JP3823237B2 - Welding structure of steel structure and welding method of steel structure - Google Patents

Welding structure of steel structure and welding method of steel structure Download PDF

Info

Publication number
JP3823237B2
JP3823237B2 JP23997397A JP23997397A JP3823237B2 JP 3823237 B2 JP3823237 B2 JP 3823237B2 JP 23997397 A JP23997397 A JP 23997397A JP 23997397 A JP23997397 A JP 23997397A JP 3823237 B2 JP3823237 B2 JP 3823237B2
Authority
JP
Japan
Prior art keywords
steel
welding
steel structure
temporary
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP23997397A
Other languages
Japanese (ja)
Other versions
JPH1177297A (en
Inventor
章 梅国
孝輔 鶴岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Corp
Original Assignee
Takenaka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Corp filed Critical Takenaka Corp
Priority to JP23997397A priority Critical patent/JP3823237B2/en
Publication of JPH1177297A publication Critical patent/JPH1177297A/en
Application granted granted Critical
Publication of JP3823237B2 publication Critical patent/JP3823237B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Ladders (AREA)
  • Joining Of Building Structures In Genera (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、鉄骨柱、鉄骨梁等(以下、本設の鋼構造母材という。)に、地震力等の外力が作用した場合に本来その荷重を負担する必要のない外装パネルを取り付けるためのファスナー等(以下、二次部材という。)や、仮設梯子、エンドタブ、裏当金、吊りピース等(以下、仮設の鋼製部材という。)を溶接接合する場合の鋼構造物の溶接構造及び鋼構造物の溶接工法の技術分野に属する。
【0002】
【従来の技術】
一般に、鋼構造物に関しては、前記本設の鋼構造母材に、地震力等の外力が作用した場合に本来その荷重を負担する必要のない前記二次部材や、仮設の鋼製部材を溶接接合することが多い。
従来、建築の分野で行われる溶接に関しては、工場溶接である場合は勿論のこと、現場溶接についても必要にして十分な品質管理が行われている。
【0003】
しかし、現実問題として、前記本設の鋼構造母材の溶接については、例えば特開平8−281486号公報、特開平8−281487号公報等に開示されているように、入念にして注意深い品質管理が行われているが、その一方、本来、構造物に大きな意味を持たない二次部材や、仮設の鋼製部材の溶接に関しては、溶接長さの短いものが多く、強度的にも軽微な荷重に耐えれば十分であるとの認識から、予熱などの十分な品質管理が行われにくい環境にあった。
【0004】
【本発明が解決しようとする課題】
兵庫県南部地震について調査した結果、多くの本設鋼構造材に、二次部材、仮設鋼製部材の取り付け部分を起点とした破壊が発生していることが認められ問題となっている。この破壊の中には、本設鋼構造材が本来有する伸びあるいは強度を発現する以前に破壊する脆性破壊が見られた。その理由、原因について調査、研究を進めた結果、二次部材、仮設鋼製部材の十分に品質管理されない溶接が、(1)本設鋼構造材に硬度の上昇、エネルギー吸収能力の低下など母材の劣化、脆化という悪影響を及ぼしていること、及び(2)本設鋼構造材に地震等の外力が作用した場合に、本来その荷重を負担する必要のない二次部材、仮設鋼製部材がその接合部を介してある程度荷重を負担する形状効果を発揮し、本設鋼構造材に応力集中を発生させ、その応力集中部からの亀裂が発生、進展すること、がそれぞれ明らかになり問題となっている。
【0005】
したがって、本発明の目的は、二次部材、仮設鋼製部材を本設鋼構造材に溶接接合する際に、同本設鋼構造材よりも低い強度の溶接材を用いて溶接接合することにより、本設の鋼構造母材の硬度の上昇を抑制して本設鋼構造材の脆性破壊を極力抑制すること、及び二次部材、仮設の鋼製部材が形状効果を発揮する以前に剥離して応力の集中を防ぐこと、が可能な鋼構造物の溶接構造及び鋼構造物の溶接工法を提供することである。
【0006】
【課題を解決するための手段】
上記従来技術の課題を解決するための手段として、請求項1の発明に係る鋼構造物の溶接構造は、
本設鋼構造材に、二次部材、仮設鋼製部材を溶接接合して成る鋼構造物の溶接構造において、
地震等の外力が作用した場合に、その荷重を負担する必要のない二次部材、仮設の鋼製部材が、本設の鋼構造母材から剥離して本設の鋼構造母材への応力集中を低減可能に、本設鋼構造材よりも低い強度の溶接材を用いて、本設の鋼構造母材に、二次部材、仮設の鋼製部材が溶接接合されていることを特徴とする。
【0007】
請求項2の発明に係る鋼構造物の溶接工法は、本設鋼構造材に、二次部材、仮設鋼製部材を溶接接合する鋼構造物の溶接工法において、
地震等の外力が作用した場合に、その荷重を負担する必要のない二次部材、仮設の鋼製部材が、本設の鋼構造母材から剥離して本設の鋼構造母材への応力集中を低減可能に、本設鋼構造材よりも低い強度の溶接材を用いて、本設の鋼構造母材に、二次部材、仮設の鋼製部材を溶接接合することを特徴とする。
請求項3の発明に係る鋼構造物の溶接工法は、請求項2に記載した溶接材として炭素量が0.01%以下の工業用純鉄を溶接材として用い、不活性ガスを送給するTIG溶接又はMIG溶接により溶接することを特徴とする。
【0008】
【発明の実施の形態、及び実施例】
本発明に係る鋼構造物の溶接構造は、本設鋼構造材が一般的な鋼材、すなわち、降伏応力は245MPa以上、引張強度は400MPa以上の鋼材とし、溶接材は、地震等の外力が作用した場合に、その荷重を負担する必要のない二次部材、仮設の鋼製部材が、本設の鋼構造母材から剥離して本設の鋼構造母材への応力集中を低減可能に、前記本設鋼構造材よりも低い強度の金属を用いて実施する。例えば、炭素量が0.01%以下の工業用純鉄を溶接材として用い、不活性ガス(シールドガス)を送給するTIG溶接又はMIG溶接により、不活性ガス雰囲気中で前記溶接材をアーク熱により溶融させ合金化して凝固させることにより、降伏応力が245MPa未満で、且つ引張強度が400MPa未満の溶接部で実施する。
【0009】
図1は、本設鋼構造材1の脆性破壊の一つの指標であるCTOD(Crack Tip Opening Displacement)試験例を示している。図中の符号2は前記二次部材又は仮設鋼製部材(以下、単に「二次部材」と云う。)であり、符号3は溶接部である。また、符号hはCTOD値を表している。なお、この試験は、熱影響部と溶接金属部で実施される。この試験例における前記本設鋼構造材1及び二次部材2の大きさは共に、幅が15mm、厚さ(符号t)が30mmで実施され、本設鋼構造材1及び二次部材2の全体の長さ(符号a)は200mmである。荷重Pは、前記本設鋼構造材1及び二次部材2の両端から略等距離の100mm付近に掛かる。この試験ではK形開先溶接が採用される。試験温度は−50〜−30℃とする。
【0010】
本設鋼構造材1、及び二次部材2は、降伏応力が250MPaで、且つ引張強度は410MPaのもので実施した。一方、この本設鋼構造材1を溶接接合する溶接材には、降伏応力が216MPaで、且つ引張強度は325MPaのものを実施した。なお、比較例として、本設鋼構造材と略同等の降伏応力が250MPaで、且つ引張強度は410MPaの強度を有する溶接材でも実施した。以下、前者(本発明)をアンダーマッチングと云い、後者(比較例)をイーブンマッチングと云う。この試験結果は下記の[表1]のとおりである。
【0011】
【表1】

Figure 0003823237
【0012】
上記試験の結果、アンダーマッチングのCTOD値(h)は、イーブンマッチングのCTOD値に比し熱影響部で約1.5倍、溶接金属部で約3.5倍となり、母材劣化防止効果及び溶接部の変形能力向上効果が確認された。
図2は、本設鋼構造材1の脆性破壊の一つの指標である硬さ試験例を示している。この試験ではレ形開先溶接が採用される。溶接部3のうち、下部3aはアンダーマッチングで溶接接合する。一方、比較例として、前記溶接部3のうち上部3bはイーブンマッチングで溶接接合する。この試験結果は下記の[表2]のとおりである。
【0013】
【表2】
Figure 0003823237
【0014】
上記試験の結果、アンダーマッチングによる試験体のビッカーズ硬さは、イーブンマッチングのそれに比し全体的に10%〜20%低下している。すなわち、前記二次部材2の本設鋼構造材への影響を、熱影響部の硬さ上昇を抑えることにより脆性破壊を低減させ得ることが確認された。
更に、アンダーマッチング、及びイーブンマッチングについて、本設鋼構造材1と二次部材2との溶接に適用したモデルに対する有限要素法を用いた2次元平面塑性歪み分布図をそれぞれ図3及び図4に示す。図3は、アンダーマッチングにおける全体の歪み度が2%のときの塑性歪みの分布図である。図4は、イーブンマッチングにおける全体の歪み度が2%のときの塑性歪みの分布図である。図3は、図中の符号A(歪み度=0.00488)を中心に外側へ向けて等高線の如く段階的に歪み度が小さくなり、図4は、図中の符号B(歪み度=0.006)を中心に外側へ向けて等高線の如く段階的に歪み度が小さくなる。アンダーマッチングによると溶接部3の方に前記等高線が伸びていくので、二次部材2は、本設鋼構造材1に悪影響を与えることなく剥離する。二次部材を剥離すると、本設鋼構造材1への応力集中、歪み集中が低減する。
【0015】
以上要するに、二次部材2を本設鋼構造材1に溶接接合する際に、同本設鋼構造材1よりも低い強度で溶接接合すると、地震等の外力が作用した場合に、本設鋼構造材1の脆性破壊の要因である熱影響部の硬さ上昇や本設鋼構造母材1への応力集中、歪み集中を低減させることができるので、本設鋼構造材1における二次部材2の溶接接合部を起点とした脆性破壊を極力抑制することができる。
【0016】
なお、高張力鋼の場合は、通常の強度を有する溶接材を用いて実施しても前記効果を得ることはもちろんである。
【0017】
【本発明が奏する効果】
本発明に係る鋼構造物の溶接構造及び鋼構造物の溶接工法によれば、地震等の外力が作用した場合に、本設鋼構造材の脆性破壊の要因である熱影響部の硬さ上昇や本設鋼構造材への応力集中、歪み集中を低減させることができ、本設鋼構造材が本来有する伸びあるいは強度を発現して破壊するので、本設鋼構造材における二次部材や仮設鋼製部材の溶接接合部を起点とした脆性破壊を極力抑制することができる。
【図面の簡単な説明】
【図1】 本設鋼構造材におけるCTOD試験例を示した正面図である。
【図2】 本設鋼構造材における硬さ試験例を示した正面図である。
【図3】 有限要素法を用いた2次元平面塑性歪み分布図である。
【図4】 有限要素法を用いた2次元平面塑性歪み分布図である。
【符号の説明】
1 本設鋼構造
2 二次部材
3 溶接部[0001]
BACKGROUND OF THE INVENTION
The present invention is for attaching an exterior panel that originally does not need to bear the load when an external force such as seismic force is applied to a steel column, a steel beam, etc. (hereinafter referred to as a steel structure base material of the present installation). Steel structure welded structure and steel for welding and joining fasteners (hereinafter referred to as secondary members) , temporary ladders, end tabs, backing metal, suspension pieces (hereinafter referred to as temporary steel members), etc. It belongs to the technical field of welding methods for structures.
[0002]
[Prior art]
In general, with regard to steel structures , when an external force such as seismic force is applied to the steel structure base material of the main construction, the secondary member that does not need to bear the load originally or a temporary steel member is welded. Often joined.
Conventionally, with regard to welding performed in the field of construction, not only factory welding but also on-site welding is necessary and sufficient quality control is performed.
[0003]
However, as a practical problem, with regard to the welding of the steel structure base material of the main installation, as disclosed in, for example, JP-A-8-281486, JP-A-8-281487, etc., careful and careful quality control On the other hand, with regard to welding of secondary members that do not have a significant meaning to the structure and temporary steel members, there are many short weld lengths that are also light in strength. From the recognition that it is sufficient to withstand the load, it was difficult to perform sufficient quality control such as preheating.
[0004]
[Problems to be solved by the present invention]
As a result of investigation for the Kobe earthquake, a lot of steel structure base material of this set, the secondary member, it becomes a recognized problem that destruction starting from the mounting portion of the steel member of the temporary has occurred Yes. Some of this destruction, brittle fracture to break before expressing elongation or strength steel structural matrix of the set have originally was observed. The reason, research on the cause, the result of studying the secondary member, fully welded not quality control of temporary steel members, (1) increase in hardness in the steel structure matrix of the set, decrease in energy absorption capacity degradation of the matrix, such as, that an adverse effect of embrittlement, and (2) when an external force such as an earthquake to the steel structure matrix of the set is applied, unnecessary secondary member to bear the load original , the steel member temporary exerts a shape effect to bear some load through the joint, the steel structure matrix of the set to generate a stress concentration, crack from the stress concentration portion occurs, progress This has become a problem.
[0005]
Accordingly, an object of the present invention, the secondary member, the steel member temporary when welded to the steel structure matrix of the set, using a welding material of lower strength than the steel structure matrix of the present set by welding, prevented to the utmost brittle fracture of steel base material of the present set to suppress the increase of hardness of steel base material of the present setting, and the secondary member, the steel member temporary shape effect It is intended to provide a welded structure of a steel structure and a welding method of the steel structure that can be peeled off before exhibiting the effect of preventing stress concentration.
[0006]
[Means for Solving the Problems]
As means for solving the above-mentioned problems of the prior art, a welded structure of a steel structure according to the invention of claim 1 is:
The steel structure matrix of the set, the secondary member, in welded structures of steel structures formed by welding a steel member of temporary,
When an external force such as an earthquake is applied, the secondary member and temporary steel member that do not need to bear the load are peeled off from the main steel structure base material and stress is applied to the main steel structure base material. possible reduced concentration, using a welding material of lower strength than the steel structure matrix of the set, the steel structure matrix of the set, the secondary member, that the steel member temporary are welded Features.
[0007]
Welding method of steel structures according to the invention of claim 2, the steel structure matrix of the set, the secondary member, in the welding method of the steel structures of welded steel members temporary,
When an external force such as an earthquake is applied, the secondary member and temporary steel member that do not need to bear the load are peeled off from the main steel structure base material and stress is applied to the main steel structure base material. possible reduced concentration, using a welding material of lower strength than the steel structure matrix of the set, the steel structure matrix of the set, and characterized in that welding of the secondary member, the steel member of temporary To do.
A welding method for a steel structure according to the invention of claim 3 uses an industrial pure iron having a carbon content of 0.01% or less as the welding material according to claim 2 and feeds an inert gas. It is characterized by welding by TIG welding or MIG welding.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Welded structure of steel structures according to the present invention, the steel Steel matrix of the set is generally, that the yield stress is 245MPa or more, tensile strength not less than steel 400 MPa, welding material, an external force such as an earthquake When this occurs, the secondary and temporary steel members that do not need to bear the load can be peeled off from the main steel structure base material, reducing stress concentration on the main steel structure base material. to be carried out with a metal lower strength than steel structural matrix of the present set. For example, industrial pure iron with a carbon content of 0.01% or less is used as a welding material, and the welding material is arced in an inert gas atmosphere by TIG welding or MIG welding for supplying an inert gas (shield gas). By melting and alloying by heat and solidifying, welding is performed at a yield stress of less than 245 MPa and a tensile strength of less than 400 MPa.
[0009]
Figure 1 shows one is an index CTOD (Crack Tip Opening Displacement) Test Example brittle fracture of steel base material 1 of the present set. Reference numeral 2 in the drawing said secondary member or temporary steel member (hereinafter, simply referred to as "secondary member".), And reference numeral 3 is a weld. The symbol h represents the CTOD value. This test is performed on the heat affected zone and the weld metal zone. The size of the steel structure of the set preform 1 and the secondary member 2 in this experiment are both width 15 mm, thickness (code t) is performed at 30 mm, the steel structure of the set preform 1 and the secondary The total length (symbol a) of the next member 2 is 200 mm. Load P is applied to the vicinity of 100mm of substantially equal distances from the steel structure both ends of the preform 1 and the secondary member 2 of the present set. In this test, K-type groove welding is employed. The test temperature is -50 to -30 ° C.
[0010]
Steel preform 1 of the present setting, and the secondary member 2, yield stress at 250 MPa, and the tensile strength was carried out in those 410 MPa. On the other hand, the welding material for welding steel structures preform 1 of the book setting, yield stress at 216MPa, and the tensile strength was carried out those 325 MPa. As a comparative example, a steel structure preform substantially equal yield stress of this setting is at 250 MPa, and the tensile strength was carried out in the welding material having a strength of 410 MPa. Hereinafter, the former (the present invention) is referred to as undermatching, and the latter (comparative example) is referred to as even matching. The test results are as shown in [Table 1] below.
[0011]
[Table 1]
Figure 0003823237
[0012]
As a result of the above test, the CTOD value (h) of the undermatching is about 1.5 times in the heat affected zone and about 3.5 times in the weld metal portion compared with the CTOD value of the even matching. The effect of improving the deformability of the weld was confirmed.
Figure 2 shows one of the hardness test example is an indication of the brittle fracture of steel base material 1 of the present set. In this test, a bevel groove welding is employed. Of the welded portion 3, the lower portion 3a is welded by undermatching. On the other hand, as a comparative example, the upper part 3b of the welded part 3 is welded by even matching. The test results are shown in [Table 2] below.
[0013]
[Table 2]
Figure 0003823237
[0014]
As a result of the above test, the Vickers hardness of the specimen due to undermatching is generally 10% to 20% lower than that of even matching. That is, the influence on the secondary member 2 of the present set Steel preform, it was confirmed that may reduce brittle fracture by suppressing the hardness increase of the heat-affected zone.
Furthermore, under the matching, and the even-matching, respectively FIGS. 3 and the applied two-dimensional using a finite element method for the model plane plastic strain distribution diagram of the welding of steel base material 1 of the present setting and the secondary member 2 4 shows. FIG. 3 is a distribution diagram of plastic strain when the total degree of distortion in undermatching is 2%. FIG. 4 is a distribution diagram of plastic strain when the total degree of strain in even matching is 2%. In FIG. 3, the degree of distortion gradually decreases like a contour line toward the outside centered on the reference symbol A (degree of distortion = 0.488) in the figure, and FIG. 4 shows the reference numeral B (degree of distortion = 0) in the figure. .006) toward the outside and the degree of distortion gradually decreases like a contour line. Because According to the under-matching will the contour lines extending towards the weld 3, the secondary member 2 is peeled off without the steel structural base material 1 of the present set adversely affect. When peeling the secondary member 2, stress concentration in the steel structure preform 1 of the present setting, strain concentration is reduced.
[0015]
In short, when welding the second member 2 to Steel preform 1 of the present setting, when welding at a lower strength than steel structural base material 1 of the present setting, when an external force such as an earthquake is applied , of the set concentration of stress hardness increase and the setting of the heat affected zone which is a factor of brittle fracture of steel base material 1 to the steel structure preform 1, it is possible to reduce the strain concentration, of the set the brittle fracture starting from the weld joints of the secondary member 2 in steel preform 1 can be suppressed as much as possible.
[0016]
In the case of high-strength steel, it is a matter of course that the above-mentioned effect can be obtained even when a welding material having a normal strength is used.
[0017]
[Effects of the present invention]
According to the welding structure and steel structure welding method of steel structures according to the present invention, when an external force such as an earthquake is applied, hard heat affected zone which is a factor of brittle fracture of steel base material of the set raised and stress concentration in the steel structure matrix of the set, it is possible to reduce the strain concentration, since the steel structure matrix of the set is broken expressing elongation or strength inherent steel structure of the set the brittle fracture starting from the weld joints of the secondary member and the temporary steel members in the base material can be suppressed as much as possible.
[Brief description of the drawings]
1 is a front view of an CTOD test examples in Steel matrix of the set.
2 is a front view showing the hardness test example in Steel matrix of the set.
FIG. 3 is a two-dimensional plane plastic strain distribution diagram using a finite element method.
FIG. 4 is a two-dimensional plane plastic strain distribution diagram using a finite element method.
[Explanation of symbols]
One Steel preform set 2 secondary member 3 welded portion

Claims (3)

本設鋼構造材に、二次部材、仮設鋼製部材を溶接接合して成る鋼構造物の溶接構造において、
地震等の外力が作用した場合に、その荷重を負担する必要のない二次部材、仮設の鋼製部材が、本設の鋼構造母材から剥離して本設の鋼構造母材への応力集中を低減可能に、本設鋼構造材よりも低い強度の溶接材を用いて、本設の鋼構造母材に、二次部材、仮設の鋼製部材が溶接接合されていることを特徴とする、鋼構造物の溶接構造。
The steel structure matrix of the set, the secondary member, in welded structures of steel structures formed by welding a steel member of temporary,
When an external force such as an earthquake is applied, the secondary member and temporary steel member that do not need to bear the load are peeled off from the main steel structure base material and stress is applied to the main steel structure base material. possible reduced concentration, using a welding material of lower strength than the steel structure matrix of the set, the steel structure matrix of the set, the secondary member, that the steel member temporary are welded Characteristic welded structure of steel structure.
本設鋼構造材に、二次部材、仮設鋼製部材を溶接接合する鋼構造物の溶接工法において、
地震等の外力が作用した場合に、その荷重を負担する必要のない二次部材、仮設の鋼製部材が、本設の鋼構造母材から剥離して本設の鋼構造母材への応力集中を低減可能に、本設鋼構造材よりも低い強度の溶接材を用いて、本設の鋼構造母材に、二次部材、仮設の鋼製部材を溶接接合することを特徴とする、鋼構造物の溶接工法。
The steel structure matrix of the set, the secondary member, in the welding method of the steel structures of welded steel members temporary,
When an external force such as an earthquake is applied, the secondary member and temporary steel member that do not need to bear the load are peeled off from the main steel structure base material and stress is applied to the main steel structure base material. possible reduced concentration, using a welding material of lower strength than the steel structure matrix of the set, the steel structure matrix of the set, and characterized in that welding of the secondary member, the steel member of temporary To weld steel structures.
炭素量が0.01%以下の工業用純鉄を溶接材として用い、不活性ガスを送給するTIG溶接又はMIG溶接により溶接することを特徴とする、請求項2に記載した鋼構造物の溶接工法。  3. The steel structure according to claim 2, wherein the pure steel for industrial use having a carbon content of 0.01% or less is used as a welding material, and welding is performed by TIG welding or MIG welding for feeding an inert gas. Welding method.
JP23997397A 1997-09-04 1997-09-04 Welding structure of steel structure and welding method of steel structure Expired - Lifetime JP3823237B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23997397A JP3823237B2 (en) 1997-09-04 1997-09-04 Welding structure of steel structure and welding method of steel structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23997397A JP3823237B2 (en) 1997-09-04 1997-09-04 Welding structure of steel structure and welding method of steel structure

Publications (2)

Publication Number Publication Date
JPH1177297A JPH1177297A (en) 1999-03-23
JP3823237B2 true JP3823237B2 (en) 2006-09-20

Family

ID=17052595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23997397A Expired - Lifetime JP3823237B2 (en) 1997-09-04 1997-09-04 Welding structure of steel structure and welding method of steel structure

Country Status (1)

Country Link
JP (1) JP3823237B2 (en)

Also Published As

Publication number Publication date
JPH1177297A (en) 1999-03-23

Similar Documents

Publication Publication Date Title
CN103785962B (en) A kind of titanium-steel composite board full impregnated welding method
JP2008229720A (en) Spot-welded joint of high-strength steel sheets excellent in tensile strength, automotive component having the same joint, and spot-welding method of high-strength steel sheets
NZ502045A (en) Gas arc welding composition resulting in ductile to brittle temperature lower than -73 degrees celsius
EP1020539A3 (en) Super-high-strength line pipe excellent in low temperature toughness and production method thereof
CN107866628B (en) Welding method for improving bearing capacity of aging-strengthened aluminum alloy fusion welding joint
JP2008178905A (en) Laser welding method for structure composed of steel plate
JP6958765B1 (en) Resistance spot welding method and resistance spot welding joint manufacturing method
JP3823237B2 (en) Welding structure of steel structure and welding method of steel structure
JP3718365B2 (en) High fatigue strength welded joint
EP2487004A1 (en) Method of producing a welded article of dispersion strengthened Platinum based alloy with two steps welding
KR20170094625A (en) Method for welding alloy steel and carbon steel
JP2002210557A (en) Welding method utilizing maltensite transformational expansion
He et al. Effects of heat input on laser welding residual stress and distortion of TC 4 titanium alloy.
JP4516702B2 (en) High toughness low temperature transformation flux cored wire
JP3820493B2 (en) Welding method for steel structures
KR102353694B1 (en) Ceramic backing material having alloy elements for welding
JP7376779B2 (en) Welded joints and auto parts
JP3080337U (en) Margin structure
CN1265935C (en) Welding material for improved welded seam strength
JPH0455073A (en) Joining method
Puthli et al. Thin‐walled structural hollow section joints
KR102046957B1 (en) High Efficient Welded Joint Having Excellent Brittle Crack Propagation Stopping Performance and Method for Manufacturing the Same
JP4304892B2 (en) Welded joint
JP5055758B2 (en) Stainless steel welded joints
Bal Uniaxial Tensile Strength and Susceptibility to Intergranular Corrosion of Hastelloy C-276 Sheets Welded by Ytterbium-Fiber Laser Beam and Electron Beam

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050920

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060614

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051118

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100707

Year of fee payment: 4