JP3823940B2 - Method for manufacturing circuit-formed substrate - Google Patents

Method for manufacturing circuit-formed substrate Download PDF

Info

Publication number
JP3823940B2
JP3823940B2 JP2003120008A JP2003120008A JP3823940B2 JP 3823940 B2 JP3823940 B2 JP 3823940B2 JP 2003120008 A JP2003120008 A JP 2003120008A JP 2003120008 A JP2003120008 A JP 2003120008A JP 3823940 B2 JP3823940 B2 JP 3823940B2
Authority
JP
Japan
Prior art keywords
substrate material
circuit
substrate
thermosetting resin
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003120008A
Other languages
Japanese (ja)
Other versions
JP2003318547A (en
Inventor
利浩 西井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2003120008A priority Critical patent/JP3823940B2/en
Publication of JP2003318547A publication Critical patent/JP2003318547A/en
Application granted granted Critical
Publication of JP3823940B2 publication Critical patent/JP3823940B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、回路形成基板の製造方法および回路形成基板、あるいは回路形成基板材料に関するものである。
【0002】
【従来の技術】
近年の電子機器の小型化・高密度化に伴って、電子部品を搭載する回路形成基板も従来の片面基板から両面、多層基板の採用が進み、より多くの回路を基板上に集積可能な高密度回路形成基板の開発が行われており、層間の接続方法についても種々の方法が提案されており、例えばレーザーによる微細な穴加工と導電性ペースト等の接続手段を用いて層間接続を行う回路形成基板も提案されている(特開平6−268345号公報等)。
【0003】
また、基板を用いるユーザー側の要望としては高周波回路あるいは高速動作回路への使用を前提として完成基板の板厚精度をより精密なものとすることが必要とされている。
【0004】
回路形成基板を製造するプロセスとしては基板材料に穴をあけ、必要に応じてペースト充填等の加工を行い、単層あるいは複数層の積層を行った後に、熱プレスを用いて圧縮、一体化成型および基板材料に用いた樹脂の硬化を行う方法がよく使用される。
【0005】
この場合、回路形成基板の板厚は基板材料そのものの板厚ばらつきと熱プレス時の圧縮の均一性によってほとんど決定されるものである。
【0006】
【発明が解決しようとする課題】
しかしながら通常の基板材料はガラスあるいは有機繊維等からなる補強材に熱硬化性樹脂を含浸しBステージ化したものであり、熱プレスによる圧縮が行われた際に熱硬化性樹脂が外側に流れ出すことによって厚み方向の圧縮が行われるために、基板材料の周辺部は厚みが薄くなりやすく中央部は比較的厚くなりやすいという傾向を示す。
【0007】
通常のガラスエポキシプリント配線板に用いるガラス繊維織布のようなXY方向に規則的に繊維が存在する織布を補強材に用いた場合には、熱硬化性樹脂が補強材中を熱プレス時に流れる際の流動抵抗が比較的小さいために前述の傾向は現れにくいが、不織布を補強材に用いた場合には流動抵抗が大きいために中央部の圧縮が周辺部に比べて少なくなるという現象が確認される。
【0008】
特に、従来の技術で示したような圧縮により電気的な導通が発現する導電性ペーストを基板材料に形成した穴内に充填して層間の接続に用いるような工法では層間の接続に必要な圧縮量は厳密にコントロールする必要があり、圧縮が不十分であると層間の接続信頼性が確保できない場合がある。その必要精度は基板の特性確保のためにユーザーが求めるスペックより遥かに高いものが求められる。
【0009】
本発明は回路形成基板の品質としての板厚精度を確保すると共に信頼性の高い回路形成基板の製造方法およびそれを用いて製造した回路形成基板、あるいは材料を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明の回路形成基板の製造方法においては、熱硬化性樹脂を含むBステージ状態の基板材料にフィルムをラミネートするラミネート工程と、基板材料に貫通あるいは非貫通の穴を形成する穴形成工程と導電性ペーストを前記貫通あるいは非貫通の穴に充填する充填工程と、基板材料から前記フィルムを剥離する工程と、基板材料の両面に金属箔を配置し厚み方向に圧縮するプレス工程と、前記金属箔をパターニングして回路を形成する工程と、前記ラミネート工程より前、あるいは前記充填工程より後かつ前記プレス工程より前に前記基板材料の一部をくり抜く空隙形成工程とを備え、前記空隙部が形成された位置は、前記回路が形成された位置を含む位置または前記穴が形成された位置を除く位置であり、前記複数の穴に充填された前記導電性ペーストは、前記プレス工程の際に基板材料中の熱硬化性樹脂が前記空隙部へ流れ込むことにより均一に圧縮されることを特徴としたものである。
【0011】
本発明によれば、プレス工程での基板材料の圧縮を均一あるいは効率的なものとし、回路形成基板の板厚精度を確保するとともに層間接続の信頼性を高めることが可能となるものである。
【0012】
【発明の実施の形態】
請求項1に記載の発明は、熱硬化性樹脂を含むBステージ状態の基板材料にフィルムをラミネートするラミネート工程と、基板材料に貫通あるいは非貫通の穴を形成する穴形成工程と導電性ペーストを前記貫通あるいは非貫通の穴に充填する充填工程と、基板材料から前記フィルムを剥離する工程と、基板材料の両面に金属箔を配置し厚み方向に圧縮するプレス工程と、前記金属箔をパターニングして回路を形成する工程と、前記ラミネート工程より前、あるいは前記充填工程より後かつ前記プレス工程より前に前記基板材料の一部をくり抜く空隙形成工程とを備え、前記空隙部が形成された位置は、前記回路が形成された位置を含む位置または前記穴が形成された位置を除く位置であり、前記複数の穴に充填された前記導電性ペーストは、前記プレス工程の際に基板材料中の熱硬化性樹脂が前記空隙部へ流れ込むことにより均一に圧縮されることを特徴とする回路形成基板の製造方法としたものであり、空隙形成工程にて形成した空隙がプレス時に基板材料が流れ込むキャビティとなるためにプレスによる圧縮時に均一に圧縮が実現できるとともに、ラミネート工程前に空隙部を形成しているために充填工程において空隙部がフィルムで覆われており空隙部への導電性ペーストの侵入が防止できる等の効果を有し、あるいは、充填工程の後に空隙部を形成するために空隙に導電性ペーストが侵入しない等の効果を有する。
【0014】
また、請求項1または請求項2に記載の発明により、容易に板厚の均一化あるいは圧縮性、層間接続信頼性の確保等の効果を実現できるものである。さらに当然のこととして、貫通穴を除く位置に空隙部を形成することで、導通穴の形成位置の設計自由度および配線収容性を高め、高密度かつ板厚が均一で高品質な両面あるいは多層の回路形成基板が得られるものである。
【0015】
また、本発明のプレス工程が加熱を伴い、基板材料を溶融し成型したのち熱硬化させる、いわゆる熱プレスである場合、基板材料が熱により溶融するために空隙に基板材料が流れ込む作用が効率良く行われるものである。
【0016】
また、本発明の請求項3に記載の回路形成基板の製造方法を用いて少なくとも片面に金属箔を有する回路形成基板を製造する際、そのプレス工程においてプリプレグあるいはBステージ樹脂シートが溶融したときに基板材料の外部に流れ出すことなく、空隙部に流れ込み、均一な圧縮を効率良く実現でき、導電性ペーストによる層間接続信頼性を高めることができる。
さらに、本発明の請求項4に記載の回路形成基板の製造方法を用いて多層の回路形成基板を得ることができる。
【0017】
以下、本発明の実施の形態について、図1から図3を用いて説明する。
【0018】
(実施の形態1)
図1は本発明の第1の実施の形態における回路形成基板の製造方法を示す工程断面図である。基板材料1は図1(a)に示すように熱硬化性樹脂2とアラミド繊維3の複合材料となっている。熱硬化性樹脂2は完全に硬化したものではなく、未硬化分を含むいわゆるBステージ状態であり、基板材料1は通常プリプレグと呼ばれるものである。本実施の形態に示す基板材料としてはアラミド繊維不織布に熱硬化性エポキシ樹脂を溶剤で希釈したものを含浸し、若干の加熱乾燥工程を経てBステージ化したもの等を用いることができる。
【0019】
また貫通あるいは非貫通の穴の近傍に導電性ペーストのにじみやはみ出しが生じることなく、導電性ペーストを穴内に正確に充填するために剥離可能な樹脂製フィルム12を基板材料1の両面にラミネートする。
【0020】
次に図1(b)に示すようにレーザー4を樹脂製フィルム12と基板材料1上に照射して、貫通穴5を形成する。
【0021】
次に図1(c)に示すように、印刷等の手段を用いて導電性ペースト6を貫通穴5に充填する。
【0022】
次に図1(d)に示すように基板材料1に円形状の空隙部7を形成する。空隙部7の形成方法はインライン化が容易な金型ポンチによる機械的な打ち抜き、レーザー等のエネルギービームによる加工等の種々の方法が可能である。なお、ここでいう空隙部7とは基板材料1がプリプレグ状態で供給された際に見られるアラミド繊維3に熱硬化性樹脂2を含浸もしくはBステージ化した際の小さな隙間すなわち空孔部(図示せず)とは異なり、プリプレグ状態以後に形成したものをいう。
【0023】
次に図1(e)に示すように、樹脂製フィルム12を剥離したのち金属箔8aと金属箔8bで基板材料1を挟み込み、熱プレス装置(図示せず)を用いて加熱加圧する。加熱加圧により熱硬化性樹脂2は溶融し成型され、その後熱硬化する。その際に図1(f)に矢印で示したように、基板材料1の周辺部に熱硬化性樹脂2がはみ出すとともに空隙部7にも流れ込むことにより、基板材料1は厚み方向に圧縮される。
【0024】
空隙部7が無い場合には当然のことながら周辺部の厚みは薄く中央部は厚い形状に成型されてしまう。これは、中央部付近の熱硬化性樹脂2が周辺方向に流れるための流動抵抗は周辺部の熱硬化性樹脂2が基板材料1の外部に流れ出す場合に比べ格段に大きいことによるものである。この圧縮作用には前述の空孔部も関連するが周辺部あるいは空隙部7への流れ込みによる要因の方が容積的に大きく支配的な要素となる。図中では空隙部7は完全に熱硬化性樹脂2で埋まっているが、空隙部7が最終製品として使用されない部分である場合には完全に埋める必要はない。
【0025】
成型後は図1(g)に示すような形状となり導電性ペースト6によって金属箔8aと金属箔8bは電気的に接続される。導電性ペースト6による接続の抵抗値さらにその信頼性は前述の加熱加圧時の圧縮量と深い関連があり、基板内で均一な接続抵抗を得るためには、本実施の形態のように均一な圧縮が得られる製造法が好ましいことは当然のことである。次に周辺部を所望の寸法に切断し、金属箔8を所望の形状にパターンニングして回路9を形成することにより図1(h)に示すような両面回路形成基板が得られる。なお、回路9が形成された位置は、図1(h)に示すように空隙部7が形成された位置を含んでもよい。
【0026】
本実施の形態の作用は、前述したように不織布を補強材に用いた場合に顕著に現れる。これは一般のガラスエポキシ基板に用いるガラス繊維織布では規則的にXY方向に繊維が存在するために加熱加圧の際に織布内部を樹脂が流動する抵抗が低いので、厚みばらつきが生じにくいが、不織布の場合には樹脂が不織布内部を流動する抵抗がかなり高く厚みばらつきが発生しやすいことによるものである。
【0027】
なお、本実施の形態では両面回路形成基板について説明したが、工程を複数回繰り返すことにより多層回路形成基板が得られることはいうまでもない。
【0028】
さらに、補強材の無いフィルム状のBステージ材料等を用いた回路形成基板の製造にも適用可能である。
【0029】
また、導電性ペーストを使用しない回路形成基板についても基板の高周波特性の確保あるいは特に板厚精度を要望される用途については本発明の基板板厚を均一にする効果が有効なものとなる。
【0030】
さらに、金属箔8のサイズは周辺部への熱硬化性樹脂2の流れ出しが金属箔8の外部に及ぶと熱プレス工程で用いる中間板等に付着するような問題を発生させるので、基板材料1のサイズに対して一回り大きくするが、その余裕分は製品基板とはならないロスとなるため極力小さくしたいという要望があり、本発明の効果により周辺部への流れ出し量を小さくする、あるいは均一化することができるため、金属箔8のサイズをより基板材料1に近付けてロスを少なくし金属箔8をコストダウンすることが可能になる。
【0031】
また、本実施の形態において空隙部7の形成工程は、空隙部7への吸湿による影響を最小限にするため導電性ペーストの充填後でかつ、穴内の導電性ペーストの脱落を防ぐため樹脂製フィルムの剥離前に行ったが、生産性を高めるため貫通穴の加工の際にレーザーにて空隙を形成することも可能である。
【0032】
(実施の形態2)
図2は本発明の第2の実施の形態における回路形成基板の製造方法を示す工程断面図である。
【0033】
図2(a)に示すようにプリプレグ1に貫通穴を形成し導電性ペースト6を充填してさらに空隙部7を形成したものを基板材料の一部として準備する。次に図2(b)に示すように金属箔8と前述したプリプレグおよび2層のコア回路形成基板10を積み重ねて配置し基板材料とする。その際に層間の導通接続が図れるように、必要に応じて各材料間(1,10)の位置合わせあるいは仮止め等を行う。
【0034】
次に基板材料を熱プレスにより圧縮し、図2(c)に示すような積層物を形成する。さらに図2(d)に示すように端面を所定の位置で切断して表面の金属箔8をエッチング等の方法によりパターンニングし回路9を形成し、4層構成の多層の回路形成基板を得る。
【0035】
(実施の形態3)
図3は本発明の第3の実施の形態における回路形成基板材料を示す断面図である。基板材料1は熱硬化性樹脂2とアラミド繊維3の複合材料となっているプリプレグであり、第1の実施の形態に示した基板材料1の性状と同一である。ただし、この状態ですでに空隙部7が形成されている。
【0036】
この空隙部7の形成については、熱硬化性樹脂2の含浸前のアラミド繊維不織布状態で加工する、あるいはプリプレグ状態になってから加工する等種々の方法が可能で、加工ツールとしてはレーザーもしくはパンチングなどの機械的打ち抜き等を用いることができる。
【0037】
本実施の形態では基板材料1は供給された時点で空隙部7が形成されているため、回路形成基板の製造中に空隙部加工用の工程を付加することなく、高品質な回路形成基板の製造が可能になるものである。ただし、実施の形態1で述べたような導電性ペーストの印刷等の工程を製造工程に含む場合は空隙部が問題となる場合も想定される。その場合は第1の実施の形態のように工程中に空隙部形成を含めればよい。
【0038】
【発明の効果】
以上のように本発明の回路形成基板の製造方法および基板材料は、単一あるいは複数の材質より構成される基板材料を用いて回路形成基板を製造する際に、基板材料を厚み方向に圧縮するプレス工程を含み、前記プレス工程より前に前記基板材料の一部を一箇所あるいは複数箇所くり抜く空隙形成工程を備えた製造方法、あるいはシート状補強材に熱硬化性樹脂を含浸させBステージ化した後にその一部を一箇所あるいは複数箇所くり抜いて空隙を形成した基板材料を用いることにより、プレス加工にて基板材料の厚みにばらつきを生じることなく回路形成基板を製造することができ、その結果として信頼性の高い回路形成基板を提供できるものである。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態における回路形成基板の製造方法の工程断面図
【図2】本発明の第2の実施の形態における回路形成基板の製造方法の工程断面図
【図3】本発明の第3の実施の形態における回路形成基板材料の断面図
【符号の説明】
1 基板材料
2 熱硬化性樹脂
3 アラミド繊維
4 レーザー
5 貫通穴
6 導電性ペースト
7 空隙部
8 金属箔
9 回路
10 コア回路形成基板
12 樹脂製フィルム
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a circuit forming substrate and a circuit forming substrate, or a circuit forming substrate material.
[0002]
[Prior art]
As electronic devices have become smaller and higher in density in recent years, the adoption of double-sided and multi-layer boards for circuit-forming boards on which electronic components are mounted has increased from the conventional single-sided board, and more circuits can be integrated on the board. Development of a density circuit forming substrate has been carried out, and various methods for connecting layers have been proposed. For example, a circuit that performs interlayer connection using a connecting means such as fine hole processing by laser and conductive paste A formation substrate has also been proposed (Japanese Patent Laid-Open No. 6-268345).
[0003]
Further, as a request from the user using the substrate, it is necessary to make the thickness accuracy of the finished substrate more precise on the premise that the substrate is used for a high-frequency circuit or a high-speed operation circuit.
[0004]
As a process for manufacturing a circuit-formed board, holes are made in the board material, paste filling, etc. is performed as necessary, single layer or multiple layers are laminated, and then compression or integrated molding is performed using a hot press A method of curing the resin used for the substrate material is often used.
[0005]
In this case, the thickness of the circuit-formed substrate is almost determined by the thickness variation of the substrate material itself and the uniformity of compression during hot pressing.
[0006]
[Problems to be solved by the invention]
However, a normal substrate material is a B-stage made by impregnating a thermosetting resin into a reinforcing material made of glass or organic fiber, and the thermosetting resin flows out when compressed by hot pressing. Therefore, the peripheral portion of the substrate material tends to be thin and the central portion tends to be relatively thick.
[0007]
When a woven fabric having regular fibers in the XY direction, such as a glass fiber woven fabric used for a normal glass epoxy printed wiring board, is used as a reinforcing material, a thermosetting resin is used in the reinforcing material during hot pressing. Since the flow resistance at the time of flow is relatively small, the above-mentioned tendency is difficult to appear, but when nonwoven fabric is used as a reinforcing material, the flow resistance is large and the phenomenon that the compression of the central part is less than the peripheral part is a phenomenon. It is confirmed.
[0008]
In particular, the amount of compression required for the connection between the layers in the method of filling the holes formed in the substrate material with conductive paste that develops electrical continuity by compression as shown in the prior art and using it for the connection between the layers Must be strictly controlled, and if the compression is insufficient, the connection reliability between layers may not be ensured. The required accuracy is required to be much higher than the specifications required by users in order to ensure the characteristics of the substrate.
[0009]
SUMMARY OF THE INVENTION An object of the present invention is to provide a highly reliable method for producing a circuit-formed substrate and a circuit-formed substrate or a material produced using the method, while ensuring plate thickness accuracy as the quality of the circuit-formed substrate.
[0010]
[Means for Solving the Problems]
In the method for producing a circuit-formed substrate of the present invention, a laminating step of laminating a film on a B-stage substrate material containing a thermosetting resin, a hole-forming step of forming a through or non-through hole in the substrate material , A filling step of filling the through or non-through holes with conductive paste, a step of peeling the film from the substrate material , a pressing step of placing metal foil on both sides of the substrate material and compressing in the thickness direction, and the metal A step of forming a circuit by patterning a foil, and a void forming step of hollowing out a part of the substrate material before the laminating step or after the filling step and before the pressing step , and the gap portion The formed position is a position including the position where the circuit is formed or a position excluding the position where the hole is formed, and before filling the plurality of holes. Conductive paste, in which the thermosetting resin in the substrate material during the pressing step is characterized in that it is uniformly compressed by flowing into the gap portion.
[0011]
According to the present invention, the compression of the substrate material in the pressing process can be made uniform or efficient, the plate thickness accuracy of the circuit-formed substrate can be ensured, and the reliability of the interlayer connection can be increased.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
The invention described in claim 1 includes a laminating step of laminating a film on a B-stage substrate material containing a thermosetting resin, a hole forming step of forming a through or non-through hole in the substrate material, and a conductive paste Filling the through or non-penetrating holes, peeling the film from the substrate material , pressing the metal foil on both sides of the substrate material and compressing in the thickness direction, and patterning the metal foil And forming a circuit; and a void forming step of hollowing out a part of the substrate material before the laminating step or after the filling step and before the pressing step , and the void portion is formed. The position is a position including a position where the circuit is formed or a position excluding a position where the hole is formed, and the conductive paste filled in the plurality of holes is Wherein are those thermosetting resins in the substrate material during the pressing step is a method of manufacturing circuit board, characterized in that it is uniformly compressed by flowing into the space portion, formed at the gap formation process Since the voids become cavities into which the substrate material flows during pressing, compression can be achieved uniformly during compression by pressing, and the voids are covered with a film in the filling process because the voids are formed before the laminating process. penetration of conductive paste into the cage gap portion have a effect such as can be prevented, or has the effect of such conductive paste into the gap does not enter to form an air gap after the filling process.
[0014]
In addition, according to the invention described in claim 1 or claim 2, it is possible to easily achieve effects such as uniform plate thickness or compressibility, and ensuring interlayer connection reliability. Furthermore, as a matter of course, by forming a gap portion at a position excluding the through hole, the design freedom of the formation position of the conduction hole and the wiring capacity can be improved, and high-quality, uniform plate thickness and high-quality double-sided or multilayer The circuit forming substrate is obtained.
[0015]
In addition, when the press process of the present invention is a so-called heat press that involves heating, melting and molding the substrate material and then thermosetting, the substrate material is melted by heat, so that the action of the substrate material flowing into the voids is efficient. Is to be done.
[0016]
Further, when a circuit forming substrate having a metal foil on at least one side is manufactured using the method for manufacturing a circuit forming substrate according to claim 3 of the present invention, the prepreg or the B stage resin sheet is melted in the pressing step. Without flowing out to the outside of the substrate material, it flows into the gap, and uniform compression can be realized efficiently, and the interlayer connection reliability by the conductive paste can be enhanced.
Furthermore, a multilayer circuit-formed substrate can be obtained using the method for producing a circuit-formed substrate according to claim 4 of the present invention.
[0017]
Hereinafter, embodiments of the present invention will be described with reference to FIGS. 1 to 3.
[0018]
(Embodiment 1)
FIG. 1 is a process cross-sectional view illustrating a method for manufacturing a circuit forming substrate according to a first embodiment of the present invention. The substrate material 1 is a composite material of a thermosetting resin 2 and an aramid fiber 3 as shown in FIG. The thermosetting resin 2 is not completely cured, but is in a so-called B stage state including an uncured portion, and the substrate material 1 is usually called a prepreg. As the substrate material shown in this embodiment, an aramid fiber nonwoven fabric impregnated with a thermosetting epoxy resin diluted with a solvent and B-staged through a slight heating and drying process can be used.
[0019]
In addition, the resin film 12 that can be peeled off is laminated on both surfaces of the substrate material 1 in order to accurately fill the hole with the conductive paste without causing the conductive paste to bleed or protrude in the vicinity of the through or non-through hole. .
[0020]
Next, as shown in FIG. 1 (b), a laser 4 is irradiated onto the resin film 12 and the substrate material 1 to form a through hole 5.
[0021]
Next, as shown in FIG. 1C, the through-hole 5 is filled with the conductive paste 6 by using printing means or the like.
[0022]
Next, as shown in FIG. 1 (d), a circular gap 7 is formed in the substrate material 1. Various methods such as mechanical punching with a die punch that can be easily inlined and processing with an energy beam such as a laser can be used for forming the gap 7. The void portion 7 here is a small gap, that is, a void portion when the aramid fiber 3 is impregnated with the thermosetting resin 2 or made into a B-stage when the substrate material 1 is supplied in a prepreg state (see FIG. (Not shown) means that formed after the prepreg state.
[0023]
Next, as shown in FIG. 1E, after the resin film 12 is peeled off, the substrate material 1 is sandwiched between the metal foil 8a and the metal foil 8b, and heated and pressurized using a hot press apparatus (not shown). The thermosetting resin 2 is melted and molded by heating and pressing, and then thermoset. At that time, as indicated by an arrow in FIG. 1 (f), the thermosetting resin 2 protrudes into the peripheral portion of the substrate material 1 and also flows into the gap portion 7, whereby the substrate material 1 is compressed in the thickness direction. .
[0024]
When there is no gap 7, the peripheral part is naturally thin and the central part is molded into a thick shape. This is because the flow resistance for allowing the thermosetting resin 2 in the vicinity of the central portion to flow in the peripheral direction is much larger than when the thermosetting resin 2 in the peripheral portion flows out of the substrate material 1. Although the above-mentioned air hole portion is related to this compression action, the factor due to the flow into the peripheral portion or the gap portion 7 is a larger and dominant element in volume. Although the gap 7 is completely filled with the thermosetting resin 2 in the drawing, it is not necessary to completely fill the gap 7 when the gap 7 is not used as a final product.
[0025]
After molding, the shape becomes as shown in FIG. 1G, and the metal foil 8 a and the metal foil 8 b are electrically connected by the conductive paste 6. The resistance value of the connection by the conductive paste 6 and the reliability thereof are closely related to the compression amount at the time of heating and pressurization, and in order to obtain a uniform connection resistance within the substrate, it is uniform as in this embodiment. Naturally, a production method that can achieve a good compression is preferable. Next, the peripheral part is cut into a desired dimension, and the metal foil 8 is patterned into a desired shape to form a circuit 9 to obtain a double-sided circuit forming substrate as shown in FIG. The position where the circuit 9 is formed may include the position where the gap 7 is formed as shown in FIG.
[0026]
The effect of the present embodiment is noticeable when the nonwoven fabric is used as the reinforcing material as described above. This is because a glass fiber woven fabric used for a general glass epoxy substrate regularly has fibers in the X and Y directions, so the resistance of the resin to flow inside the woven fabric during heating and pressurization is low, and thickness variations are unlikely to occur. However, in the case of a non-woven fabric, the resistance of the resin to flow inside the non-woven fabric is considerably high and thickness variation is likely to occur.
[0027]
In the present embodiment, the double-sided circuit formation substrate has been described, but it goes without saying that a multilayer circuit formation substrate can be obtained by repeating the process a plurality of times.
[0028]
Furthermore, the present invention can be applied to the manufacture of a circuit forming substrate using a film-like B-stage material without a reinforcing material.
[0029]
In addition, for a circuit-formed substrate that does not use a conductive paste, the effect of making the substrate plate thickness uniform according to the present invention is effective for applications that require high-frequency characteristics of the substrate or particularly where plate thickness accuracy is required.
[0030]
Further, the size of the metal foil 8 causes a problem that when the flow of the thermosetting resin 2 to the peripheral portion reaches the outside of the metal foil 8, it causes a problem of adhering to an intermediate plate or the like used in the hot press process. However, there is a demand to reduce the margin as much as possible because it is a loss that does not become a product substrate, and due to the effect of the present invention, the flow out amount to the peripheral part is reduced or made uniform. Therefore, the size of the metal foil 8 can be made closer to the substrate material 1 to reduce loss and reduce the cost of the metal foil 8.
[0031]
Further, in the present embodiment, the step of forming the gap portion 7 is made of resin in order to minimize the influence of moisture absorption on the gap portion 7 after filling with the conductive paste and to prevent the conductive paste in the hole from dropping off. Although it was performed before peeling of the film, it is also possible to form a void with a laser when processing the through hole in order to increase productivity.
[0032]
(Embodiment 2)
FIG. 2 is a process cross-sectional view illustrating a method of manufacturing a circuit forming substrate according to the second embodiment of the present invention.
[0033]
As shown in FIG. 2A, a prepreg 1 having a through hole, filled with a conductive paste 6 and further formed with a void 7 is prepared as a part of the substrate material. Next, as shown in FIG. 2B, the metal foil 8, the above-described prepreg, and the two-layer core circuit forming substrate 10 are stacked and arranged as a substrate material. At that time, alignment between the materials (1, 10) or temporary fixing is performed as necessary so that conductive connection between the layers can be achieved.
[0034]
Next, the substrate material is compressed by hot pressing to form a laminate as shown in FIG. Further, as shown in FIG. 2D, the end face is cut at a predetermined position, and the metal foil 8 on the surface is patterned by a method such as etching to form a circuit 9 to obtain a multilayer circuit forming substrate having a four-layer structure. .
[0035]
(Embodiment 3)
FIG. 3 is a cross-sectional view showing a circuit-forming substrate material according to the third embodiment of the present invention. The substrate material 1 is a prepreg which is a composite material of a thermosetting resin 2 and an aramid fiber 3, and has the same properties as the substrate material 1 shown in the first embodiment. However, the gap 7 is already formed in this state.
[0036]
Various methods such as processing in the aramid fiber nonwoven fabric state before impregnation with the thermosetting resin 2 or processing after entering the prepreg state are possible for the formation of the void portion 7, and laser or punching is used as a processing tool. Such as mechanical punching can be used.
[0037]
In the present embodiment, since the gap 7 is formed when the substrate material 1 is supplied, a high-quality circuit-forming board can be formed without adding a step for machining the gap during the production of the circuit-formed board. Manufacturing is possible. However, in the case where the manufacturing process includes a process such as printing of the conductive paste as described in the first embodiment, a case where the gap portion becomes a problem is assumed. In that case, the formation of the void portion may be included in the process as in the first embodiment.
[0038]
【The invention's effect】
As described above, the circuit forming substrate manufacturing method and the substrate material according to the present invention compress the substrate material in the thickness direction when the circuit forming substrate is manufactured using a substrate material composed of a single material or a plurality of materials. Including a pressing step, and a manufacturing method including a gap forming step in which a part of the substrate material is hollowed out at one or a plurality of locations before the pressing step, or a sheet-like reinforcing material is impregnated with a thermosetting resin to form a B stage. By using a substrate material that is later hollowed out at one or more locations to form a void, a circuit-formed substrate can be produced without causing variations in the thickness of the substrate material by press working. It is possible to provide a highly reliable circuit forming substrate.
[Brief description of the drawings]
FIG. 1 is a process cross-sectional view of a circuit forming substrate manufacturing method according to a first embodiment of the present invention. FIG. 2 is a process cross-sectional view of a circuit forming substrate manufacturing method according to a second embodiment of the present invention. 3 is a cross-sectional view of a circuit-forming substrate material according to a third embodiment of the present invention.
DESCRIPTION OF SYMBOLS 1 Board | substrate material 2 Thermosetting resin 3 Aramid fiber 4 Laser 5 Through-hole 6 Conductive paste 7 Cavity part 8 Metal foil 9 Circuit 10 Core circuit formation board 12 Resin film

Claims (4)

熱硬化性樹脂を含むBステージ状態の基板材料にフィルムをラミネートするラミネート工程と、
基板材料に貫通あるいは非貫通の穴を形成する穴形成工程と
導電性ペーストを前記貫通あるいは非貫通の穴に充填する充填工程と
基板材料から前記フィルムを剥離する工程と、
基板材料の両面に金属箔を配置し厚み方向に圧縮するプレス工程と
前記金属箔をパターニングして回路を形成する工程と、
前記ラミネート工程より前、あるいは前記充填工程より後かつ前記プレス工程より前に前記基板材料の一部をくり抜く空隙形成工程とを備え
前記空隙部が形成された位置は、前記回路が形成された位置を含む位置または前記穴が形成された位置を除く位置であり、
前記複数の穴に充填された前記導電性ペーストは、前記プレス工程の際に基板材料中の熱硬化性樹脂が前記空隙部へ流れ込むことにより均一に圧縮されることを特徴とする回路形成基板の製造方法。
A laminating step of laminating a film on a B-stage substrate material containing a thermosetting resin ;
A hole forming step of forming a through or non-through hole in the substrate material ;
A filling step of filling the through or non-through hole with a conductive paste ;
Peeling the film from the substrate material;
A pressing process in which metal foil is disposed on both sides of the substrate material and compressed in the thickness direction ;
Patterning the metal foil to form a circuit;
A gap forming step for hollowing out a part of the substrate material before the laminating step or after the filling step and before the pressing step ;
The position where the gap is formed is a position including a position where the circuit is formed or a position excluding a position where the hole is formed,
The conductive paste filled in the plurality of holes is uniformly compressed by the thermosetting resin in the substrate material flowing into the gap during the pressing step . Production method.
熱硬化性樹脂が流れ込んだ前記空隙部は、前記熱硬化性樹脂が完全に埋められているものと完全に埋められていないものとが存在していることを特徴とする請求項1に記載の回路形成基板の製造方法。2. The gap according to claim 1, wherein the void portion into which the thermosetting resin has flowed includes one in which the thermosetting resin is completely filled and one in which the thermosetting resin is not completely filled. A method for manufacturing a circuit-formed substrate. 前記プレス工程は、基板材料中の熱硬化性樹脂が前記基板材料の外部に流れ出すことなく、あるいは前記基板材料周辺部への熱硬化性樹脂の流れ出し量が前記基板材料のサイズと略均一となるように前記基板材料を圧縮することを特徴とする請求項1に記載の回路形成基板の製造方法。In the pressing step, the thermosetting resin in the substrate material does not flow out of the substrate material, or the amount of the thermosetting resin flowing out to the periphery of the substrate material is substantially uniform with the size of the substrate material. The method for manufacturing a circuit-formed substrate according to claim 1, wherein the substrate material is compressed as described above. 導電性ペーストが充填された貫通穴と空隙部とを有する基板材料を準備する工程と、Preparing a substrate material having through holes and voids filled with a conductive paste;
金属箔と前記基板材料とコア回路形成基板とを積み重ねる工程と、Stacking the metal foil, the substrate material, and the core circuit forming substrate;
それを熱プレスにより圧縮し積層物を形成する工程と、Compressing it by hot pressing to form a laminate,
前記積層物の金属箔をパターニングして回路を形成する工程とを備え、Forming a circuit by patterning the metal foil of the laminate,
前記空隙部が形成された位置は、前記回路が形成された位置を含む位置または前記貫通穴が形成された位置を除く位置であり、The position where the gap is formed is a position including a position where the circuit is formed or a position excluding a position where the through hole is formed,
前記複数の貫通穴に充填された前記導電性ペーストは、前記プレス工程の際に基板材料中の熱硬化性樹脂が前記空隙部へ流れ込むことにより均一に圧縮されることを特徴とする回路形成基板の製造方法。The circuit-forming substrate, wherein the conductive paste filled in the plurality of through holes is uniformly compressed by the thermosetting resin in the substrate material flowing into the gap during the pressing step. Manufacturing method.
JP2003120008A 2003-04-24 2003-04-24 Method for manufacturing circuit-formed substrate Expired - Fee Related JP3823940B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003120008A JP3823940B2 (en) 2003-04-24 2003-04-24 Method for manufacturing circuit-formed substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003120008A JP3823940B2 (en) 2003-04-24 2003-04-24 Method for manufacturing circuit-formed substrate

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP11762299A Division JP2000307246A (en) 1999-04-26 1999-04-26 Manufacture of circuit forming substrate and material thereof

Publications (2)

Publication Number Publication Date
JP2003318547A JP2003318547A (en) 2003-11-07
JP3823940B2 true JP3823940B2 (en) 2006-09-20

Family

ID=29546118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003120008A Expired - Fee Related JP3823940B2 (en) 2003-04-24 2003-04-24 Method for manufacturing circuit-formed substrate

Country Status (1)

Country Link
JP (1) JP3823940B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004018052B4 (en) * 2004-04-08 2012-11-08 Volkswagen Ag Underrun protection for a motor vehicle
JP5719560B2 (en) * 2009-10-21 2015-05-20 株式会社半導体エネルギー研究所 Manufacturing method of terminal structure

Also Published As

Publication number Publication date
JP2003318547A (en) 2003-11-07

Similar Documents

Publication Publication Date Title
US20020192485A1 (en) Printed circuit board and method for producing the same
JP4819033B2 (en) Multilayer circuit board manufacturing method
WO2001045478A1 (en) Multilayered printed wiring board and production method therefor
JP4075673B2 (en) Copper-clad laminate for multilayer printed wiring board, multilayer printed wiring board, and method for manufacturing multilayer printed wiring board
WO2010113448A1 (en) Manufacturing method for circuit board, and circuit board
KR100736518B1 (en) Method for producing circuit-forming board and material for producing circuit-forming board
WO2007114111A1 (en) Multilayer wiring board and its manufacturing method
JPH11186698A (en) Manufacture of circuit board, and circuit board
JP4348815B2 (en) Method for manufacturing printed wiring board
WO2002034023A1 (en) Circuit forming board producing method, circuit forming board, and material for circuit forming board
KR20060037238A (en) Method of manufacturing circuit board
JP3879158B2 (en) Multilayer printed wiring board and manufacturing method thereof
JP3823940B2 (en) Method for manufacturing circuit-formed substrate
WO2003009656A1 (en) Circuit-formed substrate and method of manufacturing circuit-formed substrate
JP2005051075A (en) Multilayer circuit board and its manufacturing method
JP2000307246A (en) Manufacture of circuit forming substrate and material thereof
JP3705370B2 (en) Manufacturing method of multilayer printed wiring board
JP3956667B2 (en) Circuit board and manufacturing method thereof
JPH08316598A (en) Printed wiring board and production thereof
JP4797742B2 (en) Multilayer wiring board and manufacturing method thereof
JP2014068047A (en) Method for manufacturing multilayer printed wiring board
JPH1187912A (en) Manufacture of double-sided wiring board
KR100607626B1 (en) Flat coating process with utilizing a resin coated copper for printed circuit board
JPH05283862A (en) Manufacture of laminated printed board
JP2007266165A (en) Manufacturing method of multilayer wiring board

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060404

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060619

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090707

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100707

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110707

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110707

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120707

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120707

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130707

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees