JP3821663B2 - Rotating substrate processing apparatus and rotating substrate processing method - Google Patents

Rotating substrate processing apparatus and rotating substrate processing method Download PDF

Info

Publication number
JP3821663B2
JP3821663B2 JP2001145884A JP2001145884A JP3821663B2 JP 3821663 B2 JP3821663 B2 JP 3821663B2 JP 2001145884 A JP2001145884 A JP 2001145884A JP 2001145884 A JP2001145884 A JP 2001145884A JP 3821663 B2 JP3821663 B2 JP 3821663B2
Authority
JP
Japan
Prior art keywords
substrate
surface height
processing
mode
processing mode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001145884A
Other languages
Japanese (ja)
Other versions
JP2002343700A (en
Inventor
卓也 柴尾
裕之 北澤
幸一 上野
聡 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Screen Holdings Co Ltd
Dainippon Screen Manufacturing Co Ltd
Original Assignee
Screen Holdings Co Ltd
Dainippon Screen Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Screen Holdings Co Ltd, Dainippon Screen Manufacturing Co Ltd filed Critical Screen Holdings Co Ltd
Priority to JP2001145884A priority Critical patent/JP3821663B2/en
Publication of JP2002343700A publication Critical patent/JP2002343700A/en
Application granted granted Critical
Publication of JP3821663B2 publication Critical patent/JP3821663B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Weting (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Coating Apparatus (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、半導体基板、液晶表示装置用ガラス基板、プラズマディプレイ用ガラス基板、フォトマスク用ガラス基板、光ディスク用基板等(以下、「基板」と称する)を回転させながら該基板に対して所要の処理を施す回転式基板処理装置および方法に関するものである。
【0002】
【従来の技術】
従来のこの種の基板処理装置として、基板に対して例えば薬液処理モード、洗浄処理モード、乾燥処理モードをその順に施す装置がある。これらの処理モードのうち、薬液処理モードおよび洗浄処理モードでは、基板を水平面内で回転させながら、該基板に供給された薬液や洗浄液によって所要の処理が実行される。一方、乾燥処理モードでは、基板を水平面内で回転させることにより基板乾燥を行っている。
【0003】
このように、いずれの処理モードにおいても基板を回転させる必要があるため、この種の基板処理装置では、基板を水平姿勢で保持する基板支持部と、基板支持部および該基板支持部により支持されている基板とを一体的に回転駆動する駆動部とが設けられている。より具体的には、基板支持部では、平面視で円形状の基板支持板の上面に複数個の支持ピンが立設されており、これらの支持ピンによって基板が支持されている。また、この基板支持板の下面中央部に駆動部を構成するモータの回転軸が固着されており、モータを駆動することによって基板支持板が回転軸を中心として回転し、基板支持板の回転に伴って、その回転力が支持ピンを介して基板に伝達され基板は基板支持板とともに回転する。
【0004】
また、2つの液ノズルがそれぞれ基板の表裏面に対向して配置されている。これらの液ノズルの各々は薬液供給源および洗浄液供給源に選択的に接続されるように構成されており、処理モードに応じて薬液または洗浄液の供給/停止が制御されるように構成されている。
【0005】
このように構成された基板処理装置では、次のように基板処理が行われる。まず、基板支持板に基板が載置される。続いて、モータが始動して、基板支持板とともに基板を回転する。そして、基板の回転数が所定値に達すると、上下の液ノズルから薬液を基板に供給して薬液処理を行う(薬液処理モード)。また、この薬液処理が完了すると、基板を回転させたまま、薬液に代えて洗浄液を基板に供給して基板の洗浄処理を行う(洗浄処理モード)。こうして、洗浄処理が完了すると、基板の回転によって基板の乾燥処理を行う(乾燥処理モード)。
【0006】
【発明が解決しようとする課題】
ところで、従来装置では上記したように支持ピンで基板を支持した状態で基板を回転させているが、いずれの処理モードにおいても基板姿勢は同一、つまり略水平姿勢となっている。本発明者などが種々の実験や検証などを行った処、処理モードによって基板姿勢を水平姿勢とするよりも基板をむしろ積極的に滑らかに湾曲させた湾曲姿勢で支持しながら基板を回転させるのが該処理モードを良好に行い、製品品質や歩留まりの向上を図る上で望ましいことを見い出した。しかしながら、従来装置では、基板姿勢を処理モードに応じて変更する構成を採用しておらず、単一の基板姿勢でしか基板を支持することができず、この種の基板処理装置においては改良の余地が大きく残されていた。
【0007】
この発明は上記課題に鑑みなされたものであり、基板を回転させながら該基板に対して所要の処理を施す処理モードを、複数種類有する回転式基板処理装置および方法において、いずれの処理モードにおいても処理モードを良好に行い製品品質や歩留まりの向上を図ることを目的とする。
【0008】
【課題を解決するための手段】
この発明にかかる基板処理装置は、基板を略水平に保持する基板保持部と、前記基板保持部を回転駆動する駆動部とを備え、前記基板保持部によって保持された基板を回転させながら該基板に対して所要の処理を施す処理モードを、複数種類有する回転式基板処理装置であって、上記目的を達成するため、前記基板保持部は、処理モードに応じて、前記基板の中央部における中央表面高さと、前記基板の周縁部における周縁表面高さとの相対関係を相違させた状態で前記基板を回転し、さらに、前記基板保持部は、基板の中央部を支持する中央支持ピンと、基板の周縁部を支持する周縁支持ピンと、前記中央支持ピンおよび前記周縁支持ピンの少なくとも一方を上下動させるピン昇降機構とを備えることを特徴としている(請求項1)。
【0009】
また、この発明にかかる基板処理方法は、支持ピンによって略水平に保持された基板を回転させながら該基板に対して所要の処理を施す処理モードを、複数種類有する回転式基板処理方法であって、上記目的を達成するため、処理モードに応じて、基板の中央部を支持する中央支持ピンおよび基板の周縁部を支持する周縁支持ピンの少なくとも一方を上下動させることによって、前記基板の中央部における中央表面高さと、前記基板の周縁部における周縁表面高さとの相対関係を変更させることを特徴としている(請求項9)。
【0010】
なお、この明細書中の「略水平」とは、基板を水平に配置することを意味しており、水平配置された基板を支持ピンなどによって支持することによって得られる基板の最終保持姿勢を意味するものではない。したがって、水平配置される基板が完全に水平となっている場合のみならず、撓み程度に湾曲している場合も「略水平」に含まれる。
【0011】
このように構成された発明(基板処理装置および方法)では、各処理モードを実行する際に、基板の中央部を支持する中央支持ピンおよび基板の周縁部を支持する周縁支持ピンの少なくとも一方を上下動させることによって、基板の中央表面高さと、該基板の周縁表面高さとの相対関係が変更され、その処理モードに適した基板姿勢で処理が行われる。したがって、各処理モードを良好に行い製品品質や歩留まりの向上が可能となる。
【0012】
ここで、具体的な処理モードの一例として基板を回転させることで該基板を乾燥させる乾燥処理モードがあるが、この乾燥処理モードでは、中央表面高さが周縁表面高さよりも低い状態で基板が回転される(請求項2)。通常、乾燥処理モードでは、乾燥効率を高めるために基板を比較的高速で回転させることが多いが、このように中央表面高さが周縁表面高さよりも低くなる、つまり湾曲状態で支持することにより基板の局所的な波打ち(凹凸)がなくなり、基板を高速回転させたときであっても基板の振動を抑制することができ、基板の局所的な波打ちによる不都合(基板の飛散や破損など)を効果的に防止することができる。
【0013】
また、具体的な処理モードとしては、上記乾燥処理モード以外に、薬液が供給された基板を回転させることで薬液によって所要の薬液処理を行う薬液処理モードがある。この薬液処理モードは乾燥処理モードに先立って行われるが、この薬液処理モードでは中央表面高さと周縁表面高さとがほぼ一致する状態で基板を回転するのが望ましい(請求項3)。なんとなれば、薬液処理の間、基板が水平状態に保持されながら基板を回転させることで、薬液が基板全体に行き渡り、均一な薬液処理が可能となるからである。
【0014】
また、具体的な処理モードとしては、上記乾燥処理モードおよび薬液処理モード以外に、洗浄液が供給された基板を回転させることで洗浄液によって該基板に対して洗浄処理を施す洗浄処理モードがある。この洗浄処理モードは薬液処理モードと乾燥処理モードとの間で実行されるが、この洗浄処理モードでは中央表面高さが周縁表面高さよりも低い状態で基板を回転するのが望ましい(請求項4)。というのも、洗浄処理では、薬液処理よりも高い回転数で基板を回転させるため、乾燥処理の場合と同様に、基板の高速回転に伴う基板の振動を抑制し、基板の局所的な波打ちによる不都合(基板の飛散や破損など)を防止するのが望ましいからである。
【0015】
なお、洗浄処理における基板の回転数は乾燥処理における基板の回転数よりも小さい場合が多く、しかも洗浄液を基板に供給して洗浄処理を行うために大きく湾曲させると基板中央部に洗浄液が滞留する可能性がある等を考慮すると、乾燥処理モードにおける周縁表面高さに対する中央表面高さの変位量が洗浄処理モードにおける変位量よりも大きくなるように上記相対関係を調整するのが望ましい(請求項5)。
【0017】
また、上記したように乾燥処理モードでは中央表面高さが周縁表面高さよりも低い状態に基板姿勢を制御するのが望ましいが、この基板姿勢を得るためには、ピン昇降機構によって中央支持ピンを下降させて中央表面高さを周縁表面高さよりも低くしたり(請求項6)、ピン昇降機構によって周縁支持ピンを上昇させて中央表面高さを周縁表面高さよりも低くすればよい(請求項7)。
【0018】
なお、ピン昇降機構による上記相対関係を変更するタイミングとしては、処理モードの切り替えに応じて中央支持ピンおよび周縁支持ピンの少なくとも一方を上下動させることによって中央表面高さと周縁表面高さとの相対関係をモード切替前後で変更するのが望ましい(請求項8)。
【0019】
【発明の実施の形態】
図1は、本発明にかかる回転式基板処理装置の一実施形態を示す縦断面図である。この基板処理装置は、LCD用ガラス基板W(以下、単に「基板W」という)に対して薬液処理、洗浄処理、および乾操処理をこの順序で連続して行う装置である。この装置は、同図に示すように、基板Wを保持する基板支持部1と、その基板支持部1を回転駆動する駆動部2と、基板支持部1の上側で処理空間Sを形成し遮蔽する上部遮蔽部3と、上部遮蔽部3を上下動させる昇降部4と、基板Wから振り切られる液体を回収するカップ部5と、それぞれの装置各部を収納するハウジング6を備えている。
【0020】
この基板支持部1は、平面視で円形状の基板支持板11と、この基板支持板11の上面に固着されて基板Wの周縁部を支持する周縁支持ピン12と、基板支持板11の上面側で基板Wの中央部を支持する中央支持ピン13と、中央支持ピン13を昇降させるピン昇降機構14とを備えている。
【0021】
周縁支持ピン12は基板Wの4角部に対応して配置される。各周縁支持ピン12は、基板Wの外周端縁を下方から支持する支持部材121と、支持部材121に支持された基板Wの外周端面に当接して基板Wの移動を規制する案内立ち上がり面122とを備えており、基板Wの周縁部を4箇所で支持し、基板Wの周縁部を所定の表面高さ(以下「周縁表面高さ」という)に位置決めする。なお、図1では、図面が煩雑になることを避けるために、2個の周縁支持ピン12のみを示している。
【0022】
また、中央支持ピン13は基板Wの中央部に対応して基板支持板11に4個配置されており、ピン昇降機構14によって上下動されて基板Wの中央部を支持しながら、しかも基板中央部の表面高さ(以下「中央表面高さ」という)を変更可能となっている。なお、中央支持ピン13およびピン昇降機構14の構成および動作については後で詳述する。
【0023】
駆動部2は、基板支持板11の回転中心の開口に連結して設けられている。そして、この開口に連通するように、筒軸21の上端部が基板支持板11に接続されるとともに、その下端部がベルト機構22を介してモータ23に連結されており、モータ23によって筒軸21が回転すると、基板支持板11および支持ピン12、13によって基板支持部1に保持された基板Wを鉛直方向の軸芯P周りで回転させる。
【0024】
また、筒軸21は中空筒状の部材で構成され、その中心に沿って液ノズル16が配設されている。そして、この液ノズル16の上端が基板Wの下面中心部に臨んでおり、上端部に設けられたノズル孔から基板Wの下面の回転中心付近に処理液(薬液や洗浄液)を供給できるように構成されている。
【0025】
さらに、筒軸21は基板支持板11の開口に臨んで延在し、基板支持板11に対して上側に位置することにより排出口17が開口されている。そして、排出口17において、この液ノズル16の側面と筒軸21内周面との間隙から大気圧雰囲気からのエアーが吐出される。液ノズル16の先端部には断面T字状に形成され、平坦な上面の中央部に処理液のノズル孔が開口される。
【0026】
液ノズル16は配管80に連通接続されている。この配管80の基端部は分岐されており、一方の分岐配管80aには薬液供給源81が連通接続され、他方の分岐配管80bには純水供給源82が連通接続されている。各分岐配管80a、80bには開閉弁83a、83bが設けられており、これら開閉弁83a、83bの開閉を切り換えることで、液ノズル16のノズル孔から基板Wの裏面に向けて薬液と純水とを選択的に切り換えて供給できるようになっている。
【0027】
また、気体供給路18は、液ノズル16内に設けられるとともに、その下端部は、開閉弁84aが設けられた配管84を介して気体供給源85に連通接続されており、気体供給路18の上端部の吐出口から基板支持板11と基板Wの下面との間の空間に、清浄な空気や清浄な不活性ガス(窒素ガスなど)などの清浄な気体を供給できるように構成されている。
【0028】
また、筒軸21と液ノズル16との間隙は流量調整弁86aを介して配管86が大気圧雰囲気に開放されるように構成されている。そして、筒軸21と液ノズル16との間隙は開口19を介して基板支持板11と基板Wとの間の空間に連通されており、間隙内の空気が該空間に排出可能となっている。
【0029】
モータ23やベルト機構22などは、この基板処理装置の底板としてのベース部材61上に設けられた円筒状のケーシング62内に収容されている。このケーシング62が、筒軸21の外周面に軸受け63を介して接続され、筒軸21を覆う状態となる。すなわち、モータ23から基板支持板11に接続する直前までの筒軸21の周囲をケーシング62で覆い、これに伴い筒軸21に下方に取り付けられたモータ23もカバーで覆った状態とする。
【0030】
上部遮蔽部3は、基板Wを挟んで基板支持板11に対向するように上部回転板31が配設されており、昇降部4の回転板昇降機構41によって上下動される。この上部回転板31は基板Wの周縁領域を覆うリング状を呈しており、中央部に大きな開口31aが開けられている。そして、開口31aの周囲は仕切壁31bが円筒状に立設されており、この仕切壁31b内に、開口31aを塞ぐように補助遮蔽機構32と、基板Wの上面に純水などの洗浄液を供給する液ノズル33が、上下移動自在に設けられている。そして、これら補助遮蔽機構32および液ノズル33が一体的に昇降部4の補助遮蔽昇降機構42によって上下動される。このため、回転板昇降機構41によって上部回転板31を基板支持板11側に下降させて上部回転板31を周縁支持ピン12により支持させるとともに、補助遮蔽昇降機構42によって補助遮蔽機構32および液ノズル33を基板支持板11側に下降させて開口31aを塞ぐと、基板支持板11とで挟まれた処理空間Sが形成される。
【0031】
この処理空間Sに向けて液ノズル33にノズル孔が設けられており、液ノズル16側と同様にして薬液と純水とを選択的に切り換えて基板Wの上面中央部に供給できるようになっている。すなわち、液ノズル33の中空部には、液供給管332が貫通され、その下端部から基板支持板11に保持された基板Wの上面の回転中心付近に処理液(薬液や洗浄液)を供給できるように構成されている。この液供給管332は配管87に連通接続されている。そして、この配管87の基端部は分岐されており、一方の分岐配管87aには薬液供給源81が連通接続される一方、他方の分岐配管87bには純水供給源82が連通接続されている。また、各分岐配管87a、87bには開閉弁88a、88bが設けられており、これら開閉弁88a、88bの開閉を切り換えることで、液ノズル33から基板Wの上面中央部に薬液と純水とを選択的に切り換えて供給可能となっている。
【0032】
また、液ノズル33の内周面と液供給管332の外周面との間の隙間は、気体供給路333となっている。この気体供給路333は、開閉弁89aが設けられた配管89を介して気体供給源85に連通接続されており、気体供給路333の下端部から上部回転板31と基板Wの上面との間の空間に清浄な気体を供給できるように構成されている。
【0033】
次に、中央支持ピン13およびピン昇降機構14の構成について図2を参照しつつ説明する。
【0034】
図2は、図1の基板処理装置で採用されているピン昇降機構を示す断面図であり、同図(a)は基板支持板が回転停止および低速回転している状態を示す一方、同図(b)は基板支持板が高速回転している状態を示している。中央支持ピン13は、基板支持板11に設けられた開口111に挿通されており、その先端部131で基板Wを支持する一方、その後端面132がテーパ面に仕上げられている。そして、このテーパ面132に対してピン昇降機構14が作用して中央支持ピン13が基板支持板11に対して進退移動して基板Wの中央部の昇降を行う。
【0035】
このピン昇降機構14は、基板支持板11の下面に取り付けられたケース141内で中央支持ピン13の上下動をガイドするピンガイド部材142を備えている。また、ケース141の内底面には、軸芯P(図1)を中心として遠心方向にガイドレール143が設けられている。したがって、各ピン昇降機構14に設けられたガイドレール143を平面視すると、軸芯Pを中心として放射状に伸びている。
【0036】
このガイドレール143には、作用部材144がスライド自在に取り付けられている。この作用部材144の上面144aは、中央支持ピン13のテーパ面132と係合可能なテーパ面となっている。そして、作用部材144の軸芯側(同図の右手側)の端部144bと、ケース141の内側面との間にバネ部材145が設けられており、作用部材144を軸芯側に付勢している。なお、同図中の符号146,147はそれぞれ最上点ストッパー、最下点ストッパーを示している。
【0037】
このように構成されたピン昇降機構14によれば、基板支持板11の回転を停止しているときには、同図(a)に示すように、バネ部材145の付勢力によって作用部材144が軸芯側に付勢されており、最上点ストッパー146で決められた位置に位置決めされて中央支持ピン13の先端部131は周縁支持ピン12による基板支持位置と同じ高さとなる。このため、中央支持ピン13によって支持される基板中央部の表面高さ、つまり中央表面高さは周縁支持ピン12で支持される基板周縁部の表面高さ、つまり周縁表面高さと同一となる。なお、基板支持板11が回転し始めると、その回転によって作用部材144に対して軸芯Pと反対側(同図の左手側)に向かう力、つまり遠心力が作用するが、その回転数は低い間(後で説明する回転数Vth以下の間)ではバネ部材145の付勢力が遠心力よりも大きく、同図(a)に示す状態(回転停止・低速状態)に維持される。
【0038】
そして、基板支持板11の回転数がさらに増大すると、回転に伴う遠心力が付勢力よりも大きくなり、作用部材144が軸芯Pと反対側(同図の左手側)に移動し、その移動に伴って中央支持ピン13が基板支持板11に対して後退していき、中央表面高さは周縁表面高さよりも低くなる。ただし、この実施形態では、最下点ストッパー147を設けることによって基板支持板11の回転数が所定値以上となっても中央支持ピン13が同図(b)の状態(高速回転状態)よりも低くなるのを防止している。
【0039】
次に、上記のように構成された基板処理装置の動作について図3および図4を参照しながら説明する。
【0040】
図3は、図1の基板処理装置の動作を示すタイミングチャートである。また、図4は、図1の基板処理装置における基板の支持状態を示す模式図である。この基板処理装置では、基板支持部1に基板Wが載置される。このとき、各液ノズル16,33からの処理液(薬液および洗浄液)の供給は停止され、また基板支持板11の回転数はゼロであり、回転停止状態となっている。そのため、中央支持ピン13の先端部131は最も高い位置Hmaxとなっており、基板Wの中央表面高さは周縁表面高さと同一となっている。つまり、基板Wは図4(a)に示すように水平姿勢で基板支持部1によって保持されている。
【0041】
次に、所定タイミングT1でモータ23が始動して基板支持板11が回転し始める。そして、基板支持板11の回転を加速していき、回転数が所定値Vthになった時点で定速制御に移る。また、所定タイミングT1からタイミングT2まで液ノズル16,33から薬液が基板Wに向けて供給されて薬液処理が実行される(薬液処理モード)。このとき、この実施形態では、回転数が所定値Vth以下ではバネ部材145の付勢力が遠心力よりも大きく、図2(a)に示すように回転停止・低速状態のままであり、基板Wは図4(a)に示すように水平状態のまま薬液処理が行われる。このように薬液処理の間、基板Wを水平状態に保持しながら基板Wを回転させているので、薬液を基板全体に行き渡らせることができ、均一な薬液処理を行うことができる。
【0042】
薬液処理が完了するタイミングT2になると、液ノズル16,33からは薬液の代わりに洗浄液を供給するとともに、基板支持板11の回転数を所定値Vthよりも高い回転数(ただし、最高回転数Vmaxよりも低い回転数)に増加して中央支持ピン13の先端部131を薬液処理のときよりも低くする。すなわち、図4(b)に示すように基板Wの中央表面高さは周縁表面高さよりも若干低い浅皿状態となっており、このように湾曲した状態で洗浄液による洗浄処理がタイミングT3まで実行される(洗浄処理モード)。
【0043】
洗浄処理が完了するタイミングT3では、液ノズル16,33から基板Wへの洗浄液の供給が停止されるとともに、基板支持板11の回転数が図3に示す加減速パターンで加減速制御されて基板Wに付着した洗浄液が振り切られ、基板Wに対する乾燥処理が実行される(乾燥処理モード)。つまり、基板支持板11の回転数は最高回転数Vmaxまで高められた後、徐々に減速されてタイミングT4でゼロとなり、乾燥処理を完了する。このように、基板支持板11の回転数を最高回転数Vmaxまで高めると、中央支持ピン13の先端部131は最も低い位置Hminまで低下し、その結果、図4(c)に示すように基板Wの中央表面高さは周縁表面高さよりもかなり低いお椀状態となっており、このように湾曲した状態で振り切り乾燥処理が行われる。そのため、以下のような作用効果が得られる。
【0044】
従来より基板Wを支持ピンで支持する場合、多くの基板処理装置では水平姿勢で支持している。しかしながら、基板Wを水平に支持するには多数の支持ピンが必要であり、また、精度上の限界から困難を伴い、基板Wが局所的に波打った状態で支持されやすい。このような波打ち状態のまま基板Wを高速回転させると、基板Wが振動し、処理が不安定になったり、基板Wの飛散や破損などを招くという不都合が生じる。これに対し、本実施形態では、上記のように基板Wを滑らかに湾曲した状態で支持することにより、基板Wの局所的な波打ち(凹凸)をなくすことができ、基板Wを高速回転させたときであっても基板Wの振動を抑制することができる。
【0045】
なお、上記のようにして薬液処理、洗浄処理および乾燥処理が完了すると、図示しない基板搬送ロボットなどによって処理済みの基板Wが装置外に搬出される。そして、上述したと同様にして未処理の基板Wが搬入されて一連の処理が繰り返される。
【0046】
以上のように、この実施形態によれば、各処理モードを実行する際に、基板の中央表面高さと、該基板の周縁表面高さとの相対関係を処理モードに応じて変更しているので、その処理モードに適した基板姿勢で処理が行われる。例えば、薬液処理モードは中央表面高さと周縁表面高さとがほぼ一致する基板姿勢(図4(a))で基板Wが回転されるため、薬液が基板全体に行き渡り、均一な薬液処理が可能となる。また、乾燥処理モードでは、中央表面高さが周縁表面高さよりも低い基板姿勢(同図(c))で基板Wが回転されるため、基板Wの局所的な波打ち(凹凸)がなくなり、基板を高速回転させたときであっても基板の振動を抑制することができ、基板の局所的な波打ちによる不都合(基板の飛散や破損など)を効果的に防止することができる。さらに、洗浄処理モードでは中央表面高さが周縁表面高さよりも低く、しかも洗浄処理モードにおける周縁表面高さに対する中央表面高さの変位量(=Hmax−Hcl)が乾燥処理モードにおける変位量(=Hmax−Hmin)よりも小さくなる基板姿勢(同図(b))で基板Wが回転されるため、基板中央部に洗浄液が滞留するのを防止しながら、基板回転に伴う基板の振動を抑制し、基板Wの局所的な波打ちによる不都合(基板の飛散や破損など)を防止している。このように、この実施形態によれば、各処理モードでは、その処理モードに適した基板姿勢で処理が行われるので、各処理モードを良好に行い製品品質や歩留まりの向上を図ることができる。
【0047】
なお、本発明は上記した実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて上述したもの以外に種々の変更を行うことが可能である。例えば、上記実施形態では基板支持板11の回転に伴い発生する遠心力によって中央支持ピン13が上下動するようにピン昇降機構14を構成しているが、ピン昇降機構14の構成はこれに限定されるものではなく、中央支持ピン13を昇降駆動させることができる構成であれば、如何なる構成を採用してもよい。例えば、図5に示すようにエアシリンダーやソレノイドなどのアクチュエータ148により中央支持ピン13を上下動させるように構成してもよい。
【0048】
また、上記実施形態では、基板Wに対して薬液処理モード、洗浄処理モードおよび乾燥処理モードをこの順序で行う基板処理装置に本発明を適用しているが、本発明の適用対象はこれに限定されるものではなく、互いに異なる複数種類の処理モードを実行する基板処理装置全般に適用することができる。また、処理対象となる基板は液晶表示装置用ガラス基板に限定されるものではなく、半導体基板、フォトマスク用ガラス基板、光ディスク用基板なども含まれる。
【0049】
また、上記実施形態では、図4に示すように、薬液処理モード(同図(a))、洗浄処理モード(同図(b))および乾燥処理モード(同図(c))において、中央表面高さと周縁表面高さとの相対関係を全て相違させているが、全処理モードにおいて上記相対関係を全て相違させることが本発明の必須構成要件ではなく、例えば薬液処理モードおよび洗浄処理モードでは基板Wを水平姿勢で回転させる一方、乾燥処理モードではお椀状に湾曲させた基板姿勢で回転させるようにしてもよい。また、複数種類の薬液を用いる場合があるが、各薬液処理モードにおいては全て水平姿勢で回転させるようにしてもよい。
【0050】
また、上記実施形態では、周縁支持ピン12を固定配置する一方、中央支持ピン13をピン昇降機構14によって上下動させることによって中央表面高さと周縁表面高さとの相対関係を変更設定しているが、かかる相対関係を変更するためには、ピン昇降機構を周縁支持ピン12側にも設けて周縁支持ピン12および中央支持ピン13をともに上下動可能に構成したり、中央支持ピン13を固定配置する一方、周縁支持ピン12をピン昇降機構によって上下動させるように構成してもよい。
【0051】
さらに、上記実施形態では、周縁支持ピン12および中央支持ピン13をともに4個ずつ設けているが、これらの個数、配列および形状などはこれに限定されるものではない。
【0052】
【発明の効果】
以上のように、この発明によれば、処理モードに応じて、基板の中央部を支持する中央支持ピンおよび基板の周縁部を支持する周縁支持ピンの少なくとも一方を上下動させることによって、基板の中央部における中央表面高さと、該基板の周縁部における周縁表面高さとの相対関係が変更されるように構成しているので、各処理モードを実行する際に、基板の中央表面高さと、該基板の周縁表面高さとの相対関係が変更され、その処理モードに適した基板姿勢で処理が行われ、各処理モードを良好に行うことができる。その結果、製品品質や歩留まりを向上させることができる。
【図面の簡単な説明】
【図1】本発明にかかる回転式基板処理装置の一実施形態を示す縦断面図である。
【図2】図1の基板処理装置で採用されているピン昇降機構を示す断面図である。
【図3】図1の基板処理装置の動作を示すタイミングチャートである。
【図4】図1の基板処理装置における基板の支持状態を示す模式図である。
【図5】本発明にかかる回転式基板処理装置の他の実施形態を示す縦断面図である。
【符号の説明】
1…基板支持部
2…駆動部
11…基板支持板
12…周縁支持ピン
13…中央支持ピン
14…ピン昇降機構
Hmax…周縁表面高さ
P…軸芯
W…基板
[0001]
BACKGROUND OF THE INVENTION
The present invention requires a semiconductor substrate, a glass substrate for a liquid crystal display device, a glass substrate for a plasma display, a glass substrate for a photomask, a substrate for an optical disk, etc. (hereinafter referred to as “substrate”) while rotating the substrate. The present invention relates to a rotary substrate processing apparatus and method for performing the above process.
[0002]
[Prior art]
As a conventional substrate processing apparatus of this type, there is an apparatus that applies, for example, a chemical processing mode, a cleaning processing mode, and a drying processing mode to a substrate in that order. Among these processing modes, in the chemical processing mode and the cleaning processing mode, required processing is executed by the chemical and cleaning liquid supplied to the substrate while rotating the substrate in a horizontal plane. On the other hand, in the drying process mode, the substrate is dried by rotating the substrate in a horizontal plane.
[0003]
As described above, since it is necessary to rotate the substrate in any processing mode, this type of substrate processing apparatus is supported by the substrate support unit that holds the substrate in a horizontal posture, the substrate support unit, and the substrate support unit. And a driving unit that integrally rotates with the substrate. More specifically, in the substrate support portion, a plurality of support pins are erected on the upper surface of a circular substrate support plate in plan view, and the substrate is supported by these support pins. In addition, the rotation shaft of the motor constituting the drive unit is fixed to the central portion of the lower surface of the substrate support plate. By driving the motor, the substrate support plate rotates about the rotation shaft, and the substrate support plate is rotated. Accordingly, the rotational force is transmitted to the substrate through the support pins, and the substrate rotates together with the substrate support plate.
[0004]
Further, two liquid nozzles are respectively arranged facing the front and back surfaces of the substrate. Each of these liquid nozzles is configured to be selectively connected to a chemical liquid supply source and a cleaning liquid supply source, and is configured to control supply / stop of the chemical liquid or the cleaning liquid in accordance with the processing mode. .
[0005]
In the substrate processing apparatus configured as described above, the substrate processing is performed as follows. First, a substrate is placed on the substrate support plate. Subsequently, the motor is started to rotate the substrate together with the substrate support plate. When the number of rotations of the substrate reaches a predetermined value, the chemical solution is supplied to the substrate from the upper and lower liquid nozzles to perform the chemical treatment (chemical treatment mode). When this chemical processing is completed, the substrate is cleaned by supplying a cleaning liquid to the substrate instead of the chemical while the substrate is rotated (cleaning processing mode). Thus, when the cleaning process is completed, the substrate is dried by rotating the substrate (drying process mode).
[0006]
[Problems to be solved by the invention]
By the way, in the conventional apparatus, as described above, the substrate is rotated while the substrate is supported by the support pins. However, the substrate posture is the same in all processing modes, that is, a substantially horizontal posture. After various experiments and verifications by the present inventors, the substrate is rotated while supporting the substrate in a curved posture in which the substrate is positively and smoothly curved rather than making the substrate posture horizontal depending on the processing mode. However, it has been found that it is desirable to perform the processing mode satisfactorily and to improve the product quality and the yield. However, the conventional apparatus does not employ a configuration in which the substrate posture is changed according to the processing mode, and can support the substrate only in a single substrate posture, and this type of substrate processing apparatus is improved. There was a lot of room left.
[0007]
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and in a rotary substrate processing apparatus and method having a plurality of processing modes for performing a required processing on the substrate while rotating the substrate, in any processing mode. The purpose is to improve the product quality and yield by improving the processing mode.
[0008]
[Means for Solving the Problems]
A substrate processing apparatus according to the present invention includes a substrate holding unit that holds a substrate substantially horizontally and a drive unit that rotationally drives the substrate holding unit, and rotates the substrate held by the substrate holding unit. A rotary substrate processing apparatus having a plurality of processing modes for performing a required processing on the substrate, and in order to achieve the above object, the substrate holding unit is arranged at the center of the substrate according to the processing mode. The substrate is rotated with the relative relationship between the surface height and the peripheral surface height at the peripheral edge of the substrate being different. Further, the substrate holding part is a center support pin that supports the central part of the substrate, a peripheral support pin that supports the peripheral part of the substrate, and a pin lift that moves up and down at least one of the central support pin and the peripheral support pin. With mechanism (Claim 1).
[0009]
Moreover, the substrate processing method according to the present invention includes: By support pin A rotating substrate processing method having a plurality of types of processing modes for performing a required processing on the substrate while rotating the substrate held substantially horizontally, in order to achieve the above object, according to the processing mode, By vertically moving at least one of the center support pin that supports the center portion of the substrate and the periphery support pin that supports the periphery portion of the substrate, The relative relationship between the central surface height in the central part of the substrate and the peripheral surface height in the peripheral part of the substrate is changed ( Claim 9 ).
[0010]
In this specification, “substantially horizontal” means that the substrate is horizontally arranged, and means the final holding posture of the substrate obtained by supporting the horizontally arranged substrate with support pins or the like. Not what you want. Therefore, “substantially horizontal” includes not only the case where the horizontally disposed substrate is completely horizontal but also the case where the substrate is curved to the extent of bending.
[0011]
In the invention (substrate processing apparatus and method) configured as described above, when executing each processing mode, By vertically moving at least one of the center support pin that supports the center portion of the substrate and the periphery support pin that supports the periphery portion of the substrate, The relative relationship between the central surface height of the substrate and the peripheral surface height of the substrate is changed, and processing is performed in a substrate posture suitable for the processing mode. Accordingly, it is possible to improve each product mode and yield by improving each processing mode.
[0012]
Here, as an example of a specific processing mode, there is a drying processing mode in which the substrate is dried by rotating the substrate. In this drying processing mode, the substrate is placed in a state where the central surface height is lower than the peripheral surface height. It is rotated (claim 2). Normally, in the drying process mode, the substrate is often rotated at a relatively high speed in order to increase the drying efficiency, but the center surface height is thus lower than the peripheral surface height, that is, by supporting in a curved state. The local undulation (unevenness) of the substrate is eliminated, and the vibration of the substrate can be suppressed even when the substrate is rotated at a high speed. Inconveniences (such as scattering and breakage of the substrate) caused by local undulation of the substrate It can be effectively prevented.
[0013]
Further, as a specific processing mode, there is a chemical processing mode in which a required chemical processing is performed with a chemical by rotating a substrate to which the chemical is supplied, in addition to the drying processing mode. This chemical processing mode is performed prior to the drying processing mode. In this chemical processing mode, it is desirable to rotate the substrate in a state where the center surface height and the peripheral surface height substantially coincide with each other. This is because by rotating the substrate while the substrate is held in a horizontal state during the chemical processing, the chemical spreads over the entire substrate, and uniform chemical processing is possible.
[0014]
In addition to the drying process mode and the chemical process mode, specific process modes include a cleaning process mode in which a cleaning process is performed on the substrate by rotating the substrate supplied with the cleaning liquid. This cleaning processing mode is executed between the chemical processing mode and the drying processing mode. In this cleaning processing mode, it is desirable to rotate the substrate with the center surface height being lower than the peripheral surface height. ). This is because, in the cleaning process, the substrate is rotated at a higher rotational speed than in the chemical process, and as in the case of the drying process, the vibration of the substrate due to the high-speed rotation of the substrate is suppressed, and the local waving of the substrate is caused. This is because it is desirable to prevent inconvenience (such as scattering and breakage of the substrate).
[0015]
The number of rotations of the substrate in the cleaning process is often smaller than the number of rotations of the substrate in the drying process, and the cleaning liquid stays in the center of the substrate when the substrate is largely curved to supply the cleaning liquid to the substrate and perform the cleaning process. In consideration of the possibility, it is desirable to adjust the relative relationship so that the displacement amount of the central surface height with respect to the peripheral surface height in the drying treatment mode is larger than the displacement amount in the cleaning treatment mode (claims). 5).
[0017]
As described above, in the drying process mode, it is desirable to control the substrate posture so that the central surface height is lower than the peripheral surface height. To lower the center surface height below the peripheral surface height ( Claim 6 ), The peripheral support pin is raised by the pin lifting mechanism, and the central surface height is made lower than the peripheral surface height ( Claim 7 ).
[0018]
The timing of changing the relative relationship by the pin lifting mechanism is a relative relationship between the central surface height and the peripheral surface height by moving up and down at least one of the central support pin and the peripheral support pin in accordance with switching of the processing mode. It is desirable to change before and after mode switching ( Claim 8 ).
[0019]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a longitudinal sectional view showing an embodiment of a rotary substrate processing apparatus according to the present invention. This substrate processing apparatus is an apparatus that sequentially performs a chemical solution process, a cleaning process, and a dry operation process in this order on an LCD glass substrate W (hereinafter simply referred to as “substrate W”). In this apparatus, as shown in the figure, a substrate support unit 1 that holds a substrate W, a drive unit 2 that rotationally drives the substrate support unit 1, and a processing space S is formed above the substrate support unit 1 to shield it. An upper shielding part 3 that moves up and down, a lifting part 4 that moves the upper shielding part 3 up and down, a cup part 5 that collects liquid that is shaken off from the substrate W, and a housing 6 that accommodates each part of the apparatus.
[0020]
The substrate support 1 includes a circular substrate support plate 11 in plan view, peripheral support pins 12 that are fixed to the upper surface of the substrate support plate 11 and support the peripheral portion of the substrate W, and an upper surface of the substrate support plate 11. A central support pin 13 that supports the central portion of the substrate W on the side and a pin lifting mechanism 14 that lifts and lowers the central support pin 13 are provided.
[0021]
The peripheral support pins 12 are arranged corresponding to the four corners of the substrate W. Each peripheral support pin 12 is a support member 121 that supports the outer peripheral edge of the substrate W from below, and a guide rising surface 122 that abuts the outer peripheral end surface of the substrate W supported by the support member 121 and restricts the movement of the substrate W. The peripheral edge of the substrate W is supported at four locations, and the peripheral edge of the substrate W is positioned at a predetermined surface height (hereinafter referred to as “perimeter surface height”). In FIG. 1, only two peripheral support pins 12 are shown in order to avoid a complicated drawing.
[0022]
Four central support pins 13 are arranged on the substrate support plate 11 corresponding to the central portion of the substrate W, and are moved up and down by the pin elevating mechanism 14 to support the central portion of the substrate W, while at the center of the substrate. The surface height of the part (hereinafter referred to as “center surface height”) can be changed. The configuration and operation of the center support pin 13 and the pin lifting mechanism 14 will be described in detail later.
[0023]
The drive unit 2 is connected to the opening at the center of rotation of the substrate support plate 11. The upper end of the cylinder shaft 21 is connected to the substrate support plate 11 so as to communicate with the opening, and the lower end of the cylinder shaft 21 is connected to the motor 23 via the belt mechanism 22. When 21 rotates, the substrate W held on the substrate support 1 by the substrate support plate 11 and the support pins 12 and 13 is rotated around the axis P in the vertical direction.
[0024]
Moreover, the cylinder shaft 21 is comprised by the member of a hollow cylinder shape, and the liquid nozzle 16 is arrange | positioned along the center. The upper end of the liquid nozzle 16 faces the center of the lower surface of the substrate W so that the processing liquid (chemical solution or cleaning liquid) can be supplied from the nozzle hole provided in the upper end to the vicinity of the rotation center of the lower surface of the substrate W. It is configured.
[0025]
Further, the cylindrical shaft 21 extends toward the opening of the substrate support plate 11, and the discharge port 17 is opened by being positioned above the substrate support plate 11. At the discharge port 17, air from an atmospheric pressure atmosphere is discharged from the gap between the side surface of the liquid nozzle 16 and the inner peripheral surface of the cylindrical shaft 21. The tip of the liquid nozzle 16 is formed in a T-shaped cross section, and a nozzle hole for the processing liquid is opened at the center of the flat upper surface.
[0026]
The liquid nozzle 16 is connected in communication with the pipe 80. The base end portion of the pipe 80 is branched, and a chemical solution supply source 81 is connected to one branch pipe 80a, and a pure water supply source 82 is connected to the other branch pipe 80b. The branch pipes 80a and 80b are provided with on-off valves 83a and 83b. By switching between opening and closing of these on-off valves 83a and 83b, a chemical solution and pure water are directed from the nozzle hole of the liquid nozzle 16 toward the back surface of the substrate W. Can be switched selectively.
[0027]
The gas supply path 18 is provided in the liquid nozzle 16, and a lower end portion thereof is connected to a gas supply source 85 via a pipe 84 provided with an on-off valve 84 a. A clean gas such as clean air or a clean inert gas (nitrogen gas or the like) can be supplied to the space between the substrate support plate 11 and the lower surface of the substrate W from the discharge port at the upper end. .
[0028]
The gap between the cylinder shaft 21 and the liquid nozzle 16 is configured such that the pipe 86 is opened to an atmospheric pressure atmosphere via a flow rate adjusting valve 86a. The gap between the cylinder shaft 21 and the liquid nozzle 16 communicates with the space between the substrate support plate 11 and the substrate W through the opening 19 so that the air in the gap can be discharged into the space. .
[0029]
The motor 23, the belt mechanism 22 and the like are accommodated in a cylindrical casing 62 provided on a base member 61 as a bottom plate of the substrate processing apparatus. The casing 62 is connected to the outer peripheral surface of the cylindrical shaft 21 via a bearing 63 and covers the cylindrical shaft 21. That is, the periphery of the cylinder shaft 21 from the motor 23 to just before the connection to the substrate support plate 11 is covered with the casing 62, and the motor 23 attached to the cylinder shaft 21 below is also covered with the cover.
[0030]
The upper shielding unit 3 is provided with an upper rotating plate 31 so as to face the substrate support plate 11 with the substrate W interposed therebetween, and is moved up and down by the rotating plate elevating mechanism 41 of the elevating unit 4. The upper rotating plate 31 has a ring shape covering the peripheral area of the substrate W, and a large opening 31a is opened at the center. A partition wall 31b is provided in a cylindrical shape around the opening 31a. An auxiliary shielding mechanism 32 and a cleaning liquid such as pure water are applied to the upper surface of the substrate W in the partition wall 31b so as to close the opening 31a. The liquid nozzle 33 to be supplied is provided so as to be movable up and down. The auxiliary shielding mechanism 32 and the liquid nozzle 33 are moved up and down integrally by the auxiliary shielding raising / lowering mechanism 42 of the elevating unit 4. For this reason, the upper rotating plate 31 is lowered to the substrate support plate 11 side by the rotating plate lifting mechanism 41 and the upper rotating plate 31 is supported by the peripheral support pins 12, and the auxiliary shielding mechanism 32 and the liquid nozzle are supported by the auxiliary shielding lifting mechanism 42. When 33 is lowered toward the substrate support plate 11 to close the opening 31a, a processing space S sandwiched between the substrate support plates 11 is formed.
[0031]
A nozzle hole is provided in the liquid nozzle 33 toward the processing space S, and the chemical solution and pure water can be selectively switched and supplied to the center of the upper surface of the substrate W in the same manner as the liquid nozzle 16 side. ing. In other words, the liquid supply pipe 332 penetrates through the hollow portion of the liquid nozzle 33, and the processing liquid (chemical solution or cleaning liquid) can be supplied from the lower end thereof to the vicinity of the rotation center of the upper surface of the substrate W held on the substrate support plate 11. It is configured as follows. The liquid supply pipe 332 is connected in communication with the pipe 87. A base end portion of the pipe 87 is branched, and a chemical solution supply source 81 is connected to one branch pipe 87a, while a pure water supply source 82 is connected to the other branch pipe 87b. Yes. The branch pipes 87a and 87b are provided with on-off valves 88a and 88b. By switching between the on-off valves 88a and 88b, a chemical solution and pure water are provided from the liquid nozzle 33 to the center of the upper surface of the substrate W. Can be selectively switched.
[0032]
A gap between the inner peripheral surface of the liquid nozzle 33 and the outer peripheral surface of the liquid supply pipe 332 serves as a gas supply path 333. The gas supply path 333 is connected to a gas supply source 85 through a pipe 89 provided with an on-off valve 89a. The gas supply path 333 is connected to the upper rotary plate 31 and the upper surface of the substrate W from the lower end of the gas supply path 333. It is configured so that clean gas can be supplied to the space.
[0033]
Next, the configuration of the center support pin 13 and the pin lifting mechanism 14 will be described with reference to FIG.
[0034]
2 is a cross-sectional view showing a pin lifting mechanism employed in the substrate processing apparatus of FIG. 1, and FIG. 2 (a) shows a state in which the substrate support plate is stopped and rotated at a low speed. (B) has shown the state which the board | substrate support plate is rotating at high speed. The center support pin 13 is inserted through an opening 111 provided in the substrate support plate 11, and supports the substrate W at the tip 131 thereof, while the rear end surface 132 is finished to be a tapered surface. Then, the pin elevating mechanism 14 acts on the tapered surface 132 and the central support pin 13 moves forward and backward with respect to the substrate support plate 11 to raise and lower the central portion of the substrate W.
[0035]
The pin elevating mechanism 14 includes a pin guide member 142 that guides the vertical movement of the central support pin 13 within a case 141 attached to the lower surface of the substrate support plate 11. Further, a guide rail 143 is provided on the inner bottom surface of the case 141 in the centrifugal direction about the axis P (FIG. 1). Therefore, when the guide rail 143 provided in each pin lifting mechanism 14 is viewed in plan, it extends radially about the axis P.
[0036]
An action member 144 is slidably attached to the guide rail 143. An upper surface 144 a of the action member 144 is a tapered surface that can be engaged with the tapered surface 132 of the central support pin 13. A spring member 145 is provided between the end 144b of the action member 144 on the shaft core side (right hand side in the figure) and the inner surface of the case 141, and the action member 144 is biased toward the shaft core. is doing. In the figure, reference numerals 146 and 147 denote an uppermost point stopper and a lowermost point stopper, respectively.
[0037]
According to the pin lifting / lowering mechanism 14 configured in this manner, when the rotation of the substrate support plate 11 is stopped, the acting member 144 is pivoted by the biasing force of the spring member 145 as shown in FIG. The tip 131 of the center support pin 13 is at the same height as the substrate support position by the peripheral support pin 12. The tip 131 of the center support pin 13 is positioned at the position determined by the uppermost point stopper 146. For this reason, the surface height of the central portion of the substrate supported by the central support pins 13, that is, the central surface height is the same as the surface height of the peripheral portion of the substrate supported by the peripheral support pins 12, that is, the peripheral surface height. When the substrate support plate 11 starts to rotate, a force directed to the side opposite to the axis P (left hand side in the figure), that is, centrifugal force, acts on the action member 144 due to the rotation. During a low period (below the rotation speed Vth described later), the urging force of the spring member 145 is larger than the centrifugal force, and is maintained in the state shown in FIG.
[0038]
And if the rotation speed of the board | substrate support plate 11 further increases, the centrifugal force accompanying rotation will become larger than an urging | biasing force, and the action member 144 will move to the opposite side (left hand side of the figure) with respect to the axial center P, and the movement Accordingly, the center support pin 13 moves backward with respect to the substrate support plate 11, and the center surface height becomes lower than the peripheral surface height. However, in this embodiment, by providing the lowest point stopper 147, even if the rotation speed of the substrate support plate 11 becomes a predetermined value or more, the center support pin 13 is more than in the state of FIG. Prevents it from becoming low.
[0039]
Next, the operation of the substrate processing apparatus configured as described above will be described with reference to FIGS.
[0040]
FIG. 3 is a timing chart showing the operation of the substrate processing apparatus of FIG. FIG. 4 is a schematic view showing a support state of the substrate in the substrate processing apparatus of FIG. In this substrate processing apparatus, the substrate W is placed on the substrate support 1. At this time, the supply of the processing liquid (chemical solution and cleaning liquid) from the liquid nozzles 16 and 33 is stopped, and the rotation speed of the substrate support plate 11 is zero, and the rotation is stopped. Therefore, the tip 131 of the center support pin 13 is at the highest position Hmax, and the center surface height of the substrate W is the same as the peripheral surface height. That is, the substrate W is held by the substrate support portion 1 in a horizontal posture as shown in FIG.
[0041]
Next, the motor 23 is started at a predetermined timing T1, and the substrate support plate 11 starts to rotate. Then, the rotation of the substrate support plate 11 is accelerated, and the constant speed control is started when the rotation speed reaches the predetermined value Vth. Further, from the predetermined timing T1 to timing T2, the chemical liquid is supplied from the liquid nozzles 16 and 33 toward the substrate W, and the chemical liquid processing is executed (chemical liquid processing mode). At this time, in this embodiment, when the rotational speed is equal to or lower than the predetermined value Vth, the urging force of the spring member 145 is larger than the centrifugal force, and the rotation is stopped and the low speed state is maintained as shown in FIG. As shown in FIG. 4A, the chemical treatment is performed in a horizontal state. Since the substrate W is rotated while the substrate W is held in the horizontal state during the chemical solution processing in this way, the chemical solution can be spread over the entire substrate, and uniform chemical solution processing can be performed.
[0042]
At the timing T2 when the chemical solution processing is completed, the cleaning liquid is supplied from the liquid nozzles 16 and 33 instead of the chemical solution, and the rotation speed of the substrate support plate 11 is set to a rotation speed higher than a predetermined value Vth (however, the maximum rotation speed Vmax). The tip 131 of the central support pin 13 is made lower than that during chemical treatment. That is, as shown in FIG. 4B, the central surface height of the substrate W is in a shallow dish state slightly lower than the peripheral surface height, and the cleaning process with the cleaning liquid is executed until the timing T3 in the curved state. (Cleaning processing mode).
[0043]
At the timing T3 when the cleaning process is completed, the supply of the cleaning liquid from the liquid nozzles 16 and 33 to the substrate W is stopped, and the number of rotations of the substrate support plate 11 is controlled by the acceleration / deceleration pattern shown in FIG. The cleaning liquid adhering to W is shaken off, and the drying process for the substrate W is executed (drying process mode). That is, after the rotational speed of the substrate support plate 11 is increased to the maximum rotational speed Vmax, it is gradually decelerated to zero at timing T4, and the drying process is completed. As described above, when the rotation speed of the substrate support plate 11 is increased to the maximum rotation speed Vmax, the tip 131 of the center support pin 13 is lowered to the lowest position Hmin. As a result, as shown in FIG. The central surface height of W is a bowl state considerably lower than the peripheral surface height, and the swing-off drying process is performed in such a curved state. Therefore, the following effects can be obtained.
[0044]
Conventionally, when a substrate W is supported by support pins, many substrate processing apparatuses support the substrate W in a horizontal posture. However, in order to support the substrate W horizontally, a large number of support pins are necessary, and it is difficult to support the substrate W in a state where the substrate W is locally undulated due to difficulty in accuracy. When the substrate W is rotated at a high speed in such a waved state, the substrate W is vibrated, resulting in inconvenience that the processing becomes unstable or the substrate W is scattered or damaged. On the other hand, in this embodiment, by supporting the substrate W in a smoothly curved state as described above, the local undulation (unevenness) of the substrate W can be eliminated, and the substrate W is rotated at high speed. Even at times, the vibration of the substrate W can be suppressed.
[0045]
When the chemical solution processing, the cleaning processing, and the drying processing are completed as described above, the processed substrate W is unloaded by the substrate transport robot (not shown). Then, in the same manner as described above, an unprocessed substrate W is carried in and a series of processes is repeated.
[0046]
As described above, according to this embodiment, when executing each processing mode, the relative relationship between the central surface height of the substrate and the peripheral surface height of the substrate is changed according to the processing mode. Processing is performed with a substrate posture suitable for the processing mode. For example, in the chemical processing mode, since the substrate W is rotated in a substrate posture (FIG. 4A) in which the center surface height and the peripheral surface height substantially coincide with each other, the chemical solution spreads over the entire substrate, and uniform chemical processing is possible. Become. In the drying process mode, since the substrate W is rotated in a substrate posture in which the central surface height is lower than the peripheral surface height ((c) in the same figure), the local waviness (unevenness) of the substrate W is eliminated. Even when the substrate is rotated at a high speed, vibration of the substrate can be suppressed, and inconveniences (such as scattering and breakage of the substrate) due to local waving of the substrate can be effectively prevented. Further, in the cleaning processing mode, the center surface height is lower than the peripheral surface height, and the displacement amount (= Hmax−Hcl) of the central surface height with respect to the peripheral surface height in the cleaning processing mode is the displacement amount in the drying processing mode (= Since the substrate W is rotated in a substrate posture smaller than (Hmax−Hmin) ((b) in the same figure), the vibration of the substrate accompanying the substrate rotation is suppressed while preventing the cleaning liquid from staying in the center of the substrate. Inconvenience (such as scattering and breakage of the substrate) due to local undulation of the substrate W is prevented. As described above, according to this embodiment, in each processing mode, processing is performed with the substrate posture suitable for the processing mode. Therefore, each processing mode can be performed satisfactorily to improve product quality and yield.
[0047]
The present invention is not limited to the above-described embodiment, and various modifications other than those described above can be made without departing from the spirit of the present invention. For example, in the above embodiment, the pin elevating mechanism 14 is configured such that the central support pin 13 moves up and down by the centrifugal force generated with the rotation of the substrate support plate 11, but the configuration of the pin elevating mechanism 14 is limited to this. Any configuration may be employed as long as the central support pin 13 can be driven up and down. For example, as shown in FIG. 5, the center support pin 13 may be moved up and down by an actuator 148 such as an air cylinder or solenoid.
[0048]
In the above-described embodiment, the present invention is applied to the substrate processing apparatus that performs the chemical processing mode, the cleaning processing mode, and the drying processing mode in this order on the substrate W. However, the scope of application of the present invention is limited to this. The present invention can be applied to all substrate processing apparatuses that execute a plurality of different processing modes. Further, the substrate to be processed is not limited to a glass substrate for a liquid crystal display device, and includes a semiconductor substrate, a glass substrate for a photomask, a substrate for an optical disk, and the like.
[0049]
Moreover, in the said embodiment, as shown in FIG. 4, in chemical | medical solution process mode (the figure (a)), cleaning process mode (the figure (b)), and dry process mode (the figure (c)), it is a center surface. Although all the relative relationships between the height and the peripheral surface height are different, it is not an essential constituent requirement of the present invention to make all the above relative relationships different in all processing modes. For example, in the chemical processing mode and the cleaning processing mode, the substrate W May be rotated in a horizontal posture while the substrate is rotated in a bowl shape in the drying process mode. In addition, a plurality of types of chemical solutions may be used, but in each chemical solution processing mode, all may be rotated in a horizontal posture.
[0050]
In the above embodiment, the peripheral support pin 12 is fixedly arranged, and the central support pin 13 is moved up and down by the pin lifting mechanism 14 to change the relative relationship between the central surface height and the peripheral surface height. In order to change the relative relationship, a pin elevating mechanism is also provided on the peripheral support pin 12 side so that the peripheral support pin 12 and the central support pin 13 can be moved up and down, or the central support pin 13 is fixedly disposed. On the other hand, the peripheral support pins 12 may be moved up and down by a pin lifting mechanism.
[0051]
Further, in the above embodiment, four peripheral support pins 12 and four central support pins 13 are provided, but the number, arrangement, shape, and the like thereof are not limited thereto.
[0052]
【The invention's effect】
As described above, according to the present invention, according to the processing mode, By vertically moving at least one of the center support pin that supports the center portion of the substrate and the periphery support pin that supports the periphery portion of the substrate, Since the relative relationship between the central surface height at the central portion of the substrate and the peripheral surface height at the peripheral portion of the substrate is changed, the center surface height of the substrate is changed when each processing mode is executed. The relative relationship with the peripheral surface height of the substrate is changed, processing is performed in a substrate posture suitable for the processing mode, and each processing mode can be performed satisfactorily. As a result, product quality and yield can be improved.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing an embodiment of a rotary substrate processing apparatus according to the present invention.
FIG. 2 is a cross-sectional view showing a pin lifting mechanism employed in the substrate processing apparatus of FIG.
3 is a timing chart showing the operation of the substrate processing apparatus of FIG.
4 is a schematic diagram showing a support state of a substrate in the substrate processing apparatus of FIG. 1. FIG.
FIG. 5 is a longitudinal sectional view showing another embodiment of the rotary substrate processing apparatus according to the present invention.
[Explanation of symbols]
1 ... Substrate support part
2 ... Drive unit
11 ... Substrate support plate
12 ... Peripheral support pin
13 ... Center support pin
14 ... Pin lifting mechanism
Hmax: Perimeter surface height
P ... Shaft core
W ... Board

Claims (9)

基板を略水平に保持する基板保持部と、前記基板保持部を回転駆動する駆動部とを備え、前記基板保持部によって保持された基板を回転させながら該基板に対して所要の処理を施す処理モードを、複数種類有する回転式基板処理装置において、
前記基板保持部は、処理モードに応じて、前記基板の中央部における中央表面高さと、前記基板の周縁部における周縁表面高さとの相対関係を相違させた状態で前記基板を回転し、
さらに、
前記基板保持部は、基板の中央部を支持する中央支持ピンと、基板の周縁部を支持する周縁支持ピンと、前記中央支持ピンおよび前記周縁支持ピンの少なくとも一方を上下動させるピン昇降機構とを備える
ことを特徴とする回転式基板処理装置。
A process that includes a substrate holding unit that holds the substrate substantially horizontally and a drive unit that rotationally drives the substrate holding unit, and performs a required process on the substrate while rotating the substrate held by the substrate holding unit. In a rotary substrate processing apparatus having a plurality of modes,
The substrate holding unit rotates the substrate in a state in which the relative relationship between the central surface height at the central portion of the substrate and the peripheral surface height at the peripheral edge portion of the substrate is different according to a processing mode ,
further,
The substrate holding unit includes a center support pin that supports the center portion of the substrate, a periphery support pin that supports the periphery of the substrate, and a pin lifting mechanism that moves up and down at least one of the center support pin and the periphery support pin. A rotary substrate processing apparatus characterized by the above.
前記複数の処理モードの一つとして基板を回転させることで該基板を乾燥させる乾燥処理モードがあり、
前記基板保持部は、前記乾燥処理モードでは前記中央表面高さが前記周縁表面高さよりも低い状態で前記基板を回転する請求項1記載の回転式基板処理装置。
There is a drying processing mode for drying the substrate by rotating the substrate as one of the plurality of processing modes,
The rotary substrate processing apparatus according to claim 1, wherein the substrate holding unit rotates the substrate in a state where the central surface height is lower than the peripheral surface height in the drying processing mode.
前記複数の処理モードの一つとして薬液が供給された基板を回転させることで前記薬液によって所要の薬液処理を行う薬液処理モードがあり、
前記薬液処理モードを実行した後、前記乾燥処理モードを実行し、しかも、
前記基板保持部は、前記薬液処理モードでは前記中央表面高さと前記周縁表面高さとがほぼ一致する状態で前記基板を回転する請求項2記載の回転式基板処理装置。
As one of the plurality of processing modes, there is a chemical processing mode for performing a required chemical processing with the chemical by rotating a substrate supplied with the chemical.
After executing the chemical treatment mode, execute the drying treatment mode,
The rotary substrate processing apparatus according to claim 2, wherein the substrate holding unit rotates the substrate in a state in which the central surface height and the peripheral surface height substantially coincide with each other in the chemical solution processing mode.
前記複数の処理モードの一つとして洗浄液が供給された基板を回転させることで前記洗浄液によって該基板に対して洗浄処理を施す洗浄処理モードがあり、
前記薬液処理モードと前記乾燥処理モードとの間で、前記洗浄処理モードを実行し、しかも、
前記基板保持部は、前記洗浄処理モードでは前記中央表面高さが前記周縁表面高さよりも低い状態で前記基板を回転する請求項3記載の回転式基板処理装置。
As one of the plurality of processing modes, there is a cleaning processing mode in which a cleaning process is performed on the substrate with the cleaning liquid by rotating the substrate supplied with the cleaning liquid.
Performing the cleaning processing mode between the chemical processing mode and the drying processing mode; and
The rotary substrate processing apparatus according to claim 3, wherein the substrate holding unit rotates the substrate in a state in which the central surface height is lower than the peripheral surface height in the cleaning processing mode.
前記乾燥処理モードにおける前記周縁表面高さに対する前記中央表面高さの変位量が前記洗浄処理モードにおける前記変位量よりも大きい請求項4記載の回転式基板処理装置。  The rotary substrate processing apparatus according to claim 4, wherein a displacement amount of the central surface height with respect to the peripheral surface height in the drying treatment mode is larger than the displacement amount in the cleaning treatment mode. 前記複数の処理モードの一つとして基板を回転させることで該基板を乾燥させる乾燥処理モードがあり、There is a drying processing mode for drying the substrate by rotating the substrate as one of the plurality of processing modes,
前記乾燥処理モードでは、前記ピン昇降機構は前記中央支持ピンを下降させて前記中央表面高さを前記周縁表面高さよりも低くする請求項1ないし5のいずれかに記載の回転式基板処理装置。The rotary substrate processing apparatus according to claim 1, wherein in the drying process mode, the pin lifting mechanism lowers the center support pin to lower the center surface height than the peripheral surface height.
前記複数の処理モードの一つとして基板を回転させることで該基板を乾燥させる乾燥処理モードがあり、There is a drying processing mode for drying the substrate by rotating the substrate as one of the plurality of processing modes,
前記乾燥処理モードでは、前記ピン昇降機構は前記周縁支持ピンを上昇させて前記中央表面高さを前記周縁表面高さよりも低くする請求項1ないし5のいずれかに記載の回転式基板処理装置。6. The rotary substrate processing apparatus according to claim 1, wherein in the drying processing mode, the pin lifting mechanism raises the peripheral support pins to lower the central surface height than the peripheral surface height. 7.
前記ピン昇降機構は、処理モードの切り替えに応じて前記中央支持ピンおよび前記周縁支持ピンの少なくとも一方を上下動させることによって前記中央表面高さと前記周縁表面高さとの相対関係をモード切替前後で変更する請求項1ないし7のいずれかに記載の回転The pin elevating mechanism changes the relative relationship between the central surface height and the peripheral surface height before and after mode switching by vertically moving at least one of the central support pin and the peripheral support pin in accordance with switching of the processing mode. The rotation according to any one of claims 1 to 7. 式基板処理装置。Type substrate processing apparatus. 支持ピンによって略水平に保持された基板を回転させながら該基板に対して所要の処理を施す処理モードを、複数種類有する回転式基板処理方法において、In the rotary substrate processing method having a plurality of types of processing modes for performing a required processing on the substrate while rotating the substrate held substantially horizontally by the support pins,
処理モードに応じて、基板の中央部を支持する中央支持ピンおよび基板の周縁部を支持する周縁支持ピンの少なくとも一方を上下動させることによって、前記基板の中央部における中央表面高さと、前記基板の周縁部における周縁表面高さとの相対関係を変更させることを特徴とする回転式基板処理方法。Depending on the processing mode, by moving up and down at least one of a central support pin that supports the central portion of the substrate and a peripheral support pin that supports the peripheral portion of the substrate, the central surface height in the central portion of the substrate, and the substrate The rotary substrate processing method characterized by changing the relative relationship with the peripheral surface height in the peripheral part.
JP2001145884A 2001-05-16 2001-05-16 Rotating substrate processing apparatus and rotating substrate processing method Expired - Fee Related JP3821663B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001145884A JP3821663B2 (en) 2001-05-16 2001-05-16 Rotating substrate processing apparatus and rotating substrate processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001145884A JP3821663B2 (en) 2001-05-16 2001-05-16 Rotating substrate processing apparatus and rotating substrate processing method

Publications (2)

Publication Number Publication Date
JP2002343700A JP2002343700A (en) 2002-11-29
JP3821663B2 true JP3821663B2 (en) 2006-09-13

Family

ID=18991623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001145884A Expired - Fee Related JP3821663B2 (en) 2001-05-16 2001-05-16 Rotating substrate processing apparatus and rotating substrate processing method

Country Status (1)

Country Link
JP (1) JP3821663B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4840813B2 (en) * 2006-10-16 2011-12-21 ルネサスエレクトロニクス株式会社 Semiconductor manufacturing method
JP6113618B2 (en) * 2013-09-27 2017-04-12 株式会社Screenホールディングス Substrate processing apparatus and substrate processing method
TWI569349B (en) * 2013-09-27 2017-02-01 斯克林集團公司 Substrate processing apparatus and substrate processing method
JP6462551B2 (en) * 2015-10-22 2019-01-30 東京エレクトロン株式会社 Substrate processing equipment
KR102162188B1 (en) * 2018-07-18 2020-10-07 세메스 주식회사 Apparatus and method for treating substrate
CN115007067B (en) * 2022-06-14 2023-04-25 上海征世科技股份有限公司 Device and method for preparing high-purity monocrystalline diamond piece

Also Published As

Publication number Publication date
JP2002343700A (en) 2002-11-29

Similar Documents

Publication Publication Date Title
US7927429B2 (en) Substrate cleaning method, substrate cleaning apparatus and computer readable recording medium
JP4708286B2 (en) Substrate processing apparatus and substrate processing method
TWI670121B (en) Substrate processing apparatus and substrate processing method
TWI687989B (en) Substrate processing method and substrate processing device
JP4841451B2 (en) Substrate processing apparatus and substrate processing method
JP7138539B2 (en) SUBSTRATE PROCESSING APPARATUS AND SUBSTRATE PROCESSING METHOD
JP3821663B2 (en) Rotating substrate processing apparatus and rotating substrate processing method
KR20050009171A (en) Substrate joining method and apparatus
KR20080020503A (en) Substrate treatment apparatus and substrate treatment method
JP4347766B2 (en) Substrate processing apparatus and substrate processing method
JP2002110626A (en) Bevel-etching apparatus and method
JP2008080288A (en) Substrate treatment apparatus and substrate treatment method
JP4936878B2 (en) Substrate processing apparatus and substrate processing method
JPH11330041A (en) Device for processing substrate by etching liquid
JP3953248B2 (en) Substrate processing equipment
KR20220167230A (en) Substrate cleaning device and substrate cleaning method
JP3717399B2 (en) Substrate processing equipment
JP2003088793A (en) Method and apparatus for treating substrate
JP3619667B2 (en) Substrate processing equipment
JP2009032901A (en) Substrate processing apparatus
JPH10303110A (en) Method and device for treating substrate
KR20150068761A (en) Apparatus for treating substrate
WO2023047746A1 (en) Substrate cleaning device and substrate cleaning method
JP2004014972A (en) Cleaning controller
US20240186155A1 (en) Substrate processing apparatus and substrate processing method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060620

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060620

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090630

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090630

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110630

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110630

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130630

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees