JP7376779B2 - Welded joints and auto parts - Google Patents

Welded joints and auto parts Download PDF

Info

Publication number
JP7376779B2
JP7376779B2 JP2019202368A JP2019202368A JP7376779B2 JP 7376779 B2 JP7376779 B2 JP 7376779B2 JP 2019202368 A JP2019202368 A JP 2019202368A JP 2019202368 A JP2019202368 A JP 2019202368A JP 7376779 B2 JP7376779 B2 JP 7376779B2
Authority
JP
Japan
Prior art keywords
weld metal
steel base
base material
weld
hardness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019202368A
Other languages
Japanese (ja)
Other versions
JP2021074740A (en
Inventor
和貴 松田
真二 児玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2019202368A priority Critical patent/JP7376779B2/en
Publication of JP2021074740A publication Critical patent/JP2021074740A/en
Application granted granted Critical
Publication of JP7376779B2 publication Critical patent/JP7376779B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Butt Welding And Welding Of Specific Article (AREA)

Description

本発明は,溶接継手、及び自動車部品に関するものである。 The present invention relates to welded joints and automobile parts.

例えば、自動車の分野では、環境保全のため、車体の軽量化による燃費の向上とともに、衝突安全性の向上が求められている。従来から、車体の軽量化と衝突安全性の向上を図るために、板厚の薄い高強度鋼板を車体の構造部材として使用するとともに車体構造の最適化を行うなど、様々な技術開発が行われている。なお、自動車部品のなかには、複数の高強度鋼板を母材として有する溶接継手も含まれる。
自動車分野では、溶接継手の製造方法として、鋼母材として2枚の鋼板を合わせた状態でアーク溶接を行うアーク溶接法が広く採用されている。
For example, in the field of automobiles, in order to preserve the environment, there is a need to improve fuel efficiency by reducing the weight of vehicle bodies, as well as to improve collision safety. Various technological developments have been carried out to reduce the weight of car bodies and improve collision safety, such as using thinner high-strength steel plates as structural members of car bodies and optimizing car body structures. ing. Note that automobile parts also include welded joints having multiple high-strength steel plates as base materials.
In the automobile field, as a method for manufacturing welded joints, an arc welding method in which arc welding is performed using two steel plates joined together as steel base materials is widely adopted.

自動車部品は、振動又は繰返しの外力負荷を伴う環境で使用される。そのため、自動車部品には、通常の静的な引張強度の他に、繰り返し作用する力に耐えるように、十分な疲労強度が要求される。そして、鋼母材の疲労強度(疲労限)は、その引張強度に比例して上昇するが、アーク溶接継手の疲労強度は、鋼母材の疲労強度より低くなることが一般的に知られている。 Automotive parts are used in environments with vibration or repeated external force loads. Therefore, in addition to normal static tensile strength, automobile parts are required to have sufficient fatigue strength to withstand repeated forces. The fatigue strength (fatigue limit) of the steel base material increases in proportion to its tensile strength, but it is generally known that the fatigue strength of arc welded joints is lower than the fatigue strength of the steel base material. There is.

そのため、従来から、アーク溶接継手の疲労強度を向上させる技術が検討されている。 Therefore, techniques for improving the fatigue strength of arc welded joints have been studied.

例えば、特許文献1には、アーク溶接により形成された鋼のすみ肉溶接継手であって、溶接金属のマルテンサイト変態開始温度(Ms点)が400℃以上550℃以下、溶接止端部の止端半径ρを母材の板厚tで割った値(ρ/t)が0.25以上、かつ式:Ms(℃)≦375×[ρ/t]+320を満たし、かつ割れ欠陥のない、すみ肉溶接継手。」が開示されている。 For example, Patent Document 1 describes a steel fillet welded joint formed by arc welding, in which the martensitic transformation start temperature (Ms point) of the weld metal is 400°C or more and 550°C or less, and the weld toe is The value (ρ/t) obtained by dividing the end radius ρ by the plate thickness t of the base material is 0.25 or more, and the formula: Ms (°C) ≦ 375 × [ρ/t] + 320 is satisfied, and there are no cracking defects. Fillet weld joint. ' has been disclosed.

また、特許文献2には、「C:0.01~0.15%、Si:0.3~2.0%、Mn:1.0~3.0%、P:0.05%以下、S:0.005%以下、Al:0.005~0.05%、Ti:0.005~0.08%、N:0.003~0.025%を含み、かつ、前記Al、TiおよびNは所定の関係で含有し、残部はFeおよび不可避的不純物からなる組成の鋼材と、該鋼材をガスシールドアークすみ肉溶接して得られた、所定の化学組成の溶接金属とからなる、疲労特性に優れるすみ肉溶接継手。」が開示されている。 Furthermore, Patent Document 2 states that "C: 0.01 to 0.15%, Si: 0.3 to 2.0%, Mn: 1.0 to 3.0%, P: 0.05% or less, S: 0.005% or less, Al: 0.005 to 0.05%, Ti: 0.005 to 0.08%, N: 0.003 to 0.025%, and the Al, Ti and Fatigue steel consisting of a steel material with a composition in which N is contained in a predetermined relationship and the remainder is Fe and unavoidable impurities, and a weld metal with a predetermined chemical composition obtained by gas-shielded arc fillet welding of the steel material. A fillet welded joint with excellent properties.'' is disclosed.

特開2012-11429号公報Japanese Patent Application Publication No. 2012-11429 特開2002-224834号公報JP2002-224834A

ここで、アーク溶接継手の疲労強度は、溶接金属の止端部形状に対して依存性を有している。
溶接金属の止端部形状が急峻な形状の場合(溶接金属の止端角度βが、β≧35°を満たす場合)、止端部の応力集中が非常に高くなり、アーク溶接継手が繰り返し引張荷重を受け続けると、早期の段階で、溶接金属の止端部と鋼母材との境界(溶融境界)に疲労亀裂が発生する。
一方、溶接金属の止端部形状が「なだらか」な形状の場合(溶接金属の止端角度βが、0<β≦35°を満たす場合)、止端部の応力集中が緩やかになり、止端部の溶接金属の表面に疲労亀裂が発生する。
Here, the fatigue strength of an arc welded joint has dependence on the shape of the toe of the weld metal.
When the toe of the weld metal has a steep shape (when the toe angle β of the weld metal satisfies β≧35°), the stress concentration at the toe becomes extremely high, and the arc welded joint is repeatedly pulled. If the load continues to be applied, fatigue cracks will occur at an early stage at the boundary (melt boundary) between the toe of the weld metal and the steel base metal.
On the other hand, when the toe of the weld metal has a "sloping" shape (when the toe angle β of the weld metal satisfies 0<β≦35°), the stress concentration at the toe becomes gentle and Fatigue cracks occur on the surface of the weld metal at the edges.

特許文献1の技術は、溶接金属の止端部形状が「なだらか」な形状とし、止端部の応力集中が緩やかにした上で、Ms点を高くして低温で変態を生じさせ、溶接金属の溶接残留応力を緩和して疲労強度向上させる技術である。
特許文献2の技術は、溶接金属の止端部形状が「なだらか」な形状とし、止端部の応力集中が緩やかにした上で、固溶Nを多く残してして溶接金属の疲労強度向上させる技術である。
The technique disclosed in Patent Document 1 involves making the toe of the weld metal a "sloping" shape, making the stress concentration at the toe gentle, and raising the Ms point to cause transformation at a low temperature. This technology improves fatigue strength by alleviating welding residual stress.
The technology of Patent Document 2 improves the fatigue strength of the weld metal by making the toe of the weld metal a "sloping" shape, reducing stress concentration at the toe, and leaving a large amount of solid solution N. It is a technology that allows

しかし、特許文献1~2の技術は、引張強度が780MPa程度の鋼母材を溶接したときの疲労強度向上させる技術であり、引張強度が980MPa以上の鋼母材を溶接したときの疲労強度向上について検討されていない。 However, the technologies disclosed in Patent Documents 1 and 2 are technologies for improving fatigue strength when welding steel base materials with a tensile strength of about 780 MPa, and improve fatigue strength when welding steel base materials with a tensile strength of 980 MPa or more. has not been considered.

そこで、本発明の課題は、少なくとも一方が引張強度980MPa以上の一対の鋼母材が溶接され、かつ疲労強度に優れた溶接継手、及び、それを備える自動車部品を提供することである。 Therefore, an object of the present invention is to provide a welded joint in which a pair of steel base metals, at least one of which has a tensile strength of 980 MPa or higher, is welded and has excellent fatigue strength, and an automobile part equipped with the welded joint.

課題を解決するための手段は、次の態様を含む。 Means for solving the problem includes the following aspects.

<1>
少なくとも一方が引張強度980MPa以上の一対の鋼母材と、
前記一対の鋼母材のうち、一方の鋼母材の面と他方の鋼母材の面とで形成される境界に沿って延在する溶接金属であって、溶接金属の止端角度βが0°<β≦35°を満たし、かつ、(溶接金属の表層硬さ)/(溶接金属の内部硬さ)≧0.85を満たす溶接金属と、
を有する溶接継手。
<2>
前記鋼母材の板厚が、0.6~4.0mmである<1>に記載の溶接継手。
<3>
前記溶接金属が、質量%で
C :0.01~0.30%
Si:0.02~2.00%
Mn:1.5~4.0%
Ti:0.01~2.00%
P :0.100%以下
S :0.0500%以下
Cr:0~2.0%、および
Mo:0~1.0%
を含む鋼で構成されている<1>又は<2>に記載の溶接継手。
<4>
下記式(1)を満たす<1>~<3>のいずれか1項に記載の溶接継手。
Mn+3.33Cr+2.61Mo≧1.70・・・(1)
式(1)中、元素記号は、該当する元素の含有量(質量%)を示す。
<5>
<1>~<4>のいずれか1項に記載の溶接継手を備える自動車部品。
<1>
a pair of steel base materials, at least one of which has a tensile strength of 980 MPa or more;
The weld metal extends along the boundary formed by the surface of one steel base material and the surface of the other steel base material among the pair of steel base materials, and the toe angle β of the weld metal is A weld metal that satisfies 0°<β≦35° and satisfies (surface hardness of weld metal)/(internal hardness of weld metal)≧0.85,
Welded joints with.
<2>
The welded joint according to <1>, wherein the steel base material has a plate thickness of 0.6 to 4.0 mm.
<3>
The weld metal has C: 0.01 to 0.30% in mass%
Si: 0.02-2.00%
Mn: 1.5-4.0%
Ti: 0.01-2.00%
P: 0.100% or less S: 0.0500% or less Cr: 0 to 2.0%, and Mo: 0 to 1.0%
The welded joint according to <1> or <2>, which is made of steel containing.
<4>
The welded joint according to any one of <1> to <3>, which satisfies the following formula (1).
Mn+3.33Cr+2.61Mo≧1.70...(1)
In formula (1), the element symbol indicates the content (mass%) of the corresponding element.
<5>
An automobile part comprising the welded joint according to any one of <1> to <4>.

本発明によれば、少なくとも一方が引張強度980MPa以上の一対の鋼母材が溶接され、かつ疲労強度に優れた溶接継手、及び、それを備える自動車部品を提供できる。 According to the present invention, it is possible to provide a welded joint in which a pair of steel base metals, at least one of which has a tensile strength of 980 MPa or more, is welded and has excellent fatigue strength, and an automobile part including the same.

本発明の溶接継手の一例を示す断面図である。1 is a sectional view showing an example of a welded joint of the present invention. 本発明の溶接継手の一例を示す平面図である。FIG. 1 is a plan view showing an example of a welded joint of the present invention. 本発明の溶接継手において、溶接金属の表層硬さ、及び溶接金属の内部硬さの測定方法を説明する模式図である。In the welded joint of the present invention, it is a schematic diagram explaining the measuring method of the surface layer hardness of weld metal, and the internal hardness of weld metal. 本発明の溶接継手において、溶接金属の表層硬さ、及び溶接金属の内部硬さを測定した後の、溶接金属の断面図(光学顕微鏡写真)である。In the welded joint of the present invention, it is a cross-sectional view (optical micrograph) of the weld metal after measuring the surface hardness of the weld metal and the internal hardness of the weld metal.

以下、本発明について説明する。
なお、本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
段階的に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。
数値範囲において、ある数値範囲で記載された上限値又は下限値は、実施例に示されている値に置き換えてもよい。
「工程」との語は、独立した工程だけでなく、他の工程と明確に区別できない場合であっても工程の所期の目的が達成されれば、本用語に含まれる。
「好ましい態様の組み合わせ」は、より好ましい態様である。
The present invention will be explained below.
In this specification, a numerical range expressed using "~" means a range that includes the numerical values written before and after "~" as the lower limit and upper limit.
In numerical ranges described in stages, the upper limit or lower limit described in a certain numerical range may be replaced with the upper limit or lower limit of another numerical range described in stages.
In a numerical range, the upper limit value or lower limit value described in a certain numerical range may be replaced with the value shown in the Examples.
The term "step" is included in the term not only an independent step but also a step that cannot be clearly distinguished from other steps, as long as the intended purpose of the step is achieved.
A "combination of preferred embodiments" is a more preferred embodiment.

本発明の溶接継手は、
少なくとも一方が引張強度980MPa以上の一対の鋼母材と、
一対の鋼母材のうち、一方の鋼母材の面と他方の鋼母材の面とで形成される境界に沿って延在する溶接金属であって、溶接金属の止端角度βが0°<β≦35°を満たし、かつ、(溶接金属の表層硬さ)/(溶接金属の内部硬さ)≧0.85を満たす溶接金属と、
を有する。
The welded joint of the present invention is
a pair of steel base materials, at least one of which has a tensile strength of 980 MPa or more;
A weld metal that extends along the boundary formed by the surface of one steel base material and the surface of the other steel base material among a pair of steel base materials, and the toe angle β of the weld metal is 0. A weld metal that satisfies °<β≦35° and (surface hardness of weld metal)/(internal hardness of weld metal)≧0.85,
has.

本発明の溶接継手は、上記構成により、少なくとも一方が引張強度980MPa以上の一対の鋼母材が溶接されていても、疲労強度に優れる。
本発明の溶接継手は、次の知見により見出された。
Due to the above configuration, the welded joint of the present invention has excellent fatigue strength even when a pair of steel base materials, at least one of which has a tensile strength of 980 MPa or more, are welded together.
The welded joint of the present invention was discovered based on the following findings.

溶接金属の止端部の応力集中が非常に高い場合,疲労強度に及ぼす溶接金属の組織の影響は小さくなり,疲労強度は低いものとなる.そのため、疲労亀裂が溶接金属から発生する程度に止端部の応力集中が緩やかである必要がある。つまり、溶接金属の止端角度βが0°<β≦35°を満たす必要がある。 If the stress concentration at the toe of the weld metal is extremely high, the influence of the weld metal structure on fatigue strength will be small and the fatigue strength will be low. Therefore, the stress concentration at the toe needs to be gentle enough to cause fatigue cracks to occur in the weld metal. In other words, the toe angle β of the weld metal needs to satisfy 0°<β≦35°.

一方、引張強度980MPa以上の鋼母材には、種々の合金元素が含まれており、鋼母材と溶接ワイヤとが溶融及び凝固してできる溶接金属は、軟鋼母材を溶接したときの溶接金属と比べ高強度になり易い。しかしながら、引張強度980MPa以上の鋼母材を溶接したときでは、その高強度な溶接金属に見合った疲労強度が得られない場合がある。 On the other hand, a steel base material with a tensile strength of 980 MPa or more contains various alloying elements, and the weld metal formed by melting and solidifying the steel base material and welding wire is the weld metal that is produced when the mild steel base material is welded. Easily has high strength compared to metal. However, when welding a steel base material with a tensile strength of 980 MPa or more, fatigue strength commensurate with the high-strength weld metal may not be obtained.

そこで、発明者らは、その原因について調査したところ、次の知見を得た。
980MPa以上の鋼母材を溶接したときにできる溶接金属は、溶接金属表面近傍の硬さが溶接金属内部に比べ軟らかくなっている。さらに、この原因は、溶接金属の表面から脱炭が生じ,溶接金属表面から炭素が失われることよるためである。
そこで、溶接金属表面近傍の軟化を防止し、溶接金属の表面からの亀裂発生を抑制するためには、(1)溶接金属の表層の焼入れ性を向上させることが有効である。(2)シールドガスによるシールド性を良好にすること、つまり、「溶接金属の表層硬さ」を「溶接金属の内部硬さ」に近づけることが有効である。
Therefore, the inventors investigated the cause and found the following findings.
When welding a steel base material of 980 MPa or more, the weld metal has a hardness near the surface of the weld metal that is softer than the inside of the weld metal. Furthermore, this is because decarburization occurs from the surface of the weld metal and carbon is lost from the surface of the weld metal.
Therefore, in order to prevent softening near the surface of the weld metal and suppress the occurrence of cracks from the surface of the weld metal, it is effective to (1) improve the hardenability of the surface layer of the weld metal. (2) It is effective to improve the shielding properties of the shielding gas, that is, to bring the "surface hardness of the weld metal" closer to the "internal hardness of the weld metal."

以上の知見から、本発明の溶接継手は、少なくとも一方が引張強度980MPa以上の一対の鋼母材が溶接され、かつ疲労強度に優れることが見出された。 From the above findings, it has been found that the welded joint of the present invention has a pair of steel base materials welded together, at least one of which has a tensile strength of 980 MPa or more, and has excellent fatigue strength.

以下、本発明の溶接継手について、図面を参照しつつ、詳細に説明する。 Hereinafter, the welded joint of the present invention will be described in detail with reference to the drawings.

図1~図2に示すように、本発明の溶接継手10は、例えば、互いに重ね合わされた一対の鋼母材(図1中、1は下側の第1鋼母材、2は上側の第2鋼母材を示す)と、第1鋼母材1の表面1aと第2鋼母材2の端面2aとで形成される境界4に沿って延在する溶接金属(溶接ビード)3と、を備える。 As shown in FIGS. 1 and 2, the welded joint 10 of the present invention includes, for example, a pair of steel base materials superimposed on each other (in FIG. 1, 1 is a lower first steel base material, 2 is an upper first steel base material, a weld metal (weld bead) 3 extending along a boundary 4 formed by the surface 1a of the first steel base material 1 and the end surface 2a of the second steel base material 2; Equipped with

ここで、図1~図2中、溶接金属3は、第1鋼母材1の表面1a(板厚方向に対向する面)と第2鋼母材2の端面2a(板厚方向と直交方向に対向する面)とで形成される境界4に沿って延在する態様を示しているが、本態様に限られるものではない。
例えば、溶接金属3は、第1鋼母材1と第2鋼母材2とをL字又はT字に配置し、第1鋼母材1と第2鋼母材2との互いの表面(板厚方向に対向する面)で形成される境界4に沿って延在する態様であってもよい。または、第1鋼母材1と第2鋼母材2とを端部を向い合せて同一面上に配置して突合せ継手とし、その境界4に沿って溶接金属3が延在する態様であってもよい。
Here, in FIGS. 1 and 2, the weld metal 3 is connected to the surface 1a of the first steel base material 1 (the surface facing the sheet thickness direction) and the end surface 2a of the second steel base material 2 (in the direction orthogonal to the sheet thickness direction). Although the embodiment is shown in which it extends along the boundary 4 formed by the surface (facing the surface), the embodiment is not limited to this embodiment.
For example, the weld metal 3 is made by arranging the first steel base material 1 and the second steel base material 2 in an L-shape or a T-shape, and the mutual surfaces of the first steel base material 1 and the second steel base material 2 ( It may also be a mode in which it extends along a boundary 4 formed by two surfaces (surfaces facing each other in the plate thickness direction). Alternatively, the first steel base material 1 and the second steel base material 2 are arranged on the same surface with their ends facing each other to form a butt joint, and the weld metal 3 extends along the boundary 4. It's okay.

なお、図1は、溶接継手10を、溶接金属3の溶接線W(図2参照)に直交する断面でみた図である。また、図1及び図2に示すように、溶接線Wに平行な方向をZ軸方向とし、Z軸方向に直交し且つ第1鋼母材1の表面1aに平行な方向をX軸方向とし、X軸方向及びZ軸方向に直交し且つ第1鋼母材1の板厚方向に平行な方向をY軸方向とする。 Note that FIG. 1 is a diagram of the welded joint 10 seen in a cross section perpendicular to the weld line W of the weld metal 3 (see FIG. 2). Further, as shown in FIGS. 1 and 2, the direction parallel to the weld line W is the Z-axis direction, and the direction perpendicular to the Z-axis direction and parallel to the surface 1a of the first steel base material 1 is the X-axis direction. , the direction perpendicular to the X-axis direction and the Z-axis direction and parallel to the thickness direction of the first steel base material 1 is defined as the Y-axis direction.

<溶接金属>
[溶接金属3の止端部形状]
図1に示すように、第1鋼母材1の表面1aに存在する溶融境界の位置をA点とすると、溶接金属3は、A点から止端角度βをもって立ち上がり、A点からさらに第2鋼母材2の側に寄った位置からフランク角θをもって立ち上がる。フランク角θは、溶接金属3の止端部形状を表すパラメータとして一般的に用いられているが、本発明では、溶接金属3の止端部形状を表すパラメータとして止端角度βを用いる。止端角度βは以下のように定義される。
<Welded metal>
[Toe shape of weld metal 3]
As shown in FIG. 1, if the position of the molten boundary existing on the surface 1a of the first steel base material 1 is set to point A, the weld metal 3 rises from point A with a toe angle β, and further rises from point A to a second It stands up from a position closer to the steel base material 2 with a flank angle θ. The flank angle θ is generally used as a parameter representing the toe shape of the weld metal 3, but in the present invention, the toe angle β is used as a parameter representing the toe shape of the weld metal 3. The toe angle β is defined as follows.

図1に示すように、X軸方向において上記A点から溶接金属3に向かって0.3mm離れた位置をC点とする。また、C点を通り且つ第1鋼母材1の板厚方向(つまりY軸方向)に延びる直線と溶接金属3の表面との交点をB点とする。このように、B点及びC点を定義したとき、A点とB点を結ぶ直線と、A点とC点を結ぶ直線との間の角度を、溶接金属3の止端角度βとして定義する。 As shown in FIG. 1, point C is a position 0.3 mm away from point A toward weld metal 3 in the X-axis direction. Moreover, the intersection of the straight line passing through point C and extending in the plate thickness direction (that is, the Y-axis direction) of first steel base material 1 and the surface of weld metal 3 is defined as point B. In this way, when points B and C are defined, the angle between the straight line connecting points A and B and the straight line connecting points A and C is defined as the toe angle β of weld metal 3. .

止端角度βを定義したとき、溶接継手10の溶接金属3は、下記条件式(1)を満足する。条件式(1)を満たすことにより、溶接金属3の止端部形状はなだらかな形状になるので、溶接金属3の止端部に応力が集中することを抑制することができる。止端角度βが35°以上の場合、溶接金属3の止端部形状が急峻な形状となるため、溶接金属3の止端部に応力が集中しやすくなる。
0°<β≦35° …(1)
When the toe angle β is defined, the weld metal 3 of the welded joint 10 satisfies the following conditional expression (1). By satisfying conditional expression (1), the shape of the toe of the weld metal 3 becomes a gentle shape, so that concentration of stress on the toe of the weld metal 3 can be suppressed. When the toe angle β is 35° or more, the toe of the weld metal 3 has a steep shape, and stress tends to concentrate on the toe of the weld metal 3.
0°<β≦35°…(1)

なお、図1では、説明の便宜上、境界4の位置を示すために、溶接金属3の内部に含まれる第1鋼母材1の表面1a及び第2鋼母材2の端面2aを点線で表している。しかしながら、実際には、上記の点線部分は溶接金属3に溶け込んでいるため、例えば、光学顕微鏡を用いて溶接金属3の断面写真を得たとしても、上記点線部分を観察することはできない。そこで、上記のように定義されたA点、B点及びC点の3点を溶接金属3の断面写真上で特定することにより、溶接金属3の断面写真から溶接金属3の止端角度βを容易に得ることができる。なお、溶接金属3の止端角度βを特定できる程度の写真を取得できさえすれば、光学顕微鏡に限らず、走査型電子顕微鏡(SEM)またはマイクロスコープ等を用いてもよい。溶接金属3の止端角度βは、溶接線W(z軸)方向で、終端と始端の長さの1/2付近で1か所測定する。 In FIG. 1, for convenience of explanation, the surface 1a of the first steel base material 1 and the end surface 2a of the second steel base material 2 included in the weld metal 3 are shown by dotted lines to indicate the position of the boundary 4. ing. However, in reality, the dotted line portion is melted into the weld metal 3, so even if a cross-sectional photograph of the weld metal 3 is obtained using an optical microscope, the dotted line portion cannot be observed. Therefore, by specifying the three points A, B, and C defined as above on the cross-sectional photograph of the weld metal 3, the toe angle β of the weld metal 3 can be determined from the cross-sectional photograph of the weld metal 3. can be obtained easily. Note that, as long as a photograph sufficient to identify the toe angle β of the weld metal 3 can be obtained, not only an optical microscope but also a scanning electron microscope (SEM), a microscope, or the like may be used. The toe angle β of the weld metal 3 is measured at one location near 1/2 the length of the terminal end and the starting end in the direction of the weld line W (z-axis).

[溶接金属3の硬さ]
溶接金属3は、式:(溶接金属の表層硬さ)/(溶接金属の内部硬さ)≧0.85を満たす。溶接金属3の表層硬さを脱炭の影響を受けず比較的硬い内部硬さに近づければ、溶接金属3の疲労強度を向上させることができる。
(溶接金属の表層硬さ)/(溶接金属の内部硬さ)の下限は、溶接金属3の疲労強度向上の観点から、0.90以上が好ましく、0.95以上がより好ましい。
[Hardness of weld metal 3]
Weld metal 3 satisfies the formula: (surface hardness of weld metal)/(internal hardness of weld metal)≧0.85. The fatigue strength of the weld metal 3 can be improved by bringing the surface hardness of the weld metal 3 close to the relatively hard internal hardness without being affected by decarburization.
The lower limit of (surface hardness of weld metal)/(internal hardness of weld metal) is preferably 0.90 or more, more preferably 0.95 or more, from the viewpoint of improving the fatigue strength of weld metal 3.

ここで、溶接金属3の疲労強度向上の観点から、溶接金属3の内部硬さは、120~450HVが好ましく、150~380HVがより好ましい。 Here, from the viewpoint of improving the fatigue strength of the weld metal 3, the internal hardness of the weld metal 3 is preferably 120 to 450 HV, more preferably 150 to 380 HV.

溶接金属3の表層硬さは、次の通り測定する(図3~図4参照)。
溶接金属3の断面(溶接線に直交方向に沿って切断した断面)において、溶接金属3の表面から深さ20μmの位置の溶融境界(図3中AA)を原点とし、溶接金属3の表面から深さ20μm位置を、溶接金属3の外形に沿って36μm間隔で、圧子の押込み荷重25gfで測定する。圧痕が大きすぎて表面にはみ出る場合や、隣の圧痕と隣接する場合には、さらに荷重を下げてもよい。また、圧痕が小さすぎて硬さの測定が困難な場合は荷重を上げてもよい。測定荷重が小さいとばらつきが大きい場合があるため、隣接する両隣の点との硬度差が共に100HV以上あればその点は測定結果から除外する。
そして、溶接金属3の表面から深さ20μmの位置の溶融境界(図中AA)を通り、かつ第1鋼母材1の表面と平行なX軸(ただし、鋼母材側を+、溶接金属側を-とする)を取ったとき、X座標-0.03mm~-0.25mmの間の5点以上の測定値の平均値を、溶接金属3の表層硬さとして算出する。
The surface hardness of the weld metal 3 is measured as follows (see FIGS. 3 and 4).
In the cross section of the weld metal 3 (a cross section cut along the direction perpendicular to the weld line), the melting boundary (AA in FIG. 3) at a depth of 20 μm from the surface of the weld metal 3 is the origin, and from the surface of the weld metal 3 Measurement is performed at a depth of 20 μm at intervals of 36 μm along the outer shape of the weld metal 3 with an indentation load of 25 gf. If the indentation is too large and protrudes from the surface, or if it is adjacent to an adjacent indentation, the load may be further reduced. Furthermore, if the indentation is too small and hardness measurement is difficult, the load may be increased. If the measurement load is small, the variation may be large, so if the difference in hardness between both adjacent points on both sides is 100 HV or more, that point is excluded from the measurement results.
Then, an The surface hardness of the weld metal 3 is calculated as the average value of the measured values at 5 or more points between the X coordinate of -0.03 mm and -0.25 mm.

溶接金属3の内部硬さは、次の通り測定する(図3~図4参照)。
溶接金属3の断面(溶接線に直交方向に沿って切断した断面)において、溶接金属3の表面から深さ100μmの位置の溶融境界(図3中BB)を原点とし、第1鋼母材1の表面と平行な方向に沿って0.2mm間隔で、圧子の押込み荷重200gfで測定する。隣接する両隣の点との硬度差が共に100HV以上あればその点は測定結果から除外する。
そして、第1鋼母材1の表面から深さ100μmの位置の溶融境界(図中BB)を通り、かつ第1鋼母材1の表面と平行なX軸(ただし、鋼母材側を+,溶接金属側を-とする)を取ったとき、X座標-0.1mm~-1.0mmの間の3点以上の測定値の平均値を、溶接金属3の内部硬さとして算出する。なお、内部硬さは、溶接線W(z軸)方向で、終端と始端の長さの1/2付近で1か所測定する。
The internal hardness of the weld metal 3 is measured as follows (see FIGS. 3 and 4).
In the cross section of the weld metal 3 (cross section cut along the direction perpendicular to the weld line), the melting boundary (BB in FIG. 3) at a depth of 100 μm from the surface of the weld metal 3 is the origin, and the first steel base material 1 Measurements are made at 0.2 mm intervals along the direction parallel to the surface of the indenter with an indentation load of 200 gf. If the hardness difference between adjacent points on both sides is 100 HV or more, that point is excluded from the measurement results.
Then, an +, weld metal side as -), calculate the average value of the measured values at three or more points between the X coordinate -0.1 mm and -1.0 mm as the internal hardness of weld metal 3. . Note that the internal hardness is measured at one location near 1/2 of the length of the terminal end and the starting end in the direction of the weld line W (z-axis).

なお、溶接金属3の硬さは、「ビッカース硬さ」である。そして、「ビッカース硬さ」は、JIS Z 2244(2009年)に準拠して測定する。荷重以外の条件は、圧子=対面角136°のビッカース四角錐ダイヤモンド圧子、押込み時間=20sとする。 Note that the hardness of the weld metal 3 is "Vickers hardness". The "Vickers hardness" is measured in accordance with JIS Z 2244 (2009). The conditions other than the load were that the indenter was a Vickers square pyramidal diamond indenter with a facing angle of 136°, and the indentation time was 20 seconds.

[溶接金属3の化学組成]
溶接金属3の化学組成は、特に制限はないが、質量%で
C :0.01~0.30%
Si:0.02~2.00%
Mn:1.5~4.0%
Ti:0.01~2.00%
P :0.100%以下
S :0.0500%以下
Cr:0~2.0%
Mo:0~1.0%
を含む鋼で構成されていることが好ましい。
具体的には、例えば、溶接金属3は、C:0.01~0.30%、Si:0.02~2.0%、Mn:1.5~4.0%、Ti:0.01~2.0%、P:0.1%以下、S:0.05%以下、Cr:0~2.0%、Mo:0~1.0%と、後述するCrおよびMo以外の任意元素と、を含み、残部がFeおよび不純物からなることがよい。
[Chemical composition of weld metal 3]
The chemical composition of the weld metal 3 is not particularly limited, but C: 0.01 to 0.30% by mass.
Si: 0.02-2.00%
Mn: 1.5-4.0%
Ti: 0.01-2.00%
P: 0.100% or less S: 0.0500% or less Cr: 0 to 2.0%
Mo: 0-1.0%
Preferably, the steel is made of steel containing.
Specifically, for example, the weld metal 3 contains C: 0.01 to 0.30%, Si: 0.02 to 2.0%, Mn: 1.5 to 4.0%, and Ti: 0.01. ~2.0%, P: 0.1% or less, S: 0.05% or less, Cr: 0 to 2.0%, Mo: 0 to 1.0%, and any elements other than Cr and Mo described below. , and the remainder is preferably Fe and impurities.

なお、溶接金属3の化学組成は、溶接金属3の表面および溶融境界から、各々、500μm以上離れた溶接金属3の内部の化学組成である。 Note that the chemical composition of the weld metal 3 is the chemical composition inside the weld metal 3 at a distance of 500 μm or more from the surface of the weld metal 3 and the fusion boundary, respectively.

-C:0.01~0.30%-
Cは、溶接金属3の強度を確保するのに重要であり、少ないと溶接金属3の強度が担保できなくなる可能性がある。そのため、C量は、0.01%以上がよい。一方、溶接金属3の表層で脱炭により強度が低下し易くなる。そのため、C量は0.30%以下がよい。好ましいC量は、0.02~0.2%である。
-C:0.01~0.30%-
C is important for ensuring the strength of the weld metal 3, and if it is too small, the strength of the weld metal 3 may not be guaranteed. Therefore, the amount of C is preferably 0.01% or more. On the other hand, the strength of the surface layer of the weld metal 3 tends to decrease due to decarburization. Therefore, the amount of C is preferably 0.30% or less. The preferable amount of C is 0.02 to 0.2%.

-Si:0.02~2.00%-
Siは、脱酸元素の役割がある。そのため、Si量は、0.02%以上がよい.一方、Si量が多いとスケールおよびスラグ過多となりやすい。そのため、Si量は、2.00%以下がよい。好ましいSi量は、0.02~1.5%である。
-Si:0.02~2.00%-
Si has the role of a deoxidizing element. Therefore, the amount of Si is preferably 0.02% or more. On the other hand, when the amount of Si is large, scale and slag tend to be excessive. Therefore, the amount of Si is preferably 2.00% or less. The preferred amount of Si is 0.02 to 1.5%.

-Mn:1.5~4.0%-
Mnは、溶接金属3の焼入れ性を増加させるのに重要である。そのため、Mn量は、1.5%以上がよい.Mn量が多いと硬くなり過ぎて溶接金属3の水素脆化割れの懸念がある。そのため、Mn量は、4.0%以下がよい。好ましいMn量は、1.5~3.0%である。
-Mn:1.5~4.0%-
Mn is important for increasing the hardenability of the weld metal 3. Therefore, the Mn content is preferably 1.5% or more. If the amount of Mn is large, the weld metal 3 becomes too hard, and there is a concern that hydrogen embrittlement cracking of the weld metal 3 may occur. Therefore, the Mn amount is preferably 4.0% or less. The preferable amount of Mn is 1.5 to 3.0%.

-Ti:0.01~2.00%-
Tiは、溶接金属3の組織を微細化し、溶接金属3の表層硬さの低下を防ぐ働きがある。そのため、Ti量は、0.01%以上がよい。過度なTi量は、過大な析出物を形成し、溶接金属3の靭性の低下を招く可能性がある。そのため、Ti量は、2.0%以下がよい。好ましいTi量は、0.05~0.15%である。
-Ti:0.01~2.00%-
Ti has the function of refining the structure of the weld metal 3 and preventing the surface hardness of the weld metal 3 from decreasing. Therefore, the Ti amount is preferably 0.01% or more. An excessive amount of Ti may form excessive precipitates and cause a decrease in the toughness of the weld metal 3. Therefore, the Ti amount is preferably 2.0% or less. A preferable amount of Ti is 0.05 to 0.15%.

-P:0.100%以下-
Pは、溶接金属3を強化する働きを有するが、溶接金属3の靱性を著しく劣化させる原因となる。そのため、P量は、0.100%以下がよい。一方、P量は0%でもよいが、鋼母材の原料などから混入するPを完全に除去することは経済的に不利である。そのため、P量は0.0001%以上とすることが好ましい。
-P: 0.100% or less-
P has the function of strengthening the weld metal 3, but causes a significant deterioration in the toughness of the weld metal 3. Therefore, the amount of P is preferably 0.100% or less. On the other hand, although the amount of P may be 0%, it is economically disadvantageous to completely remove P mixed in from raw materials of the steel base material. Therefore, the amount of P is preferably 0.0001% or more.

-S:0.0500%以下-
Sは、Pと同様に溶接金属3の靱性を劣化させる元素であり、多量に含まれると溶接金属3の凝固割れの原因となる。そのため、S量は、0.0500%以下がよい、一方、鋼母材の原料などから混入するSを完全に除去することは経済的に不利である。そのため、S量は、0.0001%以上が好ましい。
-S: 0.0500% or less -
S, like P, is an element that deteriorates the toughness of the weld metal 3, and if contained in a large amount, causes solidification cracking of the weld metal 3. Therefore, the amount of S is preferably 0.0500% or less, but on the other hand, it is economically disadvantageous to completely remove S mixed in from raw materials of the steel base material. Therefore, the amount of S is preferably 0.0001% or more.

-Cr:0~2.0%-
Crは、任意元素であるが、Mnと同様に溶接金属3の焼入れ性を増加させる元素である。そして、過多なCr量は、経済性が悪い。そのため、Cr量は2.0%以下がよい。
-Cr: 0 to 2.0%-
Cr is an optional element, but like Mn, it is an element that increases the hardenability of the weld metal 3. Moreover, an excessive amount of Cr is uneconomical. Therefore, the Cr content is preferably 2.0% or less.

-Mo:0~1.0%-
Moは、任意元素であるが、Mnと同様に溶接金属3の焼入れ性を増加させる元素である。そして、過多なMo量は、経済性が悪い。そのため、Mo量は1.0%以下がよい。
-Mo: 0 to 1.0%-
Mo is an optional element, but like Mn, it is an element that increases the hardenability of the weld metal 3. Moreover, an excessive amount of Mo is uneconomical. Therefore, the amount of Mo is preferably 1.0% or less.

-式(1)-
溶接金属3の化学組成は、溶接金属3の表層の焼入れ性を向上させ、溶接金属3の表層硬さを溶接金属3の内部硬さに近づける観点から、式(1)を満たすことが好ましく、式(1-2)、式(1-3)又は式(1-4)を満たすことがより好ましい。
ただし、「Mn+3.33Cr+2.61Mo」の上限は、13.26以下が好ましく、10以下が好ましく、5以下がより好ましい。
Mn+3.33Cr+2.61Mo ≧ 1.70・・・(1)
Mn+3.33Cr+2.61Mo ≧ 1.70・・・(1-2)
Mn+3.33Cr+2.61Mo ≧ 1.75・・・(1-3)
Mn+3.33Cr+2.61Mo ≧ 1.80・・・(1-4)
式(1)及び式(1-2)中、元素記号は、該当する元素の含有量(質量%)を示す。 なお、式(1)及び式(1-2)中、「Mn+3.33Cr+2.61Mo」は、含有しない元素は、0%として算出する。
-Formula (1)-
The chemical composition of the weld metal 3 preferably satisfies formula (1) from the viewpoint of improving the hardenability of the surface layer of the weld metal 3 and bringing the surface hardness of the weld metal 3 close to the internal hardness of the weld metal 3, More preferably, formula (1-2), formula (1-3) or formula (1-4) is satisfied.
However, the upper limit of "Mn+3.33Cr+2.61Mo" is preferably 13.26 or less, preferably 10 or less, and more preferably 5 or less.
Mn+3.33Cr+2.61Mo≧1.70...(1)
Mn+3.33Cr+2.61Mo≧1.70...(1-2)
Mn+3.33Cr+2.61Mo≧1.75...(1-3)
Mn+3.33Cr+2.61Mo≧1.80...(1-4)
In formula (1) and formula (1-2), the element symbol indicates the content (mass%) of the corresponding element. Note that in formula (1) and formula (1-2), "Mn+3.33Cr+2.61Mo" is calculated assuming that the elements not contained are 0%.

溶接金属3の化学組成は、任意元素として、質量%で、Al:0~1.0%、N:0~0.1000%、B:0~0.01%、Nb:0~0.5%、Ni:0~5.0%、Cu:0~5.0%の1種以上を含んでもよい。 The chemical composition of the weld metal 3 is, as arbitrary elements, in mass%, Al: 0 to 1.0%, N: 0 to 0.1000%, B: 0 to 0.01%, Nb: 0 to 0.5 %, Ni: 0 to 5.0%, and Cu: 0 to 5.0%.

-Al:0~1.0%-
Alは、脱酸元素として作用し、多くがスラグとして溶接金属3外に排出される。Alが過多であると、溶接金属3の靭性が劣化する傾向がある。そのため、Al量は、1.0%以下がよい。
-Al: 0 to 1.0%-
Al acts as a deoxidizing element, and most of it is discharged outside the weld metal 3 as slag. If there is too much Al, the toughness of the weld metal 3 tends to deteriorate. Therefore, the amount of Al is preferably 1.0% or less.

-N:0~0.1000%-
Nは、多量に含有するとブローホールなどの要因となる。そのため、N量の上限は、0.1%以下とする。
一方、Nは、Cと同様に溶接金属3の強度を強化する。そのため、N量は、0.0001%以上が好ましい。
-N: 0~0.1000%-
When N is contained in a large amount, it causes blowholes and the like. Therefore, the upper limit of the amount of N is 0.1% or less.
On the other hand, like C, N strengthens the strength of the weld metal 3. Therefore, the amount of N is preferably 0.0001% or more.

-B:0~0.01%-
Bは、多量に含有すると、溶接金属3の靭性の劣化を招く。そのため、B量の上限は、0.01%以下がよい。
-B: 0 to 0.01%-
When B is contained in a large amount, it causes deterioration of the toughness of the weld metal 3. Therefore, the upper limit of the amount of B is preferably 0.01% or less.

-Nb:0~0.5%-
Nbは、多量に含有すると、溶接金属3の靭性の劣化を招く可能性がある。そのため、Nb量は、0.5%以下がよい。
-Nb: 0 to 0.5%-
If Nb is contained in a large amount, it may cause deterioration in the toughness of the weld metal 3. Therefore, the amount of Nb is preferably 0.5% or less.

-Ni:0~5.0%-
Niは、多量に含有すると、溶接金属3の靭性の劣化を招く可能性がある。そのため、Ni量は、5.0%以下がよい。
-Ni: 0 to 5.0%-
If Ni is contained in a large amount, it may cause deterioration in the toughness of the weld metal 3. Therefore, the Ni amount is preferably 5.0% or less.

-Cu:0~5.0%-
Cuは、多量に含有すると、溶接金属3の靭性の劣化を招く。そのため、Cu量は、5.0%以下がよい。
-Cu: 0 to 5.0%-
When Cu is contained in a large amount, the toughness of the weld metal 3 deteriorates. Therefore, the amount of Cu is preferably 5.0% or less.

溶接金属3の化学組成は、上述した任意元素以外の任意元素として、溶接金属3の疲労硬度に影響を与えない範囲で、質量%で、
O :0~0.04%、
Ca:0~0.001%、
を1種以上を含んでもよい。
The chemical composition of the weld metal 3 includes, as arbitrary elements other than the above-mentioned arbitrary elements, in mass % within a range that does not affect the fatigue hardness of the weld metal 3.
O: 0 to 0.04%,
Ca: 0-0.001%,
It may contain one or more types.

<鋼母材>
一対の鋼母材は、少なくとも一方が引張強度980MPa以上の鋼母材である。高引張強度を有する鋼母材は、特に軽量化及び衝突安全性の向上が強く要請される自動車用の重ね溶接継手10の鋼母材として好適である。この観点から、一対の鋼母材は、双方が、引張強度980MPa以上の鋼母材であることがよい。
なお、引張強度は、JIS Z2241(2011)に準じて測定される。
<Steel base material>
At least one of the pair of steel base materials has a tensile strength of 980 MPa or more. A steel base material having high tensile strength is particularly suitable as a steel base material for the lap weld joint 10 for automobiles, which is strongly required to reduce weight and improve collision safety. From this point of view, it is preferable that both of the pair of steel base materials have a tensile strength of 980 MPa or more.
Note that the tensile strength is measured according to JIS Z2241 (2011).

一対の鋼母材の化学組成は、引張強度980MPa以上の機械的特性を得る化学組成が好ましい。
一対の鋼母材の化学組成の一例としては、質量%で
C :0.002~0.4%
Si:0.002~2.0%
Mn:1.5~5.0%
P :0.1%以下
S :0.05%以下
N :0~0.01%、
Cr:0~2.0%、
Mo:0~1.0%、
Ni:0~5.0%、
Ti:0~0.3%、
Al:0~0.5%、
残部:Fe及び不純物からなる化学組成が挙げられる。
The chemical composition of the pair of steel base materials is preferably a chemical composition that provides mechanical properties with a tensile strength of 980 MPa or more.
As an example of the chemical composition of a pair of steel base materials, C: 0.002 to 0.4% in mass%
Si: 0.002-2.0%
Mn: 1.5-5.0%
P: 0.1% or less S: 0.05% or less N: 0 to 0.01%,
Cr: 0-2.0%,
Mo: 0-1.0%,
Ni: 0 to 5.0%,
Ti: 0 to 0.3%,
Al: 0-0.5%,
Balance: A chemical composition consisting of Fe and impurities.

一対の鋼母材の板厚は、1枚あたり0.6~4.0mmが好ましく、0.8~3.2mmがより好ましい。
板厚の厚い鋼母材では、溶接残留応力が疲労強度に対して支配的となり、溶接金属3の組織による影響が小さくなるためである。つまり、溶接継手の疲労強度に対する溶接金属3の疲労強度の影響が高くなる。一対の鋼母材を板厚0.6~4.0mmの薄板を採用することで、(溶接金属の表層硬さ)/(溶接金属の内部硬さ)≧0.85を満たす溶接金属3の組織が有効な溶接継手の疲労強度の向上に寄与する。
The plate thickness of the pair of steel base materials is preferably 0.6 to 4.0 mm, more preferably 0.8 to 3.2 mm.
This is because, in a thick steel base material, welding residual stress becomes dominant on the fatigue strength, and the influence of the structure of the weld metal 3 becomes small. In other words, the influence of the fatigue strength of the weld metal 3 on the fatigue strength of the welded joint increases. By using thin plates with a thickness of 0.6 to 4.0 mm as the pair of steel base materials, weld metal 3 that satisfies (surface hardness of weld metal) / (internal hardness of weld metal) ≧ 0.85 Contributes to improving the fatigue strength of welded joints with effective microstructure.

<溶接継手の製造方法>
本発明の溶接継手の製造方法の一例は、下記条件を満たすアーク溶接による溶接継手の製造方法が挙げられる。
(1)溶接速度:50cm/min以上,110cm/min未満
(2)シールドガスの組成:CO濃度:20%以下、残部:Ar
(3)溶接電流:150~250A
<Manufacturing method of welded joint>
An example of the method for manufacturing a welded joint of the present invention is a method for manufacturing a welded joint by arc welding that satisfies the following conditions.
(1) Welding speed: 50 cm/min or more, less than 110 cm/min (2) Shielding gas composition: CO 2 concentration: 20% or less, balance: Ar
(3) Welding current: 150-250A

まず、本発明の溶接継手の製造方法において、溶接ワイヤは、溶接金属2が上記組織を満たすワイヤであれば、特に制限はない。
溶接ワイヤの化学組成の一例としては、質量%で
C :0.002~0.4%
Si:0.002~2.0%
Mn:1.5~5.0%
P :0.1%以下
S :0.05%以下
N :0~0.01%、
Cr:0~2.0%、
Mo:0~1.0%、
Ni:0~5.0%、
Ti:0~0.3%、
Al:0~0.5%、
Cu:0~3.0%
Nb:0~1.0%
B :0~0.02%
残部:Fe及び不純物からなる化学組成が挙げられる。
First, in the method for manufacturing a welded joint of the present invention, the welding wire is not particularly limited as long as the weld metal 2 satisfies the above structure.
An example of the chemical composition of the welding wire is C: 0.002 to 0.4% by mass.
Si: 0.002-2.0%
Mn: 1.5-5.0%
P: 0.1% or less S: 0.05% or less N: 0 to 0.01%,
Cr: 0-2.0%,
Mo: 0-1.0%,
Ni: 0 to 5.0%,
Ti: 0 to 0.3%,
Al: 0-0.5%,
Cu: 0-3.0%
Nb: 0-1.0%
B: 0-0.02%
Balance: A chemical composition consisting of Fe and impurities.

溶接速度は、110cm/min未満とすることがよく、100cm/min以下がより好ましい。これは、溶接速度が速すぎるとシールドガスによるシールド範囲から溶接金属3が外れてしまい、溶接金属3の表層の脱炭が促進され、表層硬さが低下し内部硬さとの差が大きくなるためである。その結果、溶接金属3の疲労強度が低下する。また、溶接作業効率の観点から、溶接速度は50cm/min以上とすることがよい。 The welding speed is preferably less than 110 cm/min, more preferably 100 cm/min or less. This is because if the welding speed is too fast, the weld metal 3 will come out of the shielding range of the shielding gas, promoting decarburization of the surface layer of the weld metal 3, reducing the surface hardness and increasing the difference with the internal hardness. It is. As a result, the fatigue strength of the weld metal 3 decreases. Further, from the viewpoint of welding work efficiency, the welding speed is preferably 50 cm/min or more.

シールドガスの組成(体積%)は、CO濃度:20%以下、残部:Arとするのが好ましい。これは、CO濃度が高い場合には、溶接金属3の表層の脱炭が促進され、表層硬さが低下し内部硬さとの差が大きくなるためである。その結果、溶接金属3の疲労強度が低下する可能性がある。 The composition (volume %) of the shielding gas is preferably such that the CO 2 concentration is 20% or less and the balance is Ar. This is because when the CO 2 concentration is high, decarburization of the surface layer of the weld metal 3 is promoted, the surface layer hardness decreases, and the difference from the internal hardness increases. As a result, the fatigue strength of the weld metal 3 may decrease.

溶接電流は、150~250Aが好ましい。溶接速度を上記範囲とすると共に、溶接金属3の止端部形状を「なだらか」にすることができる。つまり、溶接金属3の止端角度βを0°<β≦35°とすることができる。 The welding current is preferably 150 to 250A. While the welding speed is within the above range, the toe shape of the weld metal 3 can be made "sloping". That is, the toe angle β of the weld metal 3 can be set to 0°<β≦35°.

<自動車部品>
本発明の自動車部品は、本発明の溶接継手を備える。
例えば、本発明の自動車部品は、図1~図2に示す溶接継手を備える。
具体的には、本発明の自動車部品は、車体の骨格部品、パネル部品、足回り部品が例示され、具体的には、高い強度を必要とするサスペンションアーム、サスペンションフレーム、シャシーフレーム等が好適に挙げられる。
<Automotive parts>
The automobile part of the present invention includes the welded joint of the present invention.
For example, the automobile part of the present invention includes a welded joint shown in FIGS. 1-2.
Specifically, the automobile parts of the present invention are exemplified by car body frame parts, panel parts, and suspension parts, and specifically, suspension arms, suspension frames, chassis frames, etc. that require high strength are preferably used. Can be mentioned.

以下、実施例により本発明をさらに詳細に説明するが、本発明はこれら実施例に限定されない。 EXAMPLES Hereinafter, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to these Examples.

(実施例)
一対の鋼母材として、表1に示す化学組成及び引張強度を有する鋼板を用いて、重ね隅肉溶接を行った。
溶接条件は、溶接速度80cm/min、溶接電流235[A],シールドガスの組成=Ar+20%COとした。
溶接ワイヤは、JIS Z 3312(2009)のYGW16相当のワイヤ(表2参照)を用いた。
(Example)
Lap fillet welding was performed using steel plates having the chemical composition and tensile strength shown in Table 1 as a pair of steel base materials.
The welding conditions were a welding speed of 80 cm/min, a welding current of 235 [A], and a shielding gas composition of Ar+20% CO2 .
The welding wire used was a wire equivalent to YGW16 of JIS Z 3312 (2009) (see Table 2).

溶接した試験体から、平面曲げ疲労試験片を作製し,応力比R=-1の両振り載荷で平面曲げ疲労試験を実施した。
疲労限は1,000万回未破断となった応力振幅とした.
曲げ応力は、試験片の最小断面(幅20mm、板厚2.9mm)の表面における最大曲げ応力を基準とした。
A plane bending fatigue test piece was prepared from the welded specimen, and a plane bending fatigue test was conducted under double-sided loading with a stress ratio R=-1.
The fatigue limit was set as the stress amplitude at which no fracture occurred after 10 million cycles.
The bending stress was based on the maximum bending stress on the surface of the smallest cross section of the test piece (width 20 mm, plate thickness 2.9 mm).

得られた結果を表3に示す。なお、溶接金属の化学組成の分析は,疲労試験片を採取した試験体と同じ試験体の溶接金属から分析試料を採取し、化学分析を行い求めた。 The results obtained are shown in Table 3. The chemical composition of the weld metal was determined by taking an analysis sample from the weld metal of the same test piece as the one from which the fatigue test piece was taken and conducting chemical analysis.

上記結果から、試験例1~9、11は、試験例10に比べ、疲労限200MPa以上という高い疲労強度が得られることがわかる。
特に、試験例1、3~4、6~9、11は、疲労限210MPa以上という高い疲労強度が得られることがわかる。
From the above results, it can be seen that Test Examples 1 to 9 and 11 have higher fatigue strength than Test Example 10, with a fatigue limit of 200 MPa or more.
In particular, it can be seen that in Test Examples 1, 3 to 4, 6 to 9, and 11, high fatigue strength with a fatigue limit of 210 MPa or more can be obtained.

1、2 鋼母材
3 溶接金属
1, 2 Steel base material 3 Weld metal

Claims (5)

少なくとも一方が引張強度980MPa以上の一対の鋼母材と、
前記一対の鋼母材のうち、一方の鋼母材の面と他方の鋼母材の面とで形成される境界に沿って延在する溶接金属であって、溶接金属の止端角度βが0°<β≦35°を満たし、かつ、(下記で定義される溶接金属の表層硬さ)/(下記で定義される溶接金属の内部硬さ)≧0.85を満たし、且つ再溶融されていない溶接金属と、
を有する溶接継手。
溶接金属の表面硬さ-
溶接線の直交方向に沿った断面において、溶接金属の表面から深さ20μmの位置の溶融境界を通り、かつ一方の鋼母材の表面と平行なX軸(ただし、鋼母材側を+、溶接金属側を-とする)を取ったとき、X座標-0.03mm~-0.25mmの間の5点以上のビッカース硬さの測定値の平均値。
溶接金属の内部硬さ-
溶接線の直交方向に沿った断面において、一方の鋼母材の表面から深さ100μmの位置の溶融境界を通り、かつ一方の鋼母材の表面と平行なX軸(ただし、鋼母材側を+,溶接金属側を-とする)を取ったとき、X座標-0.1mm~-1.0mmの間の3点以上のビッカース硬さの測定値の平均値。
a pair of steel base materials, at least one of which has a tensile strength of 980 MPa or more;
The weld metal extends along the boundary formed by the surface of one steel base material and the surface of the other steel base material among the pair of steel base materials, and the toe angle β of the weld metal is 0°<β≦35°, and (surface hardness of weld metal defined below )/(internal hardness of weld metal defined below )≧0.85 , and remelted. Welded metal that has not been
Welded joints with.
-Surface hardness of weld metal-
In the cross section along the orthogonal direction of the weld line, the X axis passes through the fusion boundary at a depth of 20 μm from the surface of the weld metal and is parallel to the surface of one steel base metal (with the steel base metal side being +, The average value of the Vickers hardness measured at 5 or more points between the X coordinate of -0.03 mm and -0.25 mm, when the weld metal side is -0.03 mm and -0.25 mm.
-Internal hardness of weld metal-
In the cross section along the orthogonal direction of the weld line, the X-axis passes through the fusion boundary at a depth of 100 μm from the surface of one steel base material and is parallel to the surface of one steel base material (however, the The average value of the Vickers hardness measured at three or more points between the X coordinate of -0.1 mm and -1.0 mm.
前記鋼母材の板厚が、0.6~4.0mmである請求項1に記載の溶接継手。 The welded joint according to claim 1, wherein the steel base material has a plate thickness of 0.6 to 4.0 mm. 前記溶接金属が、質量%で
C :0.01~0.30%
Si:0.02~2.00%
Mn:1.5~4.0%
Ti:0.01~2.00%
P :0.100%以下
S :0.0500%以下
Cr:0~2.0%、および
Mo:0~1.0%
を含む鋼で構成されている請求項1又は請求項2に記載の溶接継手。
The weld metal has C: 0.01 to 0.30% in mass%
Si: 0.02-2.00%
Mn: 1.5-4.0%
Ti: 0.01-2.00%
P: 0.100% or less S: 0.0500% or less Cr: 0 to 2.0%, and Mo: 0 to 1.0%
The welded joint according to claim 1 or 2, which is made of steel containing.
下記式(1)を満たす請求項1~請求項3のいずれか1項に記載の溶接継手。
Mn+3.33Cr+2.61Mo≧1.70・・・(1)
式(1)中、元素記号は、該当する元素の含有量(質量%)を示す。
The welded joint according to any one of claims 1 to 3, which satisfies the following formula (1).
Mn+3.33Cr+2.61Mo≧1.70...(1)
In formula (1), the element symbol indicates the content (mass%) of the corresponding element.
請求項1~請求項4のいずれか1項に記載の溶接継手を備える自動車部品。 An automobile part comprising the welded joint according to any one of claims 1 to 4.
JP2019202368A 2019-11-07 2019-11-07 Welded joints and auto parts Active JP7376779B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019202368A JP7376779B2 (en) 2019-11-07 2019-11-07 Welded joints and auto parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019202368A JP7376779B2 (en) 2019-11-07 2019-11-07 Welded joints and auto parts

Publications (2)

Publication Number Publication Date
JP2021074740A JP2021074740A (en) 2021-05-20
JP7376779B2 true JP7376779B2 (en) 2023-11-09

Family

ID=75899901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019202368A Active JP7376779B2 (en) 2019-11-07 2019-11-07 Welded joints and auto parts

Country Status (1)

Country Link
JP (1) JP7376779B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004337938A (en) 2003-05-16 2004-12-02 Sumitomo Metal Ind Ltd Weld joint with high fatigue strength
JP2008137024A (en) 2006-11-30 2008-06-19 Jfe Steel Kk Welded joint having excellent fatigue strength
WO2017018492A1 (en) 2015-07-28 2017-02-02 新日鐵住金株式会社 Fillet arc welding joint and method for manufacturing same
WO2019035490A1 (en) 2017-08-18 2019-02-21 新日鐵住金株式会社 Lap fillet arc welding joint
JP2019516556A (en) 2016-06-01 2019-06-20 ポスコPosco Weld joint excellent in fatigue characteristics and method of manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004337938A (en) 2003-05-16 2004-12-02 Sumitomo Metal Ind Ltd Weld joint with high fatigue strength
JP2008137024A (en) 2006-11-30 2008-06-19 Jfe Steel Kk Welded joint having excellent fatigue strength
WO2017018492A1 (en) 2015-07-28 2017-02-02 新日鐵住金株式会社 Fillet arc welding joint and method for manufacturing same
JP2019516556A (en) 2016-06-01 2019-06-20 ポスコPosco Weld joint excellent in fatigue characteristics and method of manufacturing the same
WO2019035490A1 (en) 2017-08-18 2019-02-21 新日鐵住金株式会社 Lap fillet arc welding joint

Also Published As

Publication number Publication date
JP2021074740A (en) 2021-05-20

Similar Documents

Publication Publication Date Title
JP6447752B2 (en) Automotive parts having resistance welds
JP4528089B2 (en) Large heat input butt welded joints for ship hulls with brittle fracture resistance
EP3670055B1 (en) Lap fillet arc welding joint
JP5500288B2 (en) Overlapped fillet arc welded joint with excellent fatigue characteristics and method for producing the same
JP6432716B1 (en) Fillet welded joint and manufacturing method thereof
WO2018203513A1 (en) Arc welding method and welding wire
JP2009226476A (en) Method for arc fillet welding of thin steel sheet
JP4676940B2 (en) Manufacturing method of metal-based flux cored wire with low slag and high fatigue strength welded joint
KR20230042371A (en) Welded joints and manufacturing methods of welded joints
JP4319886B2 (en) Large heat input butt weld joint with brittle fracture resistance
JP7376779B2 (en) Welded joints and auto parts
Casalino et al. Fiber laser-MAG hybrid welding of DP/AISI 316 and TWIP/AISI 316 dissimilar weld
EP4039396A1 (en) Welded joint and automobile component
US4430545A (en) Method for submerged-arc welding a very low carbon steel
JP3551140B2 (en) Gas shielded arc welding wire
JP4736193B2 (en) Fillet welded joint with excellent fatigue characteristics and gas shielded arc fillet welding method
JP5606741B2 (en) Tailored blank manufacturing method and steel plate for tailored blank
JP7432723B2 (en) Welded parts with excellent fatigue strength of welded parts and manufacturing method thereof
JP7505006B2 (en) Gas-shielded arc welding wire and welding material having excellent fatigue resistance and resistance to deformation due to residual stress in welded parts, and method for manufacturing same
KR102065227B1 (en) Welding material for stainless steless steel and article welded using the welding materal
WO2024029626A1 (en) Method for manufacturing spot welded joint, and spot welded joint
EP4144478A1 (en) Welding wires for obtaining giga-grade welds, welded structures manufactured using same, and welding method thereof
US20240141460A1 (en) Aluminum alloy expanded material for welding use, aluminum alloy welding-joined body, and method for welding same
JP4660421B2 (en) High fatigue strength fillet welded joint and method for forming the same
JPH0551692A (en) High strength electric resistance-welded tube for automobile use excellent in fatigue characteristic

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231009

R151 Written notification of patent or utility model registration

Ref document number: 7376779

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151