between the hot water outlet temperature setting device 30 and the hot water outlet temperature detector 14, and finally a hot water outlet temperature equal to the hot water outlet temperature setting value is obtained.
第3図は弁位置検出器20の信号、すなわち弁位置と総
給水量に対するバイパス水量比率の関係を示したもので
、主制御弁5の全閉位置を基準にしている。主制御弁5
が所定量開口した後バイパス制御弁9が開き始める。駆
動リミッタ31aは出湯温度設定値が高く、かつ熱交換
器8に比較してバイパス路11側の水量の比率が高いと
きに発生する沸騰現象を未然に防止するものである。す
なわち駆動IJ ミッタ31aはバイパス制御弁9の最
大開度を規制するものであって、その値は出湯温度設定
値30の信号によって演算される。駆動IJ ミック3
1aは、出湯温度の設定値が低いときにはバイパス制御
弁9の開度を比較的大きく許容し、逆に出湯温度の設定
値が高いときにはバイパス制御弁9の開度を比較的小さ
く規制する。駆動リミッタ31aの値は弁位置検出器2
0の信号と比較され駆動装置17の駆動の最大値を規制
し、バイパス制御弁9の最大開度をあらかじめ制限して
バイパス路11側の水量の比率を適正に保持する。FIG. 3 shows the signal from the valve position detector 20, that is, the relationship between the valve position and the bypass water amount ratio to the total water supply amount, based on the fully closed position of the main control valve 5. Main control valve 5
After opening by a predetermined amount, the bypass control valve 9 begins to open. The drive limiter 31a prevents the boiling phenomenon that occurs when the tapped water temperature setting value is high and the ratio of the amount of water on the bypass path 11 side is higher than that on the heat exchanger 8. That is, the drive IJ limiter 31a regulates the maximum opening degree of the bypass control valve 9, and its value is calculated based on the signal of the outlet hot water temperature setting value 30. Drive IJ Mick 3
1a allows the opening degree of the bypass control valve 9 to be relatively large when the set value of the hot water outlet temperature is low, and on the contrary, regulates the opening degree of the bypass control valve 9 to be relatively small when the set value of the hot water outlet temperature is high. The value of the drive limiter 31a is determined by the valve position detector 2.
0 signal, the maximum value of the drive of the drive device 17 is regulated, and the maximum opening degree of the bypass control valve 9 is limited in advance to maintain an appropriate water flow ratio on the bypass path 11 side.
弁の駆動制御機構はサーボ機溝で、主制御弁5の位置は
弁位置検出器20で検出されフィードバックされている
が、モータ18がヌテソプモータのようなものであれば
弁位置検出器20として基準位置を検出するスイッチが
用いられ開ループ制御することが可能である。The valve drive control mechanism is a servo machine groove, and the position of the main control valve 5 is detected by a valve position detector 20 and fed back. A position sensing switch is used to allow open loop control.
次に水量が急変した場合を考える。使用者による蛇口の
急開閉や給水圧力の急変によって給水量が急変すること
がある。水量が急変すると熱交換 0
器8の熱容量によって、水量が急’7r、+I;、 し
た時は高温の湯が発生し水量が急増した時には低温の湯
が過渡的に発生する。本発明の水量制御機構はこのよう
に水量の急変によって発生する@濡の過渡的変動を緩和
する機能を有している。すなわち水量が急減すると水量
検出器3によって水量検出され、駆動装置17を操作し
て主制御弁5を開いて給水量を適正にしようとする。こ
のときバイパス制御弁9も同時に開方向へ移動するので
バイパス水量の比率が高くなり、熱交換器8で発生する
高温の湯を希釈する。逆に水量が急増した場合にはバイ
パス水量の比率が低くなって低温度の出湯を補正し、快
適な出湯温度が得られるものである。Next, consider a case where the water volume suddenly changes. The amount of water supplied may change suddenly due to the user suddenly opening and closing the faucet or sudden changes in the water supply pressure. When the water volume suddenly changes, the heat exchanger 8's heat capacity causes high temperature hot water to be generated when the water volume suddenly changes, and low temperature hot water to be generated transiently when the water volume suddenly increases. The water amount control mechanism of the present invention thus has a function of alleviating transient fluctuations in wetness caused by sudden changes in water amount. That is, when the amount of water suddenly decreases, the amount of water is detected by the water amount detector 3, and the drive device 17 is operated to open the main control valve 5 to adjust the amount of water supplied. At this time, the bypass control valve 9 also moves in the opening direction at the same time, so the ratio of the amount of bypass water increases, and the high temperature hot water generated in the heat exchanger 8 is diluted. On the other hand, when the amount of water increases rapidly, the ratio of bypass water amount decreases to compensate for the low temperature of hot water and provide a comfortable hot water temperature.
発明の効果
以」−のように本発明は、出湯温度設定器と出湯温度検
出器の偏差で加熱制御器を駆動し、加熱装置の加熱量を
制御して熱交換器を加熱し、給水量を制御する主制御弁
と熱交換器のバイパス路に設けられたバイパス制御弁と
がらなろ水量制御器をひとつの駆動装置で駆動したので
、
11
(1)駆動装置が低価格でかつ小型に溝成することがで
き、
(2)水量の急変動による熱交換器出口の湯温変動をバ
イパス比率を変えることによって補正し、過渡的な湯温
変動を低減することができる。As described in "Effects of the Invention", the present invention drives the heating controller based on the deviation between the hot water temperature setting device and the hot water temperature detector, controls the heating amount of the heating device, heats the heat exchanger, and adjusts the amount of water supplied. The main control valve that controls the heat exchanger, the bypass control valve installed in the bypass path of the heat exchanger, and the wastewater flow rate controller are all driven by one drive device. (2) Fluctuations in hot water temperature at the outlet of the heat exchanger due to sudden fluctuations in water volume can be corrected by changing the bypass ratio, and transient fluctuations in hot water temperature can be reduced.
という効果を有する。It has this effect.
また出湯温度設定器の信号によって、水量制御器の駆動
装置の最大操作量を規制したので、(3)出湯温度を高
く設定した場合バイパス水量比率は小さく保たれ、熱交
換器で沸騰することがなく、
(4)出湯温度を低く設定した場合、バイパス水量比率
は大きくなり、低水圧でも大量の出湯が可能である。In addition, since the maximum operation amount of the water flow rate controller drive device is regulated by the signal from the hot water outlet temperature setting device, (3) when the hot water outlet temperature is set high, the bypass water volume ratio is kept small and boiling in the heat exchanger is prevented. (4) When the hot water temperature is set low, the bypass water flow rate increases, and a large amount of hot water can be discharged even with low water pressure.
という効果を有する。It has this effect.
第1図は本発明の一実施例を示す給湯制御装置の溝成図
、第2図は同装置の制御信号を示すブロック線図、第3
図は同装置の弁変位量に対するバイパス水量比率の関係
を示す特性図である。
1・・・・水量制御器、3・・・水量検出器、5 ・・
・主制御弁、8・・・・熱交換器、9・・バイパス制御
弁、11・・・バイパス路、14・・・・出湯温度検出
器、17・・・駆動装置、20・・・・・・位置検出器
、27・・・・・・加熱制御器、28 ・・・・加熱装
置、30・・・・・出湯温度設定器、31 ・・給湯制
御器。FIG. 1 is a schematic diagram of a hot water supply control device showing one embodiment of the present invention, FIG. 2 is a block diagram showing control signals of the same device, and FIG.
The figure is a characteristic diagram showing the relationship between the bypass water amount ratio and the valve displacement amount of the device. 1...Water flow controller, 3...Water flow detector, 5...
- Main control valve, 8... Heat exchanger, 9... Bypass control valve, 11... Bypass path, 14... Hot water temperature detector, 17... Drive device, 20... ... Position detector, 27 ... Heating controller, 28 ... Heating device, 30 ... Hot water temperature setting device, 31 ... Hot water supply controller.
Claims (3)
熱装置の加熱量を制御する加熱制御器と、前記熱交換器
をう回するバイパス路と、給水量を検出する水量検出器
と、給水量を制御する主制御弁と前記バイパス路に設け
られたバイパス制御弁とからなる水量制御器と、前記水
量制御器の駆動装置と、出湯温度設定器と出湯温度検出
器の偏差信号で前記加熱制御器を制御すると共に前記水
量検出器の信号によって前記水量制御器を制御する給湯
制御器とを有し、前記出湯温度設定器の信号によって前
記駆動装置の最大操作量を規制した給湯制御装置。(1) A heat exchanger, a heating device for the heat exchanger, a heating controller that controls the heating amount of the heating device, a bypass path that bypasses the heat exchanger, and a water amount detector that detects the amount of water supplied. a water flow controller consisting of a main control valve that controls the water supply flow and a bypass control valve provided in the bypass passage; a drive device for the water flow controller; deviations between the hot water temperature setting device and the hot water temperature detector; and a hot water supply controller that controls the heating controller with a signal and also controls the water flow controller with a signal of the water flow detector, and the maximum operation amount of the drive device is regulated by the signal of the hot water temperature setting device. Hot water control device.
に開成を開始する特許請求の範囲第1項記載の給湯制御
装置。(2) The hot water supply control device according to claim 1, wherein the bypass control valve starts opening after the main control valve has been opened for a predetermined amount of time.
バイパス制御弁の位置を検出する位置検出器を有する特
許請求の範囲第1項記載の給湯制御装置。(3) The hot water supply control device according to claim 1, wherein the water flow controller or the drive device includes a position detector for detecting the position of the main control valve or the bypass control valve.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59115037A JPS60259854A (en) | 1984-06-05 | 1984-06-05 | Control device for hot water supply |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59115037A JPS60259854A (en) | 1984-06-05 | 1984-06-05 | Control device for hot water supply |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60259854A true JPS60259854A (en) | 1985-12-21 |
Family
ID=14652635
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59115037A Pending JPS60259854A (en) | 1984-06-05 | 1984-06-05 | Control device for hot water supply |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60259854A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63198955U (en) * | 1987-06-12 | 1988-12-21 | ||
JPH03181685A (en) * | 1989-12-08 | 1991-08-07 | Matsushita Electric Ind Co Ltd | Fluid control valve |
-
1984
- 1984-06-05 JP JP59115037A patent/JPS60259854A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63198955U (en) * | 1987-06-12 | 1988-12-21 | ||
JPH03181685A (en) * | 1989-12-08 | 1991-08-07 | Matsushita Electric Ind Co Ltd | Fluid control valve |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH05272805A (en) | Hot water feeding controller | |
JPH0465305B2 (en) | ||
JPH0377421B2 (en) | ||
JPS60259854A (en) | Control device for hot water supply | |
JPH0370807B2 (en) | ||
JPS6160339B2 (en) | ||
JP2584196B2 (en) | Hot water supply control device | |
JPS6231231B2 (en) | ||
JPH0633903B2 (en) | Bypass mixing type water heater | |
JPH03186150A (en) | Hot water supply control device | |
JPH0799489B2 (en) | Hot water mixing device | |
JPH0255688B2 (en) | ||
JP2958543B2 (en) | Hot water supply control device | |
JP2615152B2 (en) | Bypass mixing water heater | |
JPH0442584B2 (en) | ||
JPH07122515B2 (en) | Hot water supply control device | |
JPH0271050A (en) | Controller for hot water supplying apparatus | |
JPS5974425A (en) | Hot water supply control device | |
JPS58219352A (en) | Heating control device of hot-water supply apparatus | |
JPS6210561A (en) | Hot water supply control system | |
JPH01208653A (en) | Feed hot water controller | |
JPH06174303A (en) | Hot water supplier | |
JPH04340051A (en) | By-pass mixing control method | |
JPH0718588B2 (en) | Water heater controller | |
JPS58217145A (en) | Control device for heating of liquid |