JP3822640B2 - トンネル掘削機と地盤感知システム - Google Patents

トンネル掘削機と地盤感知システム Download PDF

Info

Publication number
JP3822640B2
JP3822640B2 JP52987697A JP52987697A JP3822640B2 JP 3822640 B2 JP3822640 B2 JP 3822640B2 JP 52987697 A JP52987697 A JP 52987697A JP 52987697 A JP52987697 A JP 52987697A JP 3822640 B2 JP3822640 B2 JP 3822640B2
Authority
JP
Japan
Prior art keywords
ground
vibration
tunnel excavator
waveform
sensing system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP52987697A
Other languages
English (en)
Other versions
JP2000506235A5 (ja
JP2000506235A (ja
Inventor
アレクサンダー ロジャー,アルバート
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Aberdeen
Original Assignee
University of Aberdeen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Aberdeen filed Critical University of Aberdeen
Publication of JP2000506235A publication Critical patent/JP2000506235A/ja
Publication of JP2000506235A5 publication Critical patent/JP2000506235A5/ja
Application granted granted Critical
Publication of JP3822640B2 publication Critical patent/JP3822640B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/24Drilling using vibrating or oscillating means, e.g. out-of-balance masses
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • E21B49/006Measuring wall stresses in the borehole
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B2200/00Special features related to earth drilling for obtaining oil, gas or water
    • E21B2200/22Fuzzy logic, artificial intelligence, neural networks or the like

Landscapes

  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Fluid Mechanics (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Earth Drilling (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Measuring Fluid Pressure (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Excavating Of Shafts Or Tunnels (AREA)

Description

本発明は、トンネル掘削機と、それに備えられた地盤感知システムに関し、より好ましくは、トンネルを形成するトンネル掘削機に関し、地溝を作らない切削技術を提供するものである。
トンネル掘削機はさまざまな目的、例えば爆薬や、地盤に打ち込む杭やコア掘り管等のために地盤に穴を形成したり、地盤にパイプやケーブル等を通すために地下トンネルを形成する等の目的のために用いられる。
国際公開95/29320号には、地盤を挿通するための前端部に配設されたヘッドを有する筐体と、筐体内に配設されヘッドに接続されたアンビル(金床)と、筐体内において弾力性のある抑制手段によりアンビルから離間して配設されたハンマーとを備えたトンネル掘削機が記載されている。筐体には振動部も備えられており、筐体とハンマーに振動を伝達するために振動部はハンマーから離間して配置されている。第1の操作モードにおいて、トンネル掘削機が前進して突入できるよう周囲の地盤を流動化させるべく、振動部の振動は筐体に伝達される。第2の操作モードにおいて、ヘッドにおける地盤のブレーキ効果により、ハンマーは抑制手段に抗して移動しアンビルに衝突し、それにより、ヘッドは地盤に打ち込まれる。それゆえ、トンネル掘削機は、掘削する地盤のタイプや状態に応じてその操作モードを自動調節する。さらに、トンネル掘削機はそれぞれのモード内において自己調整する。すなわち、トンネル掘削機が、振動部の振動の幅や、ハンマーがアンビルへ衝突する強さを自動調節する。
地溝は掘る必要がないので、また地溝を作らない切削技術は労働力の節約になり、かつその土地の環境に悪影響を与えることも少ないので、上述のトンネル形成の目的のためにトンネル掘削機を用いることには特別な重要性がある。しかしながら、概してトンネル掘削機がトンネルを形成しなければならない地盤には、ケーブル、パイプ、土台、大きな岩等、多くの未知の地下の障害物が含まれている。このトンネル掘削機は実際上、それらの障害を認知できないので、障害物はトンネル掘削機の突入に対する打ち勝ちがたい妨げとなり得るし、あるいはトンネル掘削機は、例えば地下のパイプを砕いてしまうといった、好ましくなくかつ損害の大きいダメージを障害物に与え得る。
この問題を避けるために、地盤計画を調べたり、若しくは形成するトンネルのためのさえぎるもののないルートを精密に計画すべく、地盤感知の一形態として高性能の地下レーダー走査テストを行なうことは可能である。しかしながら、時間がかかり、不経済であり、また効果も薄い。さらに、全ての障害物の予知に成功するという保証が得られるわけでもない。もし地盤計画や地下レーダ走査テストが経済的で有効なものであれば、トンネル掘削機は広く用いられたであろうが、前述の理由により、トンネルを形成するという目的のために広くは用いられてこなかった。
本発明の目的の一つは、発射体(projectile)が通過する地盤における障害物の存在を事前に警告できるよう、地盤の性質を明らかにするための簡易な地盤感知システムを提供することである。
また、本発明の他の目的は、トンネル掘削機がトンネル形成している地盤における障害物の存在を事前に警告する機能を備えた使用の簡易な地盤感知システムを有するトンネル掘削機を提供することである。
さらに、本発明の目的は、トンネル掘削機がトンネル形成している地盤中に在る障害物の回りにトンネル掘削機が方向づけられるよう、操縦手段を有するトンネル掘削機を提供することである。
本願発明のひとつの特徴によれば、使用時、遭遇する地盤抵抗に応じて自身で振動モードと振動衝突モードの間の調節を行なう装置により地盤の中へ駆動される発射体の上に配設され、発射体が通過する地盤の動的抵抗を感知する感知手段と、前記感知手段の出力を処理して動的抵抗の波形を生成する信号処理手段と、地盤特性を特定するするために、前記動的抵抗波形を格納された動的抵抗波形と相関させる波形認識手段とを備えたことを特徴とする地盤感知システムが提供される。
このように、地盤感知手段が配置されている発射体の前方にある障害物等を予め警告することができる。発射体という語は、地盤に穴を形成したり、地盤中へ杭やコア掘り管を駆動したり、地盤に地下トンネルを形成したりするために用いられるトンネル掘削機を含むことが理解されるであろう。
ひとつの実施形態において、前記波形認識手段がニューラルネットワークシステムを備える。
そのようなネットワークは、格納された波形との優れたマッチングを可能にし、また優れたマッチングが行われない場合における経験に基づいた推測を可能にする。
もうひとつの実施形態において、前記波形認識手段はファージー論理システムを備える。
システムは前記特定された地盤特性を示す出力信号を供給する表示手段をさらに備えることが好ましい。
それゆえ、操作者は、発射体と発射体の前方に何が起きているのかを積極的に”視認する”ことができる。
便利なことに、前記表示手段は特定された地盤特性を操作者に表示する。
それゆえ、操作者は、発射体が遭遇する障害物等に関して早いフィードバックが得られる。
好ましくは、システムはさらに、動的波形のライブラリを有する格納手段を備える。
その結果、いったんライブラリの内容が得られれば、システムは容易に使用される。
もうひとつの実施形態において、システムはさらに、操作者の情報と前記信号処理手段により供給される動的波形とに応じた動的波形のライブラリに格納する格納手段を供える。
その結果、システムは、地盤感知手段が配置されている発射体に基づいて、正しい状況に較正されることができる。
本願発明はまた、振動モードと振動衝突モードの間を自動調節する機能と、上記において定義した地盤感知システムとを備えるトンネル掘削機も含む。
好ましくは、トンネル掘削機は、
ヘッドと、
振動を作用させるためにトンネル掘削機を接続され、地盤への突入を駆動する振動の前記振動モードを供給するための振動部と、
振動部により振動されるハンマーと、
アンビルと、
アンビルとハンマーを選択された距離離間させる隔離力を作用させるために設けられた弾性手段とを備え、
前記振動部は、地盤への突入を駆動する振動と衝突の前記振動衝突モードの間前記ハンマーが前記アンビルを叩く結果となる量だけ前記ずれ幅が前記隔離力を超えるポイントまで、増加された前記地盤からの突入抵抗に応じて、前記振動されるハンマーの前記ずれ幅を増加させるよう自動調節する。
本願発明のもうひとつの特徴によれば、
細長のシェルと、
前記シェルの前端部に配設された地盤突入ヘッドと、
トンネル掘削機の近傍の地盤のある領域に粒体を噴出させるための流体噴射調整機構とを備えたことを特徴とするトンネル掘削機が提供される。
それゆえ、トンネル掘削機を操縦することが可能である。
好ましくは、前記流体噴射調整機構が、前記地盤突入ヘッドおよび/または前記シェルの後端部の近傍に穿設された1つ以上の孔を備える。
これにより好都合な操縦が可能となる。
流体噴射調整機構は、トンネル掘削機と相対的に反対の方向に流体噴出するために回動可能な1つ以上の孔を備える。
もうひとつの実施形態において、移動可能な孔が、トンネル掘削機の軸の回りに環状に回転するように穿設されている。
好ましくは、流体噴射調整機構が、前記地盤突入ヘッドに位置決めされた少なくとも1つの孔を備えている。
本願発明はまた、振動モードと振動調節モードの間の自動調節機能を有し、上記で定義される地盤感知システムを備えるコア掘り装置を含む。
以下、本発明の実施形態が添付図面を参照して説明される。
図1は本発明の第1実施形態のトンネル掘削機を一部切り欠いた縦断面図を示す。
図2は本発明の第2実施形態のトンネル掘削機の外観図を示す。
図3は本発明を実施形態化する地盤感知システムのブロック図を示す。
図4は本発明の実施形態であるトンネル掘削機が地盤の中を進む際の、ヘッドの前方と近傍の土壌の質における相互作用ゾーンを概略的に示す。
図5は選択された間隔がゼロである、高い端部抵抗を有する土壌に突入する際の端部抵抗に対する動的な土壌の反応の例を示す。
図6は遭遇される様々な土壌に対する動的な土壌の反応の例を示す。
図7は本発明の第3実施形態のトンネル掘削機を一部切り欠いた縦端面図を示す。
図8は本発明の第4実施形態のトンネル掘削機を一部切り欠いた縦断面図を示す。
尚、以下の各実施形態において、同一の部材には同一の符号を付してある。
図1を参照すると、第1実施形態のトンネル掘削機10は、半径100mmの環状の横断面形状と3.1mの長さを有する筒状のシェル1と、ヘッド15を備えている。環状の荷重室19は、ヘッドが地盤を通過する際に地盤の抵抗を検知するために、ヘッド15のすぐ後部に設けられている。
シェル1の後端部内には振動部2が設けられている。振動部2は、回転対称で横断面形状がH型のマス(mass)3と、閉じた筐体5の内部にいずれも位置決めされた2個の対峙するコイルスプリング4とを有している。マス3は対峙するコイルスプリング4の間の中央に位置決めされ、ラビリンスシール(図示せず)により筐体5の内壁面に対してシールされている。
筐体5におけるマス3の両側のそれぞれのスペースには、それぞれの注入パイプ6、7により圧搾空気が注入可能である。それぞれの注入パイプは切換可能な空気バルブ8と一体化している。注入パイプ6、7は、地盤の表面に置かれた圧搾空気の供給源に制御導管9を介して接続されている。空気バルブ8を操作し、閉じた筐体5の両端部への圧搾空気の供給を交互に行なうことにより、圧搾空気の駆動エネルギーがマス3を操作周波数で振動させる。
プレート11は筐体5に接続され、ハンマー13はプレート11に接続されている。従って、振動部2の振動はシェル1に伝達される。線形可変作動変成器(LVDT)12は振動部2とハンマー13の相対的な変位を測定するためにプレート11の端部に配設されている。加速度計14はハンマー13の加速度を測定するためにハンマー13内のスペースに配設されている。
シェル1の前方端部内には振動衝突部16が設けられており、振動衝突部16内にはハンマー13が延びている。振動衝突部16はハンマー13の反対側に配設されたアンビル17と、ハンマー13とアンビル17の間に選択された間隙を確保するための圧縮スプリング18とを備えている。アンビル17はヘッド15に接続されている。従って、ハンマー13とアンビル17は、弾力性のある弾性手段である圧縮スプリング18により、互いに離れている。
使用するにあたって、トンネル掘削機には2つの操作モードがある。第1の操作モードにおいて、シェルとヘッドにはそれぞれ独立して振動が伝達される。もし振動部2の変位の振幅、すなわちハンマー13に伝達される振動が、ハンマー13を上述の選択された間隙を超える大きさで振動されなければ、この現象が生じる。これはヘッドが振動のみで地盤に突入する純粋振動操作モードである。
トンネル掘削機に対する地盤の抵抗が比較的小さい場合、純粋振動操作モードは発生する。例えば、いわゆる粘着力のない土壌からなる地盤に、振動による剪断力の重大な縮小が伝わると、トンネル掘削機の周囲の地盤の流動化を招く。
もし、トンネル掘削機に対する地盤の抵抗が相対的に大きくなると、たとえばいわゆる粘着力のある土壌において、圧搾空気の駆動エネルギーのより大きな割合が、振動部2自体の振動による変位を生じさせることに費やされる。その結果、振動部の変位の振幅はシェルの動きに比例して増加する。結局、振動部2の変位の振幅、すなわちハンマー13に伝達される振動は、ハンマー13がアンビル17に衝突するような上述の選択された間隙を超える大きさでハンマーを振動させることになる。この衝突はヘッド15へ伝達される。すなわち、選択された間隙の範囲内の振動の振幅は、純粋振動モードの間は小さく、その振幅が増加するにつれ衝突モードへの移行が始まる。衝突の周波数は振動部の周波数の整数倍の可能性がある。これは、操作の振動衝突モードであり、このモードにおいて、ヘッドは衝突と振動により地盤に突入する。
この第2の振動衝突操作モードにおいて、ヘッドは、振動の衝突の組み合わせにより、地盤の抵抗に応じて変化する衝突度で地盤に突入する。トンネル掘削機に対する土壌の抵抗が相対的に大きい場合にこのモードは起きる。
トンネル掘削機に対する地盤の抵抗は、例えば、地盤を形成している土壌が粘土なのか、砂なのか、湿っているか、乾いているかといった、土壌のタイプと状態に依存することが明らかになるであろう。さらに、トンネル掘削機が遭遇する土壌のタイプに対して自己調整するということが明らかになるであろう。すなわち、第1のモードにおいて、トンネル掘削機が振動エネルギーを周囲の土壌に伝達されるよう自己調整し、第2のモードに適合し、第2のモードにおいて、トンネル掘削機が周囲の土壌に伝達されるよう衝突エネルギーを自己調整する。従って、トンネル掘削機はその出力を遭遇する土壌の質のタイプに関連付けることができる。振動のみによる突入の影響を受けやすい土壌では、トンネル掘削機は振動ドライバとして作用する。より抵抗のある土壌成分に対しては、トンネル掘削機は土壌のタイプに応じて異なる衝突のレベルで振動と衝突の組み合わせを伝達する。このトンネル掘削機の自己調整機能は、周囲の土壌の擾乱を最小限に抑えながら、広範囲にわたる土壌タイプへの突入の助けとなる。
圧縮スプリング18と、ハンマー13とアンビル17の間の間隙が可変で、それによりトンネル掘削機の自己調整処理を変えるよう、形成されていてもよいことが明らかになるであろう。さらに、振動部2の周波数は、振動と突入の間の周知の相関関係により、26Hzまで、突入の度合いに影響を及ぼす。
図2に示すように、トンネル掘削機10はシェル1の後端部の周囲に円周上に穿設された一群の後部孔20を備えている。さらに、シェル1は回転可能なカラー21を備えている。カラー21には孔22が穿設されており、カラー21が回転することにより孔22はシェル1の軸の回りに回転可能である。また、一群の先端孔23が、段差のあるヘッド15の表面に沿って設けられている。
このように孔を位置決めすることにより、流体噴射機構が形成され、それにより流体は、地盤のトンネル掘削機の近傍の領域に噴出される。より適した流体、例えば水や空気等を用いてもよい。流体噴射機構は、トンネル掘削機の突入を補助すべくトンネル掘削機近傍の地盤を弱めたり、若しくは、トンネル掘削機を地盤内で操縦するために用いられ得る。流体のトンネル掘削機への供給の詳細な構成は、図を明確にするためと、このような流体の供給のための詳細な機構は当業者であればたやすく理解できるので、図中には示さない。流体は、外部からポンプで揚げられた供給源から制御導管9を介してトンネル掘削機へ供給してもよい。あるいは、内部においてポンプで揚げられた流体の供給源を用いてもよい。
ヘッド孔23は後部孔20とは異なる方法で作用する。特に、トンネル掘削機を所望の方向へ方向づけるために、動きの所望の方向においてシェル近傍に位置する地盤の領域を流動化すべく、選択された後部孔20から流体が噴出される。これに関して、地盤は既に、トンネル掘削機の通過によりある程度まで弱められている。この領域にある地盤は、シェルが入ることのできる、弱められ流動化された環状部分を形成する。このようにすることで、ヘッドは動きの所望の方向へ方向づけられる。
突入しようとしているがまだ相対的に硬い地盤に反動力を生じさせるために、ヘッド孔は流体を噴出する。したがって、後部孔と対照的に、ヘッド孔は動きの所望の方向と反対の方向に流体を噴出する。近傍の地盤の過度の流動化が、反動する堅固なものがないためにトンネル掘削機の沈没を引き起こす可能性があるので、ヘッド孔を通過する流体の圧力と量が調節される。回転可能な孔22からは、シェルの周辺からある地点への流体の流れを方向づけるために回転される一筋の噴出が供給される。
流体噴射機構は、単一の調整可能な孔と、および/または、シェル1の前方および/または後方に設けられる複数の孔とを有する。これらの孔は例えば、空気の作用で操作されてよいし、選択的に操作可能でもよいし、またオペレータがコンピュータにより直接リモートコントロールしてもよい。
図3は、図1、2のトンネル掘削機と共に用いられる地盤感知システムの回路図である。この地盤感知システムの様々なコンポーネントはシェル1内に配設することができる。
上述のように、周知のトンネル掘削機は、地盤中の障害物を発見することができないので、障害物は打ち勝ちがたい妨げとなったり、あるいは例えばパイプのような障害物はダメージを受ける。本願の発明者は、地盤への突入中は、トンネル掘削機のヘッドの前方や近傍に、地盤を突き進む際、トンネル掘削機と相互に作用し合う土壌の材質の領域がある、ということに着目した、これは、トンネル掘削機と、全体的な土壌崩壊機能に関係する土壌が存在する、傾斜を施した作用ゾーンを示す図4に概略的に示されている。特に、トンネル掘削機の前方には、少なくともトンネル掘削機の半径の2倍にまで広がる、トンネル掘削機により供給される振動および/または衝撃に積極的に反応する土壌破損領域がある。従って、作動中のトンネル掘削機の前方の土壌の状態やタイプは、トンネル掘削機に影響を及ぼす。
図4に示すように、トンネル掘削機の前端部の前方を含む土壌崩壊ゾーンの土壌状態やタイプに依存する、遭遇する土壌の抵抗に基づいて、トンネル掘削機が自己調整するので、動的な土壌の反応はトンネル掘削機の前方の土壌状態やタイプの指標となることがわかる。従って、動的な土壌の反応をモニターしたり、動的な土壌の反応を、周知の土壌状態やタイプ若しくは障害物の影響に関する格納されたあるいは経験的に得られたデータに合わせる、若しくはほぼ合わせることにより、トンネル掘削機の前方の土壌状態やタイプ、障害物を確認することができ、それにより障害の存在を事前に警告することができる。また、遭遇されるような障害物の周囲を操縦することができる。
図5は、選択された間隔がゼロであり、高い端部抵抗を有する土壌への突入に対する端部抵抗への動的な土壌の反応を示す、図5(a)は、トンネル掘削機により発生する、土壌の塑性抵抗に対する力Fが低い場合における初期位置を示す。力が増加するにつれ、突入も進み、図5(d)のF>>Rになる時までは、突入の度合いは高く、サイン(signature)も変化するということがわかる。
図6は、様々な動的な土壌の反応を示す。尚、波形は土壌状態、装置パラメータ、及び測量機器が置かれる深さの影響を受ける。図6(a)は、端部抵抗の小さい土壌、すなわち流動化が引き起こされる際に凝集力のない土壌に関する波形すなわちサインを示す。図6(b)は、端部抵抗の大きい土壌、すなわち高い端部抵抗を引き起こす土壌あるいは岩に関する波形すなわちサインを示す。図6(c)は振動成分が小さい場合に側部抵抗の高い土壌、すなわち固い粘土のような非常に高い側部抵抗を発生する土壌に関する波形すなわちサインを示す。
図3を参照すると、荷重室19は増幅器100を介して8チャンネルテープレコーダ101に出力を供給している。信号アナライザ102は、荷重室から出力され、コンピュータ104によりディスクドライブ103に格納し、プロッタ105に描くことが可能な波形を分析する。荷重室から出力された波形は、またデータ収集カード106を介して、人工ニューラルネットワーク108に接続されたラップトップコンピュータ107へ中継される。この場合、人工ニューラルネットワーク108は、現時点でトンネル掘削器の影響が及ぶゾーン内にある土壌状態のタイプを認識するために、格納されたデータベース若しくは波形のライブラリ(図示せず)を調査することができる。信号アナライザ102は、さらに、時間毎の突入の度合い、振動部の加速度、振動部の速度、アンビルの力、ハンマーの速度、ハンマーとアンビルの間隔を示す出力を供給する。波形特性が未処理の波形となり得るかあるいは正規化された波形特性と成り得ることが明らかになるであろう。
人工ニューラルネットワークは、ライブラリに格納された波形に基づいてトンネル掘削器が通過する地盤の土壌状態やタイプを決定するために、初期化される。これらの初期の波形は予めロードされていてもよく、また記憶されていてもよい。尚、トンネル掘削器の動き特性は、個々の装置の精密な構造や組立に依存する。それゆえ、学習ルーチン若しくは検査ルーチンが人工ニューラルネットワークに組み込まれている。このルーチンの間、人工ニューラルネットワークは、異なる土壌状態、土壌タイプ、及び障害物の影響に関する波形を学習する。その後は、人工ニューラルネットワークは、この学習したデータに基づいて、トンネル掘削器の前方にある土壌状態、土壌タイプ、障害物のタイプや危険性に関して、認識したり、あるいは反復による推測を行なうことができる。現実の土壌状態、土壌タイプ、障害物のタイプや危険性は、ディスプレイ(図示せず)により、地表の上の使用者に表示される。
ニューラルネットワークの代わりに、若しくはニューラルネットワークへの追加として、例えばファジィ論理や他のアルゴリズムといった他の形式の波形認識ソフトウェアを採用してもよい。
図7を参照すると、本願発明の第3実施形態のトンネル掘削機が示されている。この場合、振動部2は回転可能な面カム60の形態をとり、面カム60はフォロワ61に接触し、フォロワ61はスプリング62を圧縮する。スプリング62はハンマー5に作用し、振動力は発生する。カムフォロワ61は、スプリング62の予荷重によりカム60に追従する。キー溝64は常に、カム60とカムフォロワ61との間の正しい位置を、確保する。回動可能な駆動シャフト65はカム60に接続されている。
使用時、駆動シャフト65は地表で回転させられ、それによりカム60はスプリングで偏倚され相互に連結しているカムフォロワ61に対して回転する。これは、ハンマー13をスプリング18に抗して振動せしめる振動を供給する。第1実施形態と同様に、ハンマーの振動はシェル1とヘッド15に個別に伝達される。たとえ振動部2のずれ幅、すなわちハンマー13に伝達される振動が、ハンマーとアンビルの間の間隔よりも大きい程度のハンマー13の振動を引き起こすことにならなくても、この現象は生じる。これは操作の振動モードである。
もし、トンネル掘削機に対する地盤の抵抗が相対的に大きくなると、振動部2のずれ幅は最終的に、ハンマーがアンビルを叩くことになる大きさでハンマーとアンビルの間の離間力に打ち勝つレベルまで、達する。これは操作の振動衝突モードである。本実施形態のトンネル掘削機は、第1実施形態と同様、それぞれのモードの間、及びそれぞれのモード内において、自己調整する。
図8を参照すると、第3実施形態よりも長い、本願発明の第4実施形態のトンネル掘削機が示されている。この場合、両面カム70が、回転可能な駆動シャフト65により駆動され、それによる駆動力がハンマー16を振動させる。それゆえ、第3実施形態と同様、振動モードと振動衝突モードとを有し、それぞれのモードの間およびそれぞれのモード内において、自己調整するトンネル掘削機が得られる。
本願発明のトンネル掘削機と地盤感知システムは、トンネル形成、杭打ち、若しくはコア掘りに用いられ、トンネル形成に限るものではないことは明らかであろう。さらに、振動部2の駆動力は、回転駆動、圧搾空気による駆動、電気駆動等により供給されてよい。ハンマーとアンビルの間には正のギャップが図示されているが、ゼロのギャップ若しくは負のギャップが採用されてもよいことが理解されるであろう。
図示された実施形態は、図示するという目的のためだけの、本発明の特別な適用を示していることもまた理解されるであろう。詳細な実施形態は当業者が実施するのに容易であり、実際には、本発明は様々な異なる構成に適用される。

Claims (10)

  1. 使用時、遭遇する地盤抵抗に応じて振動モードと振動衝突モードの間の自己調節を行なう装置により地盤の中へ打込まれる発射体の上に配設され、発射体が通過する地盤の動的抵抗を感知する感知手段と、
    前記感知手段の出力を処理して動的抵抗の波形を生成する信号処理手段と、
    地盤特性を特定するために、前記動的抵抗波形を、格納された動的抵抗波形と相関させる波形認識手段と
    を備えたことを特徴とする地盤感知システム。
  2. 前記波形認識手段がニューラルネットワークシステムを備えることを特徴とする請求項1に記載の地盤感知システム。
  3. 前記波形認識手段がファージー論理システムを備えることを特徴とする請求項1または2に記載の地盤感知システム。
  4. 前記特定された地盤特性を示す出力信号を供給する表示手段をさらに備えることを特徴とする上述の請求項のいずれかに記載の地盤感知システム。
  5. 前記表示手段が前記特定された地盤特性を操作者に表示することを特徴とする請求項4に記載の地盤感知システム。
  6. 動的波形のライブラリを含む格納手段をさらに備えることを特徴とする上述の請求項のいずれかに記載の地盤感知システム。
  7. 操作者の情報と前記信号処理手段により供給される動的波形とに応じて動的波形のライブラリに格納する格納手段をさらに備えることを特徴とする請求項1〜5のいずれかに記載の地盤感知システム。
  8. 振動モードと振動衝突モードの間を自己調節する機能と、上述の各請求項に記載の地盤感知システムとを備えることを特徴とするトンネル掘削機。
  9. ヘッドと、
    振動を作用させるために前記トンネル掘削機に接続され、地盤への突入を駆動する振動の前記振動モードを供給するための振動部と、
    前記振動部により振動されるハンマーと、
    アンビルと、
    前記アンビルと前記ハンマーを選択された距離だけ離間させる隔離力を作用させるために設けられた弾性手段とを備え、
    前記振動部は自己調節して、地盤への突入を駆動する振動と衝突の前記振動衝突モードの間、前記ハンマーが前記アンビルを叩く結果となる量だけ前記ずれ幅が前記隔離力に打ち勝つポイントまで、前記地盤からの増加した突入抵抗に応じて、前記振動されるハンマーの前記ずれ幅を増加させることを特徴とする請求項8に記載のトンネル掘削機。
  10. 振動モードと振動調節モードの間の自己調節機能を有し、請求項1〜7のいずれか1つに記載の地盤感知システムを備えるコア掘り装置。
JP52987697A 1996-02-26 1997-02-11 トンネル掘削機と地盤感知システム Expired - Fee Related JP3822640B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB9603982.1 1996-02-26
GBGB9603982.1A GB9603982D0 (en) 1996-02-26 1996-02-26 Moling apparatus and a ground sensing system therefor
PCT/GB1997/000389 WO1997031175A1 (en) 1996-02-26 1997-02-11 Moling apparatus and a ground sensing system therefor

Publications (3)

Publication Number Publication Date
JP2000506235A JP2000506235A (ja) 2000-05-23
JP2000506235A5 JP2000506235A5 (ja) 2004-11-25
JP3822640B2 true JP3822640B2 (ja) 2006-09-20

Family

ID=10789378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52987697A Expired - Fee Related JP3822640B2 (ja) 1996-02-26 1997-02-11 トンネル掘削機と地盤感知システム

Country Status (10)

Country Link
US (1) US6176325B1 (ja)
EP (1) EP0883729B1 (ja)
JP (1) JP3822640B2 (ja)
AT (1) ATE197980T1 (ja)
AU (1) AU731052B2 (ja)
CA (1) CA2251688A1 (ja)
DE (1) DE69703650T2 (ja)
ES (1) ES2154891T3 (ja)
GB (1) GB9603982D0 (ja)
WO (1) WO1997031175A1 (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19941197C2 (de) 1998-09-23 2003-12-04 Fraunhofer Ges Forschung Steuerung für ein Horizontalbohrgerät
NO325151B1 (no) 2000-09-29 2008-02-11 Baker Hughes Inc Fremgangsmate og apparat for dynamisk prediksjonsstyring ved boring ved bruk av neurale nettverk
SE524118C2 (sv) * 2001-05-30 2004-06-29 Haldex Brake Prod Ab Anordning i ett fordonsbromsarrangemang
GB2417792B (en) 2003-03-31 2007-05-09 Baker Hughes Inc Real-time drilling optimization based on mwd dynamic measurements
US7730967B2 (en) 2004-06-22 2010-06-08 Baker Hughes Incorporated Drilling wellbores with optimal physical drill string conditions
EP2041389B1 (en) * 2006-06-09 2010-08-11 University Court Of The University Of Aberdeen Resonance enhanced drilling: method and apparatus
US7533724B2 (en) * 2006-09-08 2009-05-19 Impact Guidance Systems, Inc. Downhole intelligent impact jar and method for use
US9631446B2 (en) 2013-06-26 2017-04-25 Impact Selector International, Llc Impact sensing during jarring operations
WO2014210400A2 (en) 2013-06-26 2014-12-31 Impact Selector, Inc. Downhole-adjusting impact apparatus and methods
US9951602B2 (en) 2015-03-05 2018-04-24 Impact Selector International, Llc Impact sensing during jarring operations
US9115542B1 (en) * 2015-04-14 2015-08-25 GDD Associates, Trustee for Geo-diving device CRT Trust Geo-diving device
KR101967978B1 (ko) * 2017-04-18 2019-04-10 인하대학교 산학협력단 쉴드 tbm의 순굴진속도 예측 장치 및 그 방법
KR102003612B1 (ko) * 2017-11-27 2019-10-01 인하대학교 산학협력단 쉴드 tbm의 실굴진속도 예측 장치 및 그 방법
US10677009B2 (en) * 2018-02-07 2020-06-09 Saudi Arabian Oil Company Smart drilling jar
JP7200013B2 (ja) * 2019-03-08 2023-01-06 株式会社大林組 トンネル切羽前方探査システムおよびトンネル切羽前方地山の探査方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2847128A1 (de) * 1978-10-30 1980-05-14 Tracto Technik Messvorrichtung zum bestimmen der achslage eines im boden bewegten geraets
JPS57123319A (en) 1981-01-22 1982-07-31 Kiso Jiban Consultant Kk Method and apparatus for subsurface exploration
EP0146324A3 (en) 1983-12-20 1986-07-09 Shosei Serata Method and apparatus for measuring in situ earthen stresses and properties using a borehole probe
GB2152100B (en) 1983-12-20 1987-12-02 Frederick William Wink Vibratory drill apparatus
US5031706A (en) * 1990-02-07 1991-07-16 Mbs Advanced Engineering Systems Pneumopercussive soil penetrating machine
US5398537A (en) * 1991-12-06 1995-03-21 Gemcor Engineering Corporation Low amperage electromagnetic apparatus and method for uniform rivet upset
US5311950A (en) * 1993-04-19 1994-05-17 Spektor Michael B Differential pneumopercussive reversible self-propelled soil penetrating machine
GB9407902D0 (en) * 1994-04-21 1994-06-15 Univ Aberdeen Moling apparatus
US5549170A (en) * 1995-04-27 1996-08-27 Barrow; Jeffrey Sonic drilling method and apparatus

Also Published As

Publication number Publication date
US6176325B1 (en) 2001-01-23
DE69703650D1 (de) 2001-01-11
EP0883729A1 (en) 1998-12-16
CA2251688A1 (en) 1997-08-28
AU1799597A (en) 1997-09-10
ES2154891T3 (es) 2001-04-16
EP0883729B1 (en) 2000-12-06
AU731052B2 (en) 2001-03-22
WO1997031175A1 (en) 1997-08-28
DE69703650T2 (de) 2001-06-28
JP2000506235A (ja) 2000-05-23
ATE197980T1 (de) 2000-12-15
GB9603982D0 (en) 1996-04-24

Similar Documents

Publication Publication Date Title
JP3822640B2 (ja) トンネル掘削機と地盤感知システム
EP3464734B1 (en) Foundation pile installation device
US6012536A (en) Method for steering a ground-drilling machine
AU692620B2 (en) Method for real time location of deep boreholes while drilling
EP0428180B1 (en) Control system for guiding boring tools and a sensing system for locating the same
US5850884A (en) Moling apparatus
US7347282B2 (en) Steerable soil penetration system
JP4260329B2 (ja) トンネル切羽前方地質探査法
NL1015947C2 (nl) Inrichting voor het gericht boren.
JP2002106290A (ja) 前方探査装置を搭載したトンネル掘削機
RU2752847C2 (ru) Способ обнаружения препятствий во время эксплуатации вибропогружателя
KR101791588B1 (ko) 지반측정장치를 탑재한 터널굴착기 및 이를 이용한 지반측정방법
RU2116404C1 (ru) Способ управления направлением движения и устройство ударного действия для пробивания скважин в грунте (пневмопробойник)
JPH05125888A (ja) 検出体の打ち込み装置
GB2158135A (en) Improvements relating to method for driving piles
JPH0230893A (ja) トンネル掘削機
US20230235665A1 (en) Apparatus and method for signalling between downhole and uphole locations
JP2018040118A (ja) 切羽地山探査方法及び装置
SU899792A1 (ru) Устройство ударного действи дл проходки скважин в грунте путем его уплотнени
JPH10245864A (ja) 埋設物処理方法及び装置
SU883274A1 (ru) Устройство ударного действи дл образовани скважин в грунте путем его уплотнени
JP2000170487A (ja) 掘削装置及びその使用方法
Firstbrook et al. Ultrasonically-Assisted Penetration of Granular and Cemented Materials
JPH02276987A (ja) 地中掘進機前方の地中探査方法及び装置
JP2002327596A (ja) 動的圧入推進工法及びこの工法に用いられる推進装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040210

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060623

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees