JP3821514B2 - Method for producing 1,3,3,3-tetrafluoropropene - Google Patents

Method for producing 1,3,3,3-tetrafluoropropene Download PDF

Info

Publication number
JP3821514B2
JP3821514B2 JP15999996A JP15999996A JP3821514B2 JP 3821514 B2 JP3821514 B2 JP 3821514B2 JP 15999996 A JP15999996 A JP 15999996A JP 15999996 A JP15999996 A JP 15999996A JP 3821514 B2 JP3821514 B2 JP 3821514B2
Authority
JP
Japan
Prior art keywords
activated carbon
reaction
hydrogen fluoride
tetrafluoropropene
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15999996A
Other languages
Japanese (ja)
Other versions
JPH107605A (en
Inventor
悟 吉川
良一 玉井
泰雄 日比野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP15999996A priority Critical patent/JP3821514B2/en
Priority to US08/764,496 priority patent/US6111150A/en
Publication of JPH107605A publication Critical patent/JPH107605A/en
Application granted granted Critical
Publication of JP3821514B2 publication Critical patent/JP3821514B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、医農薬、機能性材料の中間原料あるいは冷媒等として有用な1,3,3,3−テトラフルオロプロペンの製造方法に関する。
【0002】
【従来技術】
1,3,3,3−テトラフルオロプロペンの製造方法としては、従来、1,3,3,3−テトラフルオロ−1−ヨウ化プロパンをアルコール性水酸化カリウムにより脱ヨウ化水素する方法(R.N.Haszeldineら,J.Chem.Soc.1953,1199−1206; CA 48 5787f)または1,1,1,3,3−ペンタフルオロプロパンをジブチルエーテル中で水酸化カリウムにより脱フッ化水素する方法(I.L.Knunyantsら,Izvest.Akad.Nauk S.S.S.R.,Otdel.Khim.Nauk.1960,1412−18;CA 55,349f)等が知られている。
【0003】
【発明が解決しようとする課題】
上記のような水酸化カリウムにより脱ハロゲン化水素する方法は、反応率および選択率に優れた方法ではあるが、水酸化カリウムが化学量論量以上必要であること、また原料である1,3,3,3−テトラフルオロ−1−ヨウ化プロパンまたは1,1,1,3,3−ペンタフルオロプロパンを予め調製しなければならず、工業的に適用するには困難な点が多い。
【0004】
【課題を解決するための具体的手段】
本発明者らは、工業的規模で入手できるかもしくは工業的規模で入手できる原料から比較的容易に製造可能な物質を原料とする1,3,3,3−テトラフルオロプロペンの製造法について検討したところ、1,1,1,3,3−ペンタクロロプロパンを原料とし、これをフッ化水素で気相フッ素化することで1,3,3,3−テトラフルオロプロペンが得られ、また、該気相フッ素化にあたって、触媒として活性炭またはクロム化合物等の金属化合物を担持した活性炭を用いることが特に好適であることも併せて見いだし、本発明に到達した。
【0005】
すなわち、本発明は、気相中においてフッ素化触媒存在下、1,1,1,3,3−ペンタクロロプロパンをフッ化水素と反応させることを特徴とする1,3,3,3−テトラフルオロプロペンの製造法であり、また、該フッ素化触媒が活性炭またはクロム化合物等の金属化合物を担持した活性炭であることを特徴とする1,3,3,3−テトラフルオロプロペンの製造法である。
【0006】
本発明に使用する1,1,1,3,3−ペンタクロロプロパンは、塩化ビニリデンとクロロホルムとを銅アミン触媒存在下に反応させる方法(M.Kotoraら,React.Kinet.Catal.Lett.,1991,44,2,415)、四塩化炭素と塩化ビニルとを銅アミン触媒存在下に反応させる方法(M.Kotoraら,J.Mol.Catal.,1992,77,51)、四塩化炭素と塩化ビニルを塩化第一鉄触媒の存在下反応させる方法(J.Org.Chem.,USSR,1969,3,2101)等で得ることができる。
【0007】
本発明にかかる活性炭は、木材、のこくず、木炭、椰子殻炭、パーム核炭、素灰などを原料とする植物質系、泥炭、亜炭、褐炭、瀝青単、無煙炭などを原料とする石炭系、石油残渣、硫酸スラッジ、オイルカーボンなどを原料とする石油系あるいは合成樹脂を原料とするものなどがある。このような活性炭は、各種のものが市販されているのでそれらのうちから選んで使用すればよい。例えば、瀝青炭から製造された活性炭(例えば、カルゴン粒状活性炭CAL(東洋カルゴン(株)製)、椰子殻炭(例えば、武田薬品工業(株)製)などを挙げることができるが、当然これらの種類、製造業者に限られることはない。また、これらの活性炭は通常粒状で使用するが、その形状、大きさは特に限定されず、通常の知識をもって反応器の大きさを基準に決定することができる。
【0008】
また、本発明にかかる活性炭は、アルミニウム、クロム、マンガン、ニッケル、コバルト、チタンの中から選ばれる1種または2種以上の金属の酸化物、フッ化物、塩化物、フッ化塩化物、オキシフッ化物、オキシ塩化物、オキシフッ化塩化物等を担持した活性炭であってもよい。
【0009】
これらの金属担持活性炭触媒を調製する方法は限定されないが、活性炭そのまま、または予めフッ化水素、塩化水素、塩素化フッ素化炭化水素などによりハロゲンで修飾された活性炭にクロム、チタン、マンガン、ニッケル、コバルトの中から選ばれる1種または2種以上の金属の可溶性化合物を溶解した溶液を含浸するか、スプレーすることで調製される。
【0010】
金属担持量は0.1〜80wt%、好ましくは1〜40wt%が適当である。活性炭に担持させる金属の可溶性化合物としては、水、エタノール、アセトンなどの溶媒に溶解する該当金属の硝酸塩、塩化物、酸化物などが挙げられる。具体的には、硝酸クロム、三塩化クロム、三酸化クロム、重クロム酸カリウム、三塩化チタン、硝酸マンガン、塩化マンガン、二酸化マンガン、硝酸ニッケル、塩化ニッケル、硝酸コバルト、塩化コバルトなどを用いることができる。
【0011】
何れの方法で金属を担持した触媒も、使用の前に所定の反応温度以上の温度で予めフッ化水素、フッ素化(および塩素化)炭化水素などのフッ素化剤で処理し、反応中の触媒の組成変化を防止することが有効である。また、反応中に酸素、塩素、フッ素化または塩素化炭化水素などを反応器中に供給することは触媒寿命の延長、反応率、反応収率の向上に有効である。
【0012】
反応温度は200〜600℃、好ましくは300〜500℃であり、反応温度200℃よりも低ければ反応は遅く実用的ではない。反応温度が600℃を超えると触媒寿命が短くなり、また、反応は速く進行するが分解生成物等が生成し、1,3,3,3−テトラフルオロプロペンの選択率が低下するので好ましくない。
【0013】
本発明の方法において、反応領域へ供給する1,1,1,3,3−ペンタクロロプロパン/フッ化水素のモル比は反応温度により変わりうるが、1/4〜1/30、好ましくは1/4〜1/10である。フッ化水素が1,1,1,3,3−ペンタクロロプロパンの30モル倍を超えると同一反応器における有機物処理量の減少ならびに反応系から排出された未反応フッ化水素と生成物との混合物の分離に支障をきたし、一方、フッ化水素が4モル倍よりも少ないと反応率が低下し、選択率が低下するので好ましくない。
【0014】
本発明の方法においては、過剰量のフッ化水素を使用することが好ましいので、未反応のフッ化水素は未反応有機物および生成物から分離し、反応系へリサイクルする。フッ化水素と有機物の分離は、公知の手段で行うことができる。
【0015】
反応圧力は特に限定されないが、装置の面から1〜10kg/cm2で行うのが好ましい。系内に存在する原料有機物、中間物質およびフッ化水素が、反応系内で液化しないような条件を選ぶことが望ましい。接触時間は、通常0.1〜300秒、好ましくは5〜60秒である。
【0016】
反応器は、耐熱性とフッ化水素、塩化水素等に対する耐食性を有する材質で作られれば良く、ステンレス鋼、ハステロイ、モネル、白金などが好ましい。また、これらの金属でライニングされた材料で作ることもできる。
【0017】
本発明の方法により処理されて反応器より流出する1,3,3,3−テトラフルオロプロペンを含む生成物は、公知の方法で精製されて製品となる。
精製方法は限定されないが、例えば、予め回収されるべきフッ化水素を分離した生成物を最初に水または/およびアルカリ性溶液で洗浄して塩化水素、フッ化水素などの酸性物質を除去し、乾燥の後、蒸留に付して有機不純物を除くことで行うことができる。
【0018】
【実施例】
[調製例1]
東洋カルゴン製椰子殻破砕炭100g(PCB 4×10メッシュ)を純水150gに浸漬し、別途40gの特級試薬CrCl3・6H2Oを100gの純水に溶かし調製した溶液と混合攪拌し、一昼夜放置した。次に濾過して活性炭を取り出し、電気炉中で200℃に保ち、2時間焼成した。得られたクロム担持活性炭を電気炉を備えた直径5cm長さ30cmの円筒形SUS316L製反応管に充填し、窒素ガスを流しながら200℃まで昇温し、水の流出が見られなくなった時点で、窒素ガスにフッ化水素を同伴させその濃度を徐々に高めた。充填されたクロム担持活性炭へのフッ化水素の吸着によるホットスポットが反応管出口端に達したところで反応器温度を400℃に上げ、その状態を2時間保ち触媒の調製を行った。
【0019】
[調製例2]
東洋カルゴン製椰子殻破砕炭100g(PCB 4×10メッシュ)を純水150gに浸漬し、別途200gの20%TiCl3水溶液と混合攪拌し、一昼夜放置した。次に濾過して活性炭を取り出し、電気炉中で200℃に保ち、2時間焼成した。得られたチタン担持活性炭を電気炉を備えた直径5cm長さ30cmの円筒形SUS316L製反応管に充填し、窒素ガスを流しながら200℃まで昇温し、水の流出が見られなくなった時点で、窒素ガスにフッ化水素を同伴させその濃度を徐々に高めた。充填されたチタン担持活性炭へのフッ化水素の吸着によるホットスポットが反応管出口端に達したところで反応器温度を400℃に上げ、その状態を2時間保ち触媒の調製を行った。
【0020】
[調製例3]
336gの特級試薬CrCl3・6H2Oを純水に溶かして1Lとした。この溶液に直径5mm、表面積340m2の粒状γ−アルミナ250mlを浸漬し、一昼夜放置した。次に濾過してγ−アルミナを取り出し、熱風循環式乾燥器中で100℃に保ち、さらに一昼夜乾燥した。得られたクロム担持アルミナを電気炉を備えた直径5cm長さ30cmの円筒形SUS316L製反応管に充填し、窒素ガスを流しながら300℃まで昇温し、水の流出が見られなくなった時点で、窒素ガスにフッ化水素を同伴させその濃度を徐々に高めた。充填されたクロム担持アルミナのフッ素化によるホットスポットが反応管出口端に達したところで反応器温度を450℃に上げ、その状態を1時間保ち触媒の調製を行った。
【0021】
[実施例1]
電気炉を備えた円筒形反応管からなる気相反応装置(SUS316L製、直径1インチ・長さ30cm)に気相フッ素化触媒として調製例1で調製した触媒を150ml充填した。約100ml/分の流量で窒素ガスを流しながら反応管の温度を200℃に上げ、フッ化水素を約0.10g/分の速度で窒素ガスに同伴させた。そのまま反応管の温度を500℃まで昇温し1時間保った。次に反応管の温度を400℃に下げ、フッ化水素を0.10g/分の供給速度とし、1,1,1,3,3−ペンタクロロプロパンを予め気化させて0.32g/分の速度で反応器へ供給開始した。
【0022】
反応開始1時間後には反応は安定したので、その時から2時間にわたって、反応器から流出する生成ガスを水中に吹き込み酸性ガスを除去した後、ドライアイス−アセトン−トラップで21.2gの有機物を捕集した。捕集した有機物をガスクロマトグラフィーで分析した結果を表1に示した。
【0023】
【表1】

Figure 0003821514
【0024】
[実施例2]
調製例2で調製した触媒を用い、実施例1と同様の準備段階の後、表1に示す条件で実施例1と同様の反応操作、回収操作、分析を行った。結果を表1に示す。
【0025】
[実施例3、4]
活性炭を単独で用い、表1に示す条件で実施例1と同様の反応操作、回収操作、分析を行った。結果を表1に示す。
【0026】
[参考例]
触媒として、調製例3のクロム担持アルミナ触媒を用いた他は実施例1と同様の準備段階の後、表1に示す条件で実施例1と同様の反応操作、回収操作、分析を行った。結果を表1に示す。
【0027】
【発明の効果】
本発明の1,3,3,3−テトラフルオロプロペンの製造法は1,1,1,3,3−ペンタクロロプロパンを原料とし、連続的に1,3,3,3−テトラフルオロプロペンを製造できるので、工業的な製造法として有用である。[0001]
[Industrial application fields]
The present invention relates to a method for producing 1,3,3,3-tetrafluoropropene useful as an intermediate raw material for medicines and agricultural chemicals, functional materials, or a refrigerant.
[0002]
[Prior art]
As a method for producing 1,3,3,3-tetrafluoropropene, a conventional method in which 1,3,3,3-tetrafluoro-1-iodopropane is dehydroiodized with alcoholic potassium hydroxide (R N. Haszeldine et al., J. Chem. Soc. 1953, 1199-1206; CA 48 5787f) or 1,1,1,3,3-pentafluoropropane is dehydrofluorinated with potassium hydroxide in dibutyl ether. The method (IL Knunants et al., Izbest. Akad. Nauk SSR, Otdel. Khim. Nauk. 1960, 1412-18; CA 55, 349f) and the like are known.
[0003]
[Problems to be solved by the invention]
The method of dehydrohalogenating with potassium hydroxide as described above is a method having excellent reaction rate and selectivity, but potassium hydroxide is required to be a stoichiometric amount or more, and 1,3 which is a raw material. , 3,3-tetrafluoro-1-iodopropane or 1,1,1,3,3-pentafluoropropane must be prepared in advance, which is difficult to apply industrially.
[0004]
[Specific means for solving the problem]
The present inventors have studied a method for producing 1,3,3,3-tetrafluoropropene using as a raw material a material that can be obtained on an industrial scale or can be produced relatively easily from a raw material available on an industrial scale. As a result, 1,1,1,3,3-pentachloropropane was used as a raw material, and by gas phase fluorination with hydrogen fluoride, 1,3,3,3-tetrafluoropropene was obtained. It has also been found that it is particularly preferable to use activated carbon carrying activated carbon or a metal compound such as a chromium compound as a catalyst in the gas phase fluorination, and the present invention has been achieved.
[0005]
That is, the present invention relates to 1,3,3,3-tetrafluoro characterized by reacting 1,1,1,3,3-pentachloropropane with hydrogen fluoride in the presence of a fluorination catalyst in the gas phase. A method for producing propene, and a method for producing 1,3,3,3-tetrafluoropropene, wherein the fluorination catalyst is activated carbon or activated carbon carrying a metal compound such as a chromium compound.
[0006]
1,1,1,3,3-Pentachloropropane used in the present invention is a method in which vinylidene chloride and chloroform are reacted in the presence of a copper amine catalyst (M. Kotora et al., React. Kinet. Catal. Lett., 1991). , 44, 2, 415), a method of reacting carbon tetrachloride and vinyl chloride in the presence of a copper amine catalyst (M. Kotora et al., J. Mol. Catal., 1992, 77, 51), carbon tetrachloride and chloride. It can be obtained by a method of reacting vinyl in the presence of a ferrous chloride catalyst (J. Org. Chem., USSR, 1969, 3, 2101).
[0007]
The activated carbon according to the present invention is a plant based on wood, sawdust, charcoal, coconut shell charcoal, palm kernel charcoal, raw ash, etc., coal based on peat, lignite, lignite, bituminous, anthracite, etc. Oil, petroleum residue, sulfuric acid sludge, oil carbon and the like as raw materials, and those using synthetic resin as raw materials. Since such activated carbon is commercially available, it can be selected from among them. For example, activated carbon manufactured from bituminous coal (for example, Calgon granular activated carbon CAL (manufactured by Toyo Calgon Co., Ltd.), coconut shell charcoal (eg, manufactured by Takeda Pharmaceutical Co., Ltd.), etc. can be mentioned. However, these activated carbons are usually used in granular form, but the shape and size are not particularly limited, and can be determined based on the size of the reactor with ordinary knowledge. it can.
[0008]
The activated carbon according to the present invention is an oxide, fluoride, chloride, fluorinated chloride, or oxyfluoride of one or more metals selected from aluminum, chromium, manganese, nickel, cobalt, and titanium. Further, activated carbon carrying oxychloride, oxyfluoride chloride, or the like may be used.
[0009]
The method for preparing these metal-supported activated carbon catalysts is not limited, but the activated carbon itself, or activated carbon modified in advance with a halogen such as hydrogen fluoride, hydrogen chloride, chlorinated fluorinated hydrocarbon, chromium, titanium, manganese, nickel, It is prepared by impregnating or spraying a solution in which a soluble compound of one or more metals selected from cobalt is dissolved.
[0010]
The metal loading is 0.1-80 wt%, preferably 1-40 wt%. Examples of the soluble compound of the metal supported on the activated carbon include nitrates, chlorides, oxides, and the like of the corresponding metal that dissolves in a solvent such as water, ethanol, and acetone. Specifically, chromium nitrate, chromium trichloride, chromium trioxide, potassium dichromate, titanium trichloride, manganese nitrate, manganese chloride, manganese dioxide, nickel nitrate, nickel chloride, cobalt nitrate, cobalt chloride, etc. may be used. it can.
[0011]
A catalyst carrying a metal by any method is treated with a fluorinating agent such as hydrogen fluoride, fluorinated (and chlorinated) hydrocarbon in advance at a temperature equal to or higher than a predetermined reaction temperature before use, and the catalyst in the reaction It is effective to prevent changes in the composition. In addition, supplying oxygen, chlorine, fluorinated or chlorinated hydrocarbons into the reactor during the reaction is effective for extending the catalyst life, improving the reaction rate, and the reaction yield.
[0012]
The reaction temperature is 200 to 600 ° C., preferably 300 to 500 ° C. If the reaction temperature is lower than 200 ° C., the reaction is slow and not practical. When the reaction temperature exceeds 600 ° C., the catalyst life is shortened, and the reaction proceeds rapidly, but decomposition products and the like are generated, and the selectivity for 1,3,3,3-tetrafluoropropene is decreased, which is not preferable. .
[0013]
In the method of the present invention, the molar ratio of 1,1,1,3,3-pentachloropropane / hydrogen fluoride fed to the reaction zone may vary depending on the reaction temperature, but it is 1/4 to 1/30, preferably 1 / 4 to 1/10. When hydrogen fluoride exceeds 30 moles of 1,1,1,3,3-pentachloropropane, the amount of organic matter treated in the same reactor is reduced and the mixture of unreacted hydrogen fluoride discharged from the reaction system and product On the other hand, if the amount of hydrogen fluoride is less than 4 mole times, the reaction rate is lowered and the selectivity is lowered, which is not preferable.
[0014]
In the method of the present invention, since it is preferable to use an excessive amount of hydrogen fluoride, unreacted hydrogen fluoride is separated from unreacted organic substances and products and recycled to the reaction system. Separation of hydrogen fluoride and organic matter can be performed by known means.
[0015]
Although reaction pressure is not specifically limited, It is preferable to carry out by 1-10 kg / cm < 2 > from the surface of an apparatus. It is desirable to select conditions so that the raw organic substances, intermediate substances and hydrogen fluoride present in the system do not liquefy in the reaction system. The contact time is usually 0.1 to 300 seconds, preferably 5 to 60 seconds.
[0016]
The reactor may be made of a material having heat resistance and corrosion resistance to hydrogen fluoride, hydrogen chloride and the like, and stainless steel, hastelloy, monel, platinum and the like are preferable. It can also be made from materials lined with these metals.
[0017]
The product containing 1,3,3,3-tetrafluoropropene treated by the method of the present invention and discharged from the reactor is purified to a product by a known method.
Although the purification method is not limited, for example, the product from which hydrogen fluoride to be recovered in advance is separated is first washed with water or / and an alkaline solution to remove acidic substances such as hydrogen chloride and hydrogen fluoride, and then dried. Then, it can be performed by subjecting it to distillation to remove organic impurities.
[0018]
【Example】
[Preparation Example 1]
100 g of coconut shell crushed charcoal (PCB 4 × 10 mesh) made by Toyo Calgon is immersed in 150 g of pure water, and 40 g of special grade reagent CrCl 3 · 6H 2 O is separately dissolved in 100 g of pure water and mixed and stirred for a whole day and night. I left it alone. Next, it filtered and took out activated carbon, it maintained at 200 degreeC in the electric furnace, and baked for 2 hours. When the obtained chromium-supported activated carbon was filled in a cylindrical SUS316L reaction tube having a diameter of 5 cm and a length of 30 cm equipped with an electric furnace, the temperature was raised to 200 ° C. while flowing nitrogen gas, and when no water was seen to flow out. Nitrogen gas was accompanied by hydrogen fluoride, and the concentration was gradually increased. When a hot spot due to adsorption of hydrogen fluoride on the packed chromium-supported activated carbon reached the outlet end of the reaction tube, the reactor temperature was raised to 400 ° C., and this state was maintained for 2 hours to prepare a catalyst.
[0019]
[Preparation Example 2]
100 g of coconut shell crushed charcoal (PCB 4 × 10 mesh) manufactured by Toyo Calgon was immersed in 150 g of pure water, separately mixed with 200 g of 20% TiCl 3 aqueous solution, and allowed to stand overnight. Next, it filtered and took out activated carbon, it maintained at 200 degreeC in the electric furnace, and baked for 2 hours. When the obtained titanium-supported activated carbon was filled into a cylindrical SUS316L reaction tube having a diameter of 5 cm and a length of 30 cm equipped with an electric furnace, the temperature was raised to 200 ° C. while flowing nitrogen gas, and when no outflow of water was observed. Nitrogen gas was accompanied by hydrogen fluoride, and the concentration was gradually increased. When a hot spot by adsorption of hydrogen fluoride on the packed titanium-supported activated carbon reached the outlet end of the reaction tube, the reactor temperature was raised to 400 ° C., and the state was maintained for 2 hours to prepare a catalyst.
[0020]
[Preparation Example 3]
336 g of special grade reagent CrCl 3 .6H 2 O was dissolved in pure water to make 1 L. In this solution, 250 ml of granular γ-alumina having a diameter of 5 mm and a surface area of 340 m 2 was immersed and allowed to stand overnight. Next, γ-alumina was taken out by filtration, kept at 100 ° C. in a hot air circulating dryer, and further dried overnight. When the obtained chromium-supported alumina was filled into a cylindrical SUS316L reaction tube having a diameter of 5 cm and a length of 30 cm equipped with an electric furnace, the temperature was raised to 300 ° C. while flowing nitrogen gas, and when no outflow of water was observed. Nitrogen gas was accompanied by hydrogen fluoride, and the concentration was gradually increased. When the hot spot by fluorination of the packed chromium-supported alumina reached the outlet end of the reaction tube, the reactor temperature was raised to 450 ° C., and the state was maintained for 1 hour to prepare a catalyst.
[0021]
[Example 1]
A gas phase reactor (made of SUS316L, diameter 1 inch, length 30 cm) composed of a cylindrical reaction tube equipped with an electric furnace was charged with 150 ml of the catalyst prepared in Preparation Example 1 as a gas phase fluorination catalyst. While flowing nitrogen gas at a flow rate of about 100 ml / min, the temperature of the reaction tube was raised to 200 ° C., and hydrogen fluoride was entrained with nitrogen gas at a rate of about 0.10 g / min. The temperature of the reaction tube was raised to 500 ° C. and kept for 1 hour. Next, the temperature of the reaction tube is lowered to 400 ° C., hydrogen fluoride is supplied at a rate of 0.10 g / min, and 1,1,1,3,3-pentachloropropane is vaporized in advance to a rate of 0.32 g / min. Then, the supply to the reactor was started.
[0022]
Since the reaction was stable 1 hour after the start of the reaction, the product gas flowing out from the reactor was blown into the water for 2 hours to remove the acidic gas, and then 21.2 g of organic matter was captured with a dry ice-acetone trap. Gathered. Table 1 shows the results of analyzing the collected organic matter by gas chromatography.
[0023]
[Table 1]
Figure 0003821514
[0024]
[Example 2]
Using the catalyst prepared in Preparation Example 2, the same reaction operation, recovery operation, and analysis as in Example 1 were performed under the conditions shown in Table 1 after the same preparation steps as in Example 1. The results are shown in Table 1.
[0025]
[Examples 3 and 4]
The same reaction operation, recovery operation, and analysis as in Example 1 were performed under the conditions shown in Table 1 using activated carbon alone. The results are shown in Table 1.
[0026]
[Reference example]
The same reaction operation, recovery operation, and analysis as in Example 1 were performed under the conditions shown in Table 1 after the same preparation steps as in Example 1 except that the chromium-supported alumina catalyst of Preparation Example 3 was used as the catalyst. The results are shown in Table 1.
[0027]
【The invention's effect】
The process for producing 1,3,3,3-tetrafluoropropene according to the present invention continuously produces 1,3,3,3-tetrafluoropropene from 1,1,1,3,3-pentachloropropane as a raw material. Therefore, it is useful as an industrial production method.

Claims (2)

気相中において、フッ素化触媒として活性炭存在下、反応温度400〜600℃で、1,1,1,3,3−ペンタクロロプロパンフッ化水素を1/4〜1/10のモル比で反応させることを特徴とする1,3,3,3−テトラフルオロプロペンの製造法。In the gas phase , 1,1,1,3,3-pentachloropropane and hydrogen fluoride are reacted in a molar ratio of 1/4 to 1/10 at a reaction temperature of 400 to 600 ° C. in the presence of activated carbon as a fluorination catalyst. A process for producing 1,3,3,3-tetrafluoropropene, characterized in that 活性炭が、クロムまたはチタンの中から選ばれる1種または2種の金属の酸化物、フッ化物、塩化物、フッ化塩化物、オキシフッ化物、オキシ塩化物、オキシフッ化塩化物を担持した活性炭であることを特徴とする請求項1記載の1,3,3,3−テトラフルオロプロペンの製造法。 The activated carbon is an activated carbon carrying an oxide, fluoride, chloride, fluorinated chloride, oxyfluoride, oxychloride or oxyfluoride of one or two metals selected from chromium or titanium The method for producing 1,3,3,3-tetrafluoropropene according to claim 1.
JP15999996A 1996-06-20 1996-06-20 Method for producing 1,3,3,3-tetrafluoropropene Expired - Lifetime JP3821514B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP15999996A JP3821514B2 (en) 1996-06-20 1996-06-20 Method for producing 1,3,3,3-tetrafluoropropene
US08/764,496 US6111150A (en) 1996-06-20 1996-12-12 Method for producing 1,1,1,3,3,-pentafluoropropane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15999996A JP3821514B2 (en) 1996-06-20 1996-06-20 Method for producing 1,3,3,3-tetrafluoropropene

Publications (2)

Publication Number Publication Date
JPH107605A JPH107605A (en) 1998-01-13
JP3821514B2 true JP3821514B2 (en) 2006-09-13

Family

ID=15705794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15999996A Expired - Lifetime JP3821514B2 (en) 1996-06-20 1996-06-20 Method for producing 1,3,3,3-tetrafluoropropene

Country Status (1)

Country Link
JP (1) JP3821514B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9017571B2 (en) 2010-07-12 2015-04-28 Central Glass Company, Limited Dry etching agent and dry etching method

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69909860T2 (en) * 1998-02-26 2004-05-27 Central Glass Co., Ltd., Ube Process for the production of fluorinated propanes
US7279451B2 (en) * 2002-10-25 2007-10-09 Honeywell International Inc. Compositions containing fluorine substituted olefins
US7880040B2 (en) 2004-04-29 2011-02-01 Honeywell International Inc. Method for producing fluorinated organic compounds
US7592494B2 (en) * 2003-07-25 2009-09-22 Honeywell International Inc. Process for the manufacture of 1,3,3,3-tetrafluoropropene
JP4864879B2 (en) 2004-04-29 2012-02-01 ハネウェル・インターナショナル・インコーポレーテッド Method for synthesizing 1,3,3,3-tetrafluoropropene
US8383867B2 (en) 2004-04-29 2013-02-26 Honeywell International Inc. Method for producing fluorinated organic compounds
US7951982B2 (en) 2004-04-29 2011-05-31 Honeywell International Inc. Method for producing fluorinated organic compounds
US7659434B2 (en) 2004-04-29 2010-02-09 Honeywell International Inc. Method for producing fluorinated organic compounds
US8058486B2 (en) * 2004-04-29 2011-11-15 Honeywell International Inc. Integrated process to produce 2,3,3,3-tetrafluoropropene
US7674939B2 (en) 2004-04-29 2010-03-09 Honeywell International Inc. Method for producing fluorinated organic compounds
EP2336102A1 (en) * 2005-11-03 2011-06-22 Honeywell International Inc. Method for producing fluorinated organic compounds
US8513473B2 (en) 2007-10-10 2013-08-20 Central Glass Company, Limited Method for producing trans-1,3,3,3-tetrafluoropropene
JP2009279522A (en) * 2008-05-22 2009-12-03 Kobe Steel Ltd Oxide catalyst and method for preparing oxide catalyst, as well as deodorant and deodorizing filter
US7829748B1 (en) 2009-09-21 2010-11-09 Honeywell International Inc. Process for the manufacture of 1,3,3,3-tetrafluoropropene
US8293954B2 (en) * 2010-03-10 2012-10-23 Honeywell International Inc. Catalyst life improvement for the vapor phase manufacture of 1-chloro-3,3,3-trifluoropropene
WO2013187489A1 (en) 2012-06-13 2013-12-19 セントラル硝子株式会社 Method for producing 1-chloro-3, 3, 3-trifluoro-1-propene and 1, 3, 3, 3-tetrafluoropropene
CN103880589B (en) 2012-12-19 2015-07-29 中化蓝天集团有限公司 The technique of HFO-1234ze and HFC-245fa is prepared in a kind of coproduction

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9017571B2 (en) 2010-07-12 2015-04-28 Central Glass Company, Limited Dry etching agent and dry etching method

Also Published As

Publication number Publication date
JPH107605A (en) 1998-01-13

Similar Documents

Publication Publication Date Title
JP3886229B2 (en) Method for producing 1,3,3,3-tetrafluoropropene
JP3465865B2 (en) Method for producing 1,3,3,3-tetrafluoropropene
JP3821514B2 (en) Method for producing 1,3,3,3-tetrafluoropropene
JP5277813B2 (en) Method for producing fluorinated propene
US8115037B2 (en) Method for producing 1,3,3,3-tetrafluoropropene
JP4693811B2 (en) Method for producing 1,3,3,3-tetrafluoropropene
US7312367B2 (en) Method of making 1,1,3,3,3-pentafluoropropene
AU626349B2 (en) Purification of saturated halocarbons
WO2010035748A1 (en) Process for producing 1,3,3,3-tetrafluoropropene
EP0053657A1 (en) Preparation of chlorotrifluoroethylene and trifluoroethylene
JP3792051B2 (en) Method for producing perhalogenated cyclopentene
JP6688383B2 (en) Process for preparing 2,3,3,3-tetrafluoropropene (1234yf)
JPH09194404A (en) Production of 1-chloro-3,3,3-trifluoropropene
JP5515555B2 (en) Method for producing 1,3,3,3-tetrafluoropropene
US5043491A (en) Multistep synthesis of hexafluoropropylene
JP4271415B2 (en) Method for producing 1,3,3,3-tetrafluoropropene
JP3516324B2 (en) Method for producing 1-chloro-3,3,3-trifluoropropene
JP3876951B2 (en) Process for producing fluorocyclopentenes
JP4079482B2 (en) Method for producing halogenated propane
JP4433203B2 (en) Method for producing octafluorocyclopentene
RU2200729C2 (en) Method of synthesis of perhalogenated cyclopentene
JP3556853B2 (en) Method for producing 3,3-dichloro-1,1,1-trifluoroacetone
JPH09268139A (en) Production of 1,1,1,3,3-pentafluoropropane
JPH111451A (en) Production of 3,3-dichloro-1,1,1-trifluoroacetone
JP2009091300A (en) Method for producing cis-1,2,3,3,3-pentafluoropropene

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060307

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060426

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060620

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060620

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090630

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090630

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110630

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110630

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110630

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130630

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130630

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130630

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term