JP4079482B2 - Method for producing halogenated propane - Google Patents

Method for producing halogenated propane Download PDF

Info

Publication number
JP4079482B2
JP4079482B2 JP27010697A JP27010697A JP4079482B2 JP 4079482 B2 JP4079482 B2 JP 4079482B2 JP 27010697 A JP27010697 A JP 27010697A JP 27010697 A JP27010697 A JP 27010697A JP 4079482 B2 JP4079482 B2 JP 4079482B2
Authority
JP
Japan
Prior art keywords
reaction
hydrogen fluoride
catalyst
chloro
pentafluoropropane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27010697A
Other languages
Japanese (ja)
Other versions
JPH11106358A (en
Inventor
良一 玉井
悟 吉川
泰雄 日比野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP27010697A priority Critical patent/JP4079482B2/en
Publication of JPH11106358A publication Critical patent/JPH11106358A/en
Application granted granted Critical
Publication of JP4079482B2 publication Critical patent/JP4079482B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/51Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by pyrolysis, rearrangement or decomposition
    • C07C45/511Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by pyrolysis, rearrangement or decomposition involving transformation of singly bound oxygen functional groups to >C = O groups
    • C07C45/515Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by pyrolysis, rearrangement or decomposition involving transformation of singly bound oxygen functional groups to >C = O groups the singly bound functional group being an acetalised, ketalised hemi-acetalised, or hemi-ketalised hydroxyl group

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、反応性中間体あるいはポリウレタンフォ−ム等の発泡剤、冷媒、溶剤、噴射剤等として有用なハロゲン化プロパン類、特に1,1,1,3,3−ペンタフルオロプロパンの製造方法に関する。
【0002】
【従来技術】
少なくとも一個のフッ素原子を有するハロゲン化プロパン類を製造する方法は従来から各種の方法が知られている。例えば、1,1,1,3,3−ペンタフルオロプロパンの製造方法としては従来、(1)CF3−CClX−CF2Clを接触水素化する方法(特開平6−256235号公報)、(2)1,1,3,3,3−ペンタフルオロ−1−プロペンをPd−Al23で水素化する方法(Izvest.Akad.Nauk S.S.S.R.,Otdel.Khim.Nauk.1960,1412−18;CA 55,349f)、(3)1,2,2−トリクロロペンタフルオロプロパンを水素化する方法(USP2942036号明細書)、(4)1,1,1,3,3−ペンタクロロプロパンを触媒の存在下液相フッ素化する方法(USP5,574,192号明細書)、(5)気相で1,1,1,3,3−ペンタクロロプロパンを触媒の存在下フッ素化する方法(特開平9−002983号公報)、(6)同じく気相で1,1,1,3,3−ペンタクロロプロパンを触媒の存在下フッ素化し1−クロロ−3,3,3−トリフルオロロプロペンを得、さらに同化合物を触媒の存在下気相フッ素化する方法(特開平9−183740号公報)等が知られている。
【0003】
【発明が解決しようとする課題】
前記の特開平6−256235号公報またはUSP2942036号明細書などに記載された水素化による塩素−水素置換反応は反応率および選択率に優れた方法ではあるが、触媒の劣化が著しく、また、原料であるフッ素化塩素化プロパンを予め調製しなければならず、工業的に適用するには困難な点が多い。一方、前記(2)で示したオレフィンへの水素付加による方法はすぐれた1,1,1,3,3−ペンタフルオロプロパンの製造方法であるが、原料となる1,1,3,3,3−ペンタフルオロ−1−プロペンを入手することが困難であり工業的に採用するには問題がある。USP5,574,192号明細書に記載の方法は液相法であり、連続法による工業的方法としては困難な点が多い。また気相にて1,1,1,3,3−ペンタクロロプロパンまたは1−クロロ−3,3,3−トリフルオロプロペンをフッ素化すると化学平衡のため無視できない量の1−クロロ−3,3,3−トリフルオロプロペン(トランス体、沸点21.0℃)および1,3,3,3−テトラフルオロプロペン(シス体)が目的生成物1,1,1,3,3−ペンタフルオロプロパン(沸点15.3℃)と混在し、蒸留による分離精製は著しく困難となる。
【0004】
【問題点を解決するための具体的手段】
本発明者らはかかる従来技術の問題点に鑑み、工業的規模での製造に適した1,1,1,3,3−ペンタフルオロプロパンの製造方法を確立するべく各種の製造プロセスについて鋭意検討を加えたところ、対応するハロゲン化プロペンをフッ化水素で気相フッ素化してハロゲン化プロパンを製造するにあたって、触媒として金属化合物を担持した活性炭を使用すると原料転化率、目的生成物の収率が反応系の圧力に大きく依存することを見いだし、本発明に到達した。
【0005】
すなわち本発明は、フッ素化触媒存在下、気相中において1−クロロ−3,3,3−トリフルオロプロペン(トランス体またはシス体)または1,3,3,3−テトラフルオロプロペン(トランス体またはシス体)のいずれかもしくは両者の混合物と、フッ化水素とを反応させて、1,1,1,3,3−ペンタフルオロプロパンを製造する方法であって、フッ素化触媒として、クロム担持活性炭を用い、該活性炭が、比表面積が400m 2 /gより大きい活性炭であり、反応温度が100〜500℃であり、接触時間が0.1〜300秒であり、1−クロロ−3,3,3−トリフルオロプロペン(トランス体またはシス体)または1,3,3,3−テトラフルオロプロペン(トランス体またはシス体)と、フッ化水素のモル比が、1/2〜1/50であって、反応圧力をゲージ圧で表して0.05〜10MPaの下に反応を行うことからなる、1,1,1,3,3−ペンタフルオロプロパンの製造法である。
【0006】
本発明にかかる1−クロロ−3,3,3−トリフルオロプロペン(トランス体またはシス体)または1,3,3,3−テトラフルオロプロペン(トランス体またはシス体)を原料として使用する際には、これらはどの様な割合で混合していてもよい。
【0007】
本発明に使用する原料物質はどの様な方法で製造されたものであってもよいが、例えば以下に示す方法で製造することができる。1−クロロ−3,3,3−トリフルオロプロペンは、1,1,1−トリフルオロプロパンを塩素化して得られた1,1,1−トリフルオロ−3,3−ジクロロプロパンをアルコール性アルカリで脱塩化水素する方法(J.Am.Chem.Soc.,64,1942,1158.)、3,3,3−トリフルオロプロピンに塩化水素を付加反応させる方法(J.Chem.Soc.,1952,3490.)、3−クロロ−1,1,1−トリフルオロ−3−ヨードプロパンのエタノール性KOHによる脱ヨウ化水素反応方法(J.Chem.Soc.,1953,1199.)、1,3,3,3−テトラクロロプロペンあるいは1,1,3,3−テトラクロロプロペンを液相加圧下無触媒でフッ素化する方法(USP5,616,819号明細書)、または液相にてフッ素化触媒不在/存在下で、1,1,1,3,3−ペンタクロロプロパンをフッ化水素によりフッ素化する方法等で得ることができる(特開平8−104655号公報、特開平8−239334号公報)。また1,3,3,3−テトラフルオロプロペンは本発明者らが出願した願書に添付した明細書に記載した方法により効率的に得ることができる(特願平8−159998号明細書、特願平8−159999号明細書)。
【0008】
本発明にかかるフッ素化触媒は、クロムを活性炭に担持した触媒である。
【0009】
本発明にかかるフッ素化触媒を調製する方法は限定されないが、クロムの硝酸塩、塩化物等の可溶性化合物を溶解した溶液を活性炭に含浸させるか、スプレーし、次いで乾燥させた後、得られた活性炭を加熱下においてフッ化水素、塩化水素、塩素化フッ素化炭化水素などと接触させることで担持させたクロムまたは活性炭の一部または全体をハロゲンで修飾することにより得られる。
【0010】
本発明に用いる活性炭は、木材、木炭、椰子殻炭、パーム核炭、素灰等を原料とする植物系、泥炭、亜炭、褐炭、瀝青炭、無煙炭等を原料とする石炭系、石油残滓、オイルカーボン等を原料とする石油系または炭化ポリ塩化ビニリデン等の合成樹脂系がある。これら市販の活性炭から選択し使用することができ、例えば、瀝青炭から製造された活性炭(東洋カルゴン製BPL粒状活性炭)、椰子殻炭(武田薬品工業製粒状白鷺GX、SX、CX、XRC)等が挙げられるが、これらに限定されない。形状、大きさも通常粒状で用いられるが、球状、繊維状、粉体状、ハニカム状等反応器に適合すれば通常の知識範囲の中で使用することができる。また反応形式は固定床、流動床等いずれであってもよい。
【0011】
本発明にかかる触媒の調製に用いる活性炭の比表面積ならびに細孔容積は、何れも大きいことが好ましいが、市販品の規格の範囲で十分であり、それぞれ400m2/gより大きく、0.2cm3/gより大きいことが望ましい。さらに活性炭を担体に用いる際には、塩基性溶液、例えば水酸化アンモニウム、水酸化ナトリウム、水酸化カリウム等の塩基性水溶液に常温付近で適当な時間、例えば、一昼夜浸漬するか、または酸性溶液、例えば、硝酸、塩酸、フッ酸等の酸に浸漬することにより処理し、予め担体表面の活性化ならびに灰分の除去を行うことが望ましい。
【0012】
クロム担持量は0.1〜80wt%、好ましくは1〜40wt%である。クロムの可溶性化合物としては、水、エタノール、アセトンなどの溶媒に溶解するクロムの硝酸塩、塩化物、酸化物などが挙げられる。具体的には、硝酸クロム、三塩化クロム、三酸化クロム、重クロム酸カリウムなどを用いることができる。
【0013】
何れの方法で調製した触媒も、使用の前に所定の反応温度以上の温度で予めフッ化水素、フッ素化またはフッ素化塩素化炭化水素などのフッ素化剤で処理し、反応中の触媒の組成変化を防止することが有効である。また、反応中に塩素、フッ素化または塩素化炭化水素などを反応器中に供給することは触媒寿命の延長、転化率、反応収率の向上に有効である。
【0014】
反応温度は100〜500℃、好ましくはフッ化水素の臨界温度以上である188〜350℃であり、反応温度が低ければ反応は遅く実用的ではない。反応温度を高過ぎれば触媒寿命が短くなり、反応は速く進行するが分解生成物、オレフィン成分等が生成し1,1,1,3,3−ペンタフルオロプロパンの収率が低下するので好ましくない。
【0015】
本発明の方法において、反応領域へ供給する1−クロロ−3,3,3−トリフルオロプロペン(トランス体またはシス体)または1,3,3,3−テトラフルオロプロペン(トランス体またはシス体)と、フッ化水素のモル比は、化学平衡の観点からは大きい方が生成物側に有利であるが、反応器、後処理設備等の負荷が大きくなり経済性に支障がでる。また、このモル比は通常、1/2〜1/50であり、好ましくは1/5〜1/25である。しかしながら、通常生成物に伴われる低次フッ素化物、未反応物またはフッ化水素は生成物と分離され反応系へリサイクルされるのでフッ化水素の過大または過小は、大規模な製造では致命的とはならないことが多い。
【0016】
本発明の方法は0.05〜10.0MPa(ゲージ圧:大気圧との差圧をいう。)の下で行うことを特徴とする。とりわけ系内に存在する原料有機物、反応中間物質およびフッ化水素が反応系内で液化せず、触媒の強度等の力学的条件に適合することが望ましく、通常0.1〜3.0MPa(ゲージ圧)であることが好ましい。しかしながら、反応装置の耐圧性、経済性等が許せばより高い圧力下で行うこともできる。
【0017】
本発明の関与する反応は、例えば下式、
【0018】
【化1】

Figure 0004079482
【0019】
で表されると考えられる。この反応は平衡反応であり、しかも原料側から生成物側に平衡がずれるに伴いモル数の減少する反応であるので、反応系を生成物側に偏らせるには加圧系が有利と考えられる。ところが、本発明において、特に比表面積が400m 2 /gより大きい活性炭に担持させたクロムを触媒とすると、この様な平衡で説明できない顕著な圧力依存性が見いだされた。
【0020】
本発明にかかるフッ素化反応が、特に活性炭を担体とした場合に反応系の圧力に大きく依存することの理由は明確ではないが次のように説明できるかも知れない。すなわち、表面積の大きな、活性炭触媒では、他の物質からなる担体に担持させる場合に較べ高圧力下では反応基質の触媒表面への物理吸着が高まり、反応速度の向上となったものと推察される。
【0021】
接触時間は、通常0.1〜300秒、生産性の面から好ましくは1〜60秒である。本発明の方法に使用する反応器は、耐熱性とフッ化水素、塩化水素等に対する耐食性を有する材質で作られれば良く、ステンレス鋼、ハステロイ、モネル、白金などが好ましい。また、これらの金属でライニングされた材料で作ることもできる。
【0022】
本発明の方法により反応系から塩化水素、フッ化水素とともに流出するハロゲン化プロパンの精製方法は特に限定されない。例えば反応器より排出される塩化水素、フッ化水素などを含んだ有機生成物は、単に一度のまたは複数回の蒸留により塩化水素、フッ化水素、1−クロロ−3,3,3−トリフルオロプロペン(トランス体またはシス体)または1,3,3,3−テトラフルオロプロペン(トランス体またはシス体)、または1,1,1,3,3−ペンタフルオロプロパンをそれぞれの成分に分離することも可能であるが実際上極めて困難であるので次のような方法をとることもできる。塩化水素、フッ化水素とともに流出する有機生成物は、加圧下または大気圧下で塩化水素を蒸留または単にパージすることで分離し、残されたフッ化水素、ハロゲン化プロパンを含む有機物混合物からフッ化水素を除く為に、硫酸と接触させてフッ化水素を吸収させ、または互いに分離した二層を形成させフッ化水素のみを液体のまま除くことで有機生成物を得て、それを塩基性水溶液または水で洗浄し、乾燥した後、蒸留に付することで行うことができる。
【0023】
実施例において示すように、1−クロロ−3,3,3−トリフルオロプロペンを本発明の方法によりフッ素化した場合の有機生成物は、1,1,1,3,3−ペンタフルオロプロパンの他に、1−クロロ−3,3,3−トリフルオロプロペン(トランス)、1−クロロ−3,3,3−トリフルオロプロペン(シス)、1,3,3,3−テトラフルオロプロペン(トランス)、1,3,3,3−テトラフルオロプロペン(シス)を含んでいることが多い。この有機生成物の蒸留分離においては、1,1,3,3,3−ペンタフルオロプロパンと沸点が近接し限界成分となる1−クロロ−3,3,3−トリフルオロプロペン(トランス体)、1,3,3,3−テトラフルオロプロペン(シス体)は、これらに対する1,1,1,3,3−ペンタフルオロプロパンの比揮発度が1に近く、通常の蒸留ではきわめて分離し難く、できるだけ限界成分の含量を下げ共沸様組成を形成し分離することが望ましい。1,1,1,3,3−ペンタフルオロプロパンと1−クロロ−3,3,3−トリフルオロプロペン(トランス体)との分離では、両者の分配係数が異なる溶媒(トリクロロエチレン、テトラクロロエチレン、クロロホルム等)を混合し比揮発度を変えることにより蒸留分離を容易にすることもできる。他の混合成分1−クロロ−3,3,3−トリフルオロプロペン(シス体)、1,3,3,3−テトラフルオロプロペン(トランス体)は、1,1,1,3,3−ペンタフルオロプロパンと沸点が離れており通常の蒸留で分離可能であり、以上の方法により精製され製品となる。
【0024】
【実施例】
[調製例1]
300gの特級試薬Cr(NO33・9H2Oを1リットルの純水に溶かした溶液に、直径4〜6mm、表面積1200m2/g、細孔径18Aの粒状活性炭(武田薬品工業、粒状白鷺GX)1.8リットルを浸漬し、一昼夜放置した。次に濾過して活性炭を取り出し、熱風循環式乾燥器中で100℃に保ち、さらに一昼夜乾燥した。得られたクロム担持活性炭を加熱装置を備えた直径3.5cm長さ150cmの円筒形SUS316L製反応管に充填し、窒素ガスを流しながら300℃まで昇温し、水の排出が見られなくなった時点で、窒素ガスにフッ化水素を同伴させその濃度を徐々に高め、反応器温度を350℃に上げ、その状態を1時間保ち触媒の調製を行った。
【0025】
[調製例2]
300gの特級試薬Cr(NO33・9H2Oを1リットルの純水に溶かした溶液に、活性アルミナ(住友化学製KHS−46:粒径4〜6mm、)1.8リットルを浸漬し、一昼夜放置した。次に濾過してアルミナを取り出し、熱風循環式乾燥器中で100℃に保ち、さらに一昼夜乾燥した。得られたクロム担持アルミナを加熱装置を備えた直径3.5cm長さ150cmの円筒形SUS316L製反応管に充填し、窒素ガスを流しながら300℃まで昇温し、水の排出が見られなくなった時点で、窒素ガスにフッ化水素を同伴させその濃度を徐々に高め、反応器温度を350℃に上げ、その状態を1時間保ち触媒の調製を行った。
【0026】
[比較例1]
後部に調圧弁を備え、加熱装置により加熱する円筒形反応管からなる気相反応装置(SUS316L製、直径3.5cm・長さ150cm)に気相フッ素化触媒として調製例1で調製した触媒を1.4リットル充填した。約500ml/分の流量で窒素ガスを流しながら反応管の温度を250℃に上げ、フッ化水素を約3.0g/分の速度で導入するとともに窒素ガスの導入を停止した。そのまま反応管の温度を350℃まで昇温し1時間保った。次に常圧にて反応管の温度を270℃に下げ、フッ化水素を3.6g/分の供給速度とし、1−クロロ−3,3,3−トリフルオロプロペン(トランス/シス体の比が91/9の混合物。以下の実施例および比較例で同じ原料を使用した。)を予め気化させて1.2g/分の速度で反応器へ供給開始した(フッ化水素/原料有機物=19.5/1)。
【0027】
反応開始1時間後には反応は安定したので、反応器から流出する生成ガスを水中に吹き込み酸性ガスを除去した後、ドライアイス−アセトン−トラップで捕集した。捕集した有機物をガスクロマトグラフィーで分析した結果を表1に示した。比較例1では大気圧下で反応を行った。
【0028】
【表1】
Figure 0004079482
【0029】
[比較例2]
比較例1と同様の準備段階の後、表1に示す条件で実施例1と同様の反応操作、回収操作、分析を行った。結果を表1に示す。この比較例においては、接触時間を比較例1の約3倍としたが、転化率、収率に顕著な差は見いだせなかった。
【0030】
[比較例3]
後部に調圧弁を備え、加熱装置により加熱する円筒形反応管からなる気相反応装置(SUS316L製、直径3.5cm・長さ150cm)に気相フッ素化触媒として調製例1で調製した触媒を1.4リットル充填した。約500ml/分の流量で窒素ガスを流しながら反応管の温度を250℃に上げ、フッ化水素を約3.0g/分の速度で導入するとともに窒素ガスの導入を停止した。そのまま反応管の温度を350℃まで昇温し1時間保った。次に反応管の温度を255℃に下げ、フッ化水素を3.0g/分の供給速度とし、原料有機物として1,3,3,3−テトラフルオロプロペン(トランス体/シス体の比が94/6の混合物。)を予め気化させて1.7g/分の速度で反応器へ供給開始した(フッ化水素/原料有機物モル比=10.0/1)。
【0031】
反応開始1時間後には反応は安定したので、反応器から排出する生成ガスを水中に吹き込み酸性ガスを除去した後、ドライアイス−アセトン−トラップで捕集した。捕集した有機物をガスクロマトグラフィーで分析した結果を表1に示した。比較例3は大気圧下での反応を行った。
【0032】
[比較例4]
後部に調圧弁を備え、加熱装置により加熱する円筒形反応管からなる気相反応装置(SUS316L製、直径3.5cm・長さ150cm)に気相フッ素化触媒として調製例2で調製したクロム担持アルミナ触媒を1.4リットル充填した。約500ml/分の流量で窒素ガスを流しながら反応管の温度を250℃に上げ、フッ化水素を約3.0g/分の速度で導入するとともに窒素ガスの導入を停止した。そのまま反応管の温度を350℃まで昇温し1時間保った。次に常圧にて反応管の温度を280℃に下げ、フッ化水素を3.6g/分の供給速度とし、1−クロロ−3,3,3−トリフルオロプロペンを予め気化させて1.2g/分の速度で反応器へ供給開始した(フッ化水素/原料有機物=19.5/1)。反応開始1時間後には反応は安定したので、反応器から流出する生成ガスを水中に吹き込み酸性ガスを除去した後、ドライアイス−アセトン−トラップで捕集した。捕集した有機物をガスクロマトグラフィーで分析した結果を表1に示した。
【0033】
比較例5
反応圧力を0.3MPaとした他は比較例4と同様の実験を行った。結果を表1に示すが、収率は大気圧下での比較例4の値と比較して約20%の向上であった。
【0034】
[実施例1]
後部に調圧弁を備え、加熱装置により加熱する円筒形反応管からなる気相反応装置(SUS316L製、直径3.5cm・長さ150cm)に気相フッ素化触媒として調製例1で調製した触媒を1.4リットル充填した。約500ml/分の流量で窒素ガスを流しながら反応管の温度を250℃に上げ、フッ化水素を約 3.0g/分の速度で導入するとともに窒素ガスの導入を停止した。そのまま反応管の温度を350℃まで昇温し1時間保った。次に反応管の温度を270℃に下げ、フッ化水素を3.6g/分の供給速度とし、原料有機物として1−クロロ−3,3,3−トリフルオロプロペンを予め気化させて1.2g/分の速度で反応器へ供給開始した(フッ化水素/原料有機物モル比=19.5/1)。
【0035】
後部調圧弁にて0.1MPa(ゲージ圧)とし、反応開始1時間後には反応は安定したので、反応器から排出する生成ガスを水中に吹き込み酸性ガスを除去した後、ドライアイス−アセトン−トラップで捕集した。捕集した有機物をガスクロマトグラフィーで分析した結果を表1に示した。
【0036】
[実施例2、3]
何れも実施例1と同様の準備段階の後、表1に示す条件で実施例1と同様の反応操作、回収操作、分析を行った。結果を表1に示す。実施例1、実施例2、実施例3では反応生成物中に含まれる未反応の1−クロロ−3,3,3−トリフルオロプロペンがそれぞれ38.0%、21.1%、13.0%であり、また、1,1,1,3,3−ペンタフルオロプロパンの収率はそれぞれ45.5%、68.7%、79.4%であり、反応圧力を高めることにより転化率および収率の高くなることが顕著に認められる。
【0037】
[実施例4]
圧力を0.3MPa(ゲージ圧)とした以外は比較例3と同様の準備段階の後、表1に示す条件で比較例3と同様の反応操作、回収操作、分析を行った。結果を表1に示す。原料有機物を1,3,3,3−テトラフルオロプロペン(トランス体/シス体の比が94/6の混合物。)としたが、有機生成物中の未反応の1,3,3,3−テトラフルオロプロペンが比較例3で29.9%であったものが実施例4では14.3%となり、また、1,1,3,3,3−ペンタフルオロプロパン収率は、それぞれ69.0%が85.4%となり著しい向上が見られた。
【0038】
[参考例]
実施例3で得られた粗生成物(CTFP(t)/CTFP(c)/PFP/TFP(t)/TFP(c)=11.8/1.2/79.4/6.3/1.1%)205.9gを、塔径25mmφ、ステンレス製ヘリパック(東京特殊金網(株)製No.2)を充填した最小理論段数45段のガラス製精留塔を用い、塔頂より35段の位置から供給した。常圧下、還流比40/1、ボトム温度20℃、凝縮器温度−20℃で蒸留を行い、留出分として23.7g(CTFP(t)/PFP/TFP(t)/TFP(c)=4.7/31.6/54.8/8.9%)、缶出分として182.2g(CTFP(t)/CTFP(c)/PFP/TFP(c)=10.4/7.7/81.8/0.1%)を得た。
【0039】
上記精留塔の原料供給口を閉鎖し、缶出分182.2gをそのまま蒸留した。常圧下、還流比40/1、ボトム温度25℃、凝縮器温度−10℃で蒸留を行い、1,1,1,3,3−ペンタフルオロプロパンと1−クロロ−3,3,3−トリフルオロプロペン(トランス体)とはほぼ1/1(モル比)の共沸様組成を形成して留出し、初留分として70.5g(CTFP(t)/PFP/TFP(c)=26.8/72.9/0.3%)、主留分として96.4g(CTFP(t)/PFP=0.2/99.8%)、釜残分として15.3g(CTFP(c)/PFP=91.5/8.5%)を得た。
【0040】
ここで主留以外の留出分、残留分はいずれも再度反応系にリサイクル可能である。
【0041】
【発明の効果】
本発明の1,1,1,3,3−ペンタフルオロプロパンの製造法は、入手の容易な1−クロロ−3,3,3−トリフルオロプロパンを原料とし、連続的に簡便な方法で、且つ高い転化率と高い収率で1,1,1,3,3−ペンタフルオロプロパンを製造できるので、工業的な製造法として有用である。[0001]
[Industrial application fields]
The present invention relates to a process for producing halogenated propanes, particularly 1,1,1,3,3-pentafluoropropane useful as a reactive intermediate or a foaming agent such as polyurethane foam, a refrigerant, a solvent, a propellant and the like. About.
[0002]
[Prior art]
Various methods for producing halogenated propanes having at least one fluorine atom have been known. For example, as a method for producing 1,1,1,3,3-pentafluoropropane, conventionally, (1) a method of catalytic hydrogenation of CF 3 —CClX—CF 2 Cl (JP-A-6-256235), ( 2) Method of hydrogenating 1,1,3,3,3-pentafluoro-1-propene with Pd—Al 2 O 3 (Izbest. Akad. Nauk SSR, Otdel. Khim. Nauk 1960, 1412-18; CA 55,349f), (3) a method of hydrogenating 1,2,2-trichloropentafluoropropane (USP 2942036), (4) 1,1,1,3,3 -Method of liquid phase fluorination of pentachloropropane in the presence of a catalyst (USP 5,574,192 specification), (5) 1,1,1,3,3-pentachloropropane in the gas phase in the presence of a catalyst Fluorination method (Japanese Patent Laid-Open No. 9-002983), (6) Similarly, 1,1,1,3,3-pentachloropropane is fluorinated in the presence of a catalyst in the gas phase and 1-chloro-3,3,3- A method of obtaining trifluorolopropene and further subjecting the same compound to vapor phase fluorination in the presence of a catalyst (Japanese Patent Laid-Open No. 9-183740) is known.
[0003]
[Problems to be solved by the invention]
Although the chlorine-hydrogen substitution reaction by hydrogenation described in JP-A-6-256235 or US Pat. No. 2,942,036 is a method excellent in reaction rate and selectivity, the deterioration of the catalyst is remarkable, and the raw material The fluorinated chlorinated propane must be prepared in advance, which is difficult to apply industrially. On the other hand, the method of hydrogenation to an olefin shown in the above (2) is an excellent method for producing 1,1,1,3,3-pentafluoropropane. It is difficult to obtain 3-pentafluoro-1-propene, and there is a problem in adopting it industrially. The method described in US Pat. No. 5,574,192 is a liquid phase method, and has many difficulties as an industrial method by a continuous method. Further, when 1,1,1,3,3-pentachloropropane or 1-chloro-3,3,3-trifluoropropene is fluorinated in the gas phase, a significant amount of 1-chloro-3,3 cannot be ignored due to chemical equilibrium. , 3-trifluoropropene (trans isomer, boiling point 21.0 ° C.) and 1,3,3,3-tetrafluoropropene (cis isomer) are the desired products 1,1,1,3,3-pentafluoropropane ( With a boiling point of 15.3 ° C.), separation and purification by distillation becomes extremely difficult.
[0004]
[Concrete means for solving the problem]
In view of the problems of the prior art, the present inventors have intensively studied various manufacturing processes in order to establish a manufacturing method of 1,1,1,3,3-pentafluoropropane suitable for manufacturing on an industrial scale. In the production of halogenated propane by vapor-phase fluorination of the corresponding halogenated propene with hydrogen fluoride, when using activated carbon carrying a metal compound as a catalyst, the raw material conversion rate and the yield of the target product are increased. It was found that the pressure greatly depends on the pressure of the reaction system, and the present invention has been reached.
[0005]
That is, the present invention relates to 1-chloro-3,3,3-trifluoropropene (trans isomer or cis isomer) or 1,3,3,3-tetrafluoropropene (trans isomer) in the gas phase in the presence of a fluorination catalyst. Or a mixture of both) and hydrogen fluoride to produce 1,1,1,3,3-pentafluoropropane, which is used as a fluorination catalyst. Activated carbon, the activated carbon is activated carbon having a specific surface area of greater than 400 m 2 / g, a reaction temperature of 100 to 500 ° C., a contact time of 0.1 to 300 seconds, and 1-chloro-3,3 , 3-trifluoropropene (trans isomer or cis isomer) or 1,3,3,3-tetrafluoropropene (trans isomer or cis isomer) and hydrogen fluoride have a molar ratio of 1/2 to 1 A 50 consists in performing the reaction under the 0.05~10MPa represents the reaction pressure at a gauge pressure, which is 1,1,1,3,3 preparation of pentafluoropropane.
[0006]
When using 1-chloro-3,3,3-trifluoropropene (trans form or cis form) or 1,3,3,3-tetrafluoropropene (trans form or cis form) according to the present invention as a raw material These may be mixed in any ratio.
[0007]
The raw material used in the present invention may be produced by any method, but can be produced, for example, by the method shown below. 1-chloro-3,3,3-trifluoropropene is obtained by converting 1,1,1-trifluoro-3,3-dichloropropane obtained by chlorinating 1,1,1-trifluoropropane into an alcoholic alkali. (J. Am. Chem. Soc., 64, 1942, 1158.), and a method of adding hydrogen chloride to 3,3,3-trifluoropropyne (J. Chem. Soc., 1952). , 3490.), dehydroiodination reaction method of 3-chloro-1,1,1-trifluoro-3-iodopropane with ethanolic KOH (J. Chem. Soc., 1953, 1199.), 1,3 , 3,3-tetrachloropropene or 1,1,3,3-tetrachloropropene fluorinated without catalyst under liquid phase pressure (US Pat. No. 5,616,819) Or a method of fluorinating 1,1,1,3,3-pentachloropropane with hydrogen fluoride in the absence / presence of a fluorination catalyst in the liquid phase (Japanese Patent Application Laid-Open No. 8-104655). Publication, Unexamined-Japanese-Patent No. 8-239334). In addition, 1,3,3,3-tetrafluoropropene can be efficiently obtained by the method described in the specification attached to the application filed by the present inventors (Japanese Patent Application No. 8-159998, Application No. 8-159999).
[0008]
The fluorination catalyst according to the present invention is a catalyst in which chromium is supported on activated carbon.
[0009]
The method for preparing the fluorination catalyst according to the present invention is not limited, but the activated carbon obtained after impregnating or spraying a solution in which soluble compounds such as chromium nitrate and chloride are dissolved is sprayed and then dried. Can be obtained by modifying a part or the whole of the supported chromium or activated carbon by halogenation with hydrogen fluoride, hydrogen chloride, chlorinated fluorinated hydrocarbon or the like under heating.
[0010]
The activated carbon used in the present invention is a plant based on wood, charcoal, coconut shell charcoal, palm kernel charcoal, bare ash, etc., coal based on peat, lignite, lignite, bituminous coal, anthracite, etc., petroleum residue, oil There are synthetic resins such as petroleum-based or carbonized polyvinylidene chloride using carbon or the like as a raw material. These commercially available activated carbons can be selected and used. For example, activated carbon manufactured from bituminous coal (BPL granular activated carbon made by Toyo Calgon), coconut shell charcoal (granular white lees GX, SX, CX, XRC manufactured by Takeda Pharmaceutical Co., Ltd.), etc. For example, but not limited to. The shape and size are usually used in a granular form, but can be used within a normal knowledge range as long as it is suitable for a reactor such as a sphere, fiber, powder, or honeycomb. The reaction format may be a fixed bed, a fluidized bed or the like.
[0011]
The specific surface area and pore volume of the activated carbon used for the preparation of the catalyst according to the present invention are both preferably large, but are sufficient within the range of the standard for commercial products, each being larger than 400 m 2 / g and 0.2 cm 3. It is desirable to be larger than / g. Further, when activated carbon is used as a carrier, it is immersed in a basic solution, for example, a basic aqueous solution of ammonium hydroxide, sodium hydroxide, potassium hydroxide or the like at a room temperature for an appropriate time, for example, all day or night, or an acidic solution, For example, it is desirable to treat the substrate by immersing it in an acid such as nitric acid, hydrochloric acid, or hydrofluoric acid to activate the carrier surface and remove ash in advance.
[0012]
The amount of chromium supported is 0.1 to 80 wt%, preferably 1 to 40 wt%. Examples of the chromium- soluble compounds include chromium nitrates, chlorides, and oxides that are dissolved in a solvent such as water, ethanol, and acetone. Specifically, chromium nitrate, chromium trichloride, chromium trioxide, potassium dichromate, or the like can be used.
[0013]
The catalyst prepared by any method is treated with a fluorinating agent such as hydrogen fluoride, fluorinated or fluorinated chlorinated hydrocarbon in advance at a temperature equal to or higher than a predetermined reaction temperature before use, and the composition of the catalyst during the reaction. It is effective to prevent changes. In addition, supplying chlorine, fluorinated or chlorinated hydrocarbon or the like into the reactor during the reaction is effective for extending the catalyst life, conversion, and reaction yield.
[0014]
The reaction temperature is 100 to 500 ° C., preferably 188 to 350 ° C., which is higher than the critical temperature of hydrogen fluoride. If the reaction temperature is low, the reaction is slow and impractical. If the reaction temperature is too high, the catalyst life will be shortened and the reaction will proceed faster, but decomposition products, olefin components, etc. will be produced and the yield of 1,1,1,3,3-pentafluoropropane will be reduced, which is not preferable. .
[0015]
In the method of the present invention, 1-chloro-3,3,3-trifluoropropene (trans isomer or cis isomer) or 1,3,3,3-tetrafluoropropene (trans isomer or cis isomer) supplied to the reaction region In view of chemical equilibrium, a larger molar ratio of hydrogen fluoride is advantageous to the product side, but the load on the reactor, post-treatment equipment, etc. is increased, resulting in hindrance to economy. The molar ratio is usually 1/2 to 1/50, preferably 1/5 to 1/25. However, since the low-order fluorinated product, unreacted product or hydrogen fluoride usually associated with the product is separated from the product and recycled to the reaction system, excessive or excessive hydrogen fluoride is fatal in large-scale production. Often not.
[0016]
The method of the present invention is characterized by being carried out under a pressure of 0.05 to 10.0 MPa (gauge pressure: a pressure difference from atmospheric pressure). In particular, it is desirable that raw material organic substances, reaction intermediate substances, and hydrogen fluoride existing in the system do not liquefy in the reaction system and meet the mechanical conditions such as the strength of the catalyst. Pressure). However, the reaction can be performed under a higher pressure if the pressure resistance, economy, etc. of the reactor allow.
[0017]
The reaction involved in the present invention is, for example, the following formula:
[0018]
[Chemical 1]
Figure 0004079482
[0019]
It is considered that Since this reaction is an equilibrium reaction and the number of moles decreases as the equilibrium shifts from the raw material side to the product side, a pressurized system is considered advantageous to bias the reaction system toward the product side. . However, in the present invention, when chromium supported on activated carbon having a specific surface area of greater than 400 m 2 / g is used as a catalyst, a remarkable pressure dependency that cannot be explained by such equilibrium was found.
[0020]
The reason why the fluorination reaction according to the present invention largely depends on the pressure of the reaction system particularly when activated carbon is used as a carrier is not clear, but may be explained as follows. In other words, the activated carbon catalyst having a large surface area is assumed to have improved the reaction rate by increasing the physical adsorption of the reaction substrate to the catalyst surface at a higher pressure than when it is supported on a support made of another substance. .
[0021]
The contact time is usually 0.1 to 300 seconds, and preferably 1 to 60 seconds from the viewpoint of productivity. The reactor used in the method of the present invention may be made of a material having heat resistance and corrosion resistance against hydrogen fluoride, hydrogen chloride and the like, and stainless steel, hastelloy, monel, platinum and the like are preferable. It can also be made from materials lined with these metals.
[0022]
The method for purifying halogenated propane flowing out from the reaction system together with hydrogen chloride and hydrogen fluoride by the method of the present invention is not particularly limited. For example, an organic product containing hydrogen chloride, hydrogen fluoride, etc. discharged from the reactor can be converted into hydrogen chloride, hydrogen fluoride, 1-chloro-3,3,3-trifluoro by simple distillation once or multiple times. Separating propene (trans form or cis form) or 1,3,3,3-tetrafluoropropene (trans form or cis form) or 1,1,1,3,3-pentafluoropropane into each component However, since it is extremely difficult in practice, the following method can be adopted. The organic product flowing out together with hydrogen chloride and hydrogen fluoride is separated by distilling or simply purging hydrogen chloride under pressure or atmospheric pressure, and the remaining organic product containing hydrogen fluoride and halogenated propane is fluorinated from the organic mixture. In order to remove hydrogen fluoride, contact with sulfuric acid to absorb hydrogen fluoride, or form two separate layers and remove only hydrogen fluoride in liquid form to obtain an organic product, which is basic It can be performed by washing with an aqueous solution or water, drying and then subjecting to distillation.
[0023]
As shown in the examples, when 1-chloro-3,3,3-trifluoropropene is fluorinated by the method of the present invention, the organic product is 1,1,1,3,3-pentafluoropropane. In addition, 1-chloro-3,3,3-trifluoropropene (trans), 1-chloro-3,3,3-trifluoropropene (cis), 1,3,3,3-tetrafluoropropene (trans) ), 1,3,3,3-tetrafluoropropene (cis) in many cases. In the distillation separation of this organic product, 1,1,3,3,3-pentafluoropropane has a boiling point close to 1-chloro-3,3,3-trifluoropropene (trans form), which is a limiting component, 1,3,3,3-tetrafluoropropene (cis form) has a relative volatility of 1,1,1,3,3-pentafluoropropane close to 1, and is extremely difficult to separate by ordinary distillation. It is desirable to reduce the content of critical components as much as possible to form and separate an azeotrope-like composition. In the separation of 1,1,1,3,3-pentafluoropropane and 1-chloro-3,3,3-trifluoropropene (trans form), solvents having different partition coefficients (trichloroethylene, tetrachloroethylene, chloroform, etc.) ) Can be mixed to change the relative volatility to facilitate distillation separation. Other mixed components 1-chloro-3,3,3-trifluoropropene (cis isomer), 1,3,3,3-tetrafluoropropene (trans isomer) are 1,1,1,3,3-penta It has a boiling point that is different from that of fluoropropane and can be separated by ordinary distillation.
[0024]
【Example】
[Preparation Example 1]
In a solution obtained by dissolving 300 g of the special grade reagent Cr (NO 3 ) 3 · 9H 2 O in 1 liter of pure water, granular activated carbon (Takeda Pharmaceutical, granular white rabbit with a diameter of 4 to 6 mm, a surface area of 1200 m 2 / g, and a pore diameter of 18A GX) 1.8 liters were immersed and left overnight. Next, the activated carbon was taken out by filtration, kept at 100 ° C. in a hot air circulation dryer, and further dried overnight. The obtained chromium-supported activated carbon was filled in a cylindrical SUS316L reaction tube having a diameter of 3.5 cm and a length of 150 cm equipped with a heating device, and the temperature was raised to 300 ° C. while flowing nitrogen gas, and water discharge was not observed. At that time, the concentration of hydrogen fluoride was gradually increased with nitrogen gas, the reactor temperature was raised to 350 ° C., and this state was maintained for 1 hour to prepare a catalyst.
[0025]
[Preparation Example 2]
The 300g special grade Cr (NO 3) 3 · 9H 2 O in the solution in pure water 1 liter, activated alumina (Sumitomo Chemical Co. KHS-46: particle diameter 4 to 6 mm,) was immersed 1.8 liters I left it all day and night. Next, the alumina was removed by filtration, kept at 100 ° C. in a hot air circulating dryer, and further dried overnight. The obtained chromium-supported alumina was filled in a cylindrical reaction tube made of SUS316L having a diameter of 3.5 cm and a length of 150 cm equipped with a heating device. The temperature was raised to 300 ° C. while flowing nitrogen gas, and water discharge was not observed. At that time, the concentration of hydrogen fluoride was gradually increased with nitrogen gas, the reactor temperature was raised to 350 ° C., and this state was maintained for 1 hour to prepare a catalyst.
[0026]
[Comparative Example 1]
The catalyst prepared in Preparation Example 1 as a gas phase fluorination catalyst was added to a gas phase reactor (made of SUS316L, diameter 3.5 cm, length 150 cm) comprising a cylindrical reaction tube equipped with a pressure regulating valve at the rear and heated by a heating device. Filled with 1.4 liters. While flowing nitrogen gas at a flow rate of about 500 ml / min, the temperature of the reaction tube was raised to 250 ° C., hydrogen fluoride was introduced at a rate of about 3.0 g / min, and introduction of nitrogen gas was stopped. The temperature of the reaction tube was raised to 350 ° C. and maintained for 1 hour. Next, the temperature of the reaction tube is lowered to 270 ° C. at normal pressure, the supply rate of hydrogen fluoride is 3.6 g / min, and 1-chloro-3,3,3-trifluoropropene (ratio of trans / cis isomer) is obtained. (The same raw material was used in the following examples and comparative examples.) Was vaporized in advance and started to be fed to the reactor at a rate of 1.2 g / min (hydrogen fluoride / raw organic material = 19 .5 / 1).
[0027]
Since the reaction was stable 1 hour after the start of the reaction, the product gas flowing out from the reactor was blown into water to remove the acidic gas, and then collected with a dry ice-acetone trap. Table 1 shows the results of analyzing the collected organic matter by gas chromatography. In Comparative Example 1, the reaction was performed under atmospheric pressure.
[0028]
[Table 1]
Figure 0004079482
[0029]
[Comparative Example 2]
After the same preparation stage as in Comparative Example 1, the same reaction operation, recovery operation, and analysis as in Example 1 were performed under the conditions shown in Table 1. The results are shown in Table 1. In this comparative example, the contact time was about three times that of comparative example 1, but no significant difference was found in the conversion rate and yield.
[0030]
[Comparative Example 3]
The catalyst prepared in Preparation Example 1 as a gas phase fluorination catalyst was added to a gas phase reactor (made of SUS316L, diameter 3.5 cm, length 150 cm) comprising a cylindrical reaction tube equipped with a pressure regulating valve at the rear and heated by a heating device. Filled with 1.4 liters. While flowing nitrogen gas at a flow rate of about 500 ml / min, the temperature of the reaction tube was raised to 250 ° C., hydrogen fluoride was introduced at a rate of about 3.0 g / min, and introduction of nitrogen gas was stopped. The temperature of the reaction tube was raised to 350 ° C. and maintained for 1 hour. Next, the temperature of the reaction tube was lowered to 255 ° C., the supply rate of hydrogen fluoride was adjusted to 3.0 g / min, and 1,3,3,3-tetrafluoropropene (trans isomer / cis isomer ratio was 94) as a raw material organic substance. The mixture was vaporized in advance and fed to the reactor at a rate of 1.7 g / min (hydrogen fluoride / raw organic matter molar ratio = 10.0 / 1).
[0031]
Since the reaction was stable 1 hour after the start of the reaction, the product gas discharged from the reactor was blown into water to remove acidic gas, and then collected with a dry ice-acetone trap. Table 1 shows the results of analyzing the collected organic matter by gas chromatography. In Comparative Example 3, the reaction was performed under atmospheric pressure.
[0032]
[Comparative Example 4]
A chromium support prepared in Preparation Example 2 as a gas phase fluorination catalyst in a gas phase reactor (made of SUS316L, diameter 3.5 cm, length 150 cm) comprising a cylindrical reaction tube equipped with a pressure regulating valve at the rear and heated by a heating device 1.4 liters of alumina catalyst was charged. While flowing nitrogen gas at a flow rate of about 500 ml / min, the temperature of the reaction tube was raised to 250 ° C., hydrogen fluoride was introduced at a rate of about 3.0 g / min, and introduction of nitrogen gas was stopped. The temperature of the reaction tube was raised to 350 ° C. and maintained for 1 hour. Next, the temperature of the reaction tube is lowered to 280 ° C. at normal pressure, the feed rate of hydrogen fluoride is 3.6 g / min, and 1-chloro-3,3,3-trifluoropropene is vaporized in advance. Feeding to the reactor was started at a rate of 2 g / min (hydrogen fluoride / raw organic material = 19.5 / 1). Since the reaction was stable 1 hour after the start of the reaction, the product gas flowing out from the reactor was blown into water to remove the acidic gas, and then collected with a dry ice-acetone trap. Table 1 shows the results of analyzing the collected organic matter by gas chromatography.
[0033]
[ Comparative Example 5 ]
The same experiment as Comparative Example 4 was performed except that the reaction pressure was 0.3 MPa. The results are shown in Table 1, and the yield was improved by about 20% compared with the value of Comparative Example 4 under atmospheric pressure.
[0034]
[Example 1]
The catalyst prepared in Preparation Example 1 as a gas phase fluorination catalyst was added to a gas phase reactor (made of SUS316L, diameter 3.5 cm, length 150 cm) comprising a cylindrical reaction tube equipped with a pressure regulating valve at the rear and heated by a heating device. Filled with 1.4 liters. While flowing nitrogen gas at a flow rate of about 500 ml / min, the temperature of the reaction tube was raised to 250 ° C., hydrogen fluoride was introduced at a rate of about 3.0 g / min, and introduction of nitrogen gas was stopped. The temperature of the reaction tube was raised to 350 ° C. and maintained for 1 hour. Next, the temperature of the reaction tube is lowered to 270 ° C., the supply rate of hydrogen fluoride is 3.6 g / min, and 1 g of chloropropene is vaporized in advance as a raw material organic substance to 1.2 g. Feeding to the reactor was started at a rate of / min (hydrogen fluoride / raw organic matter molar ratio = 19.5 / 1).
[0035]
The pressure was adjusted to 0.1 MPa (gauge pressure) with the rear pressure regulating valve, and the reaction was stabilized 1 hour after the start of the reaction. The product gas discharged from the reactor was blown into water to remove the acidic gas, and then dry ice-acetone-trap. It was collected at. Table 1 shows the results of analyzing the collected organic matter by gas chromatography.
[0036]
[Examples 2 and 3]
In any case, after the same preparation steps as in Example 1, the same reaction operation, recovery operation and analysis as in Example 1 were performed under the conditions shown in Table 1. The results are shown in Table 1. In Example 1, Example 2, and Example 3, unreacted 1-chloro-3,3,3-trifluoropropene contained in the reaction product was 38.0%, 21.1%, 13.0, respectively. And the yields of 1,1,1,3,3-pentafluoropropane were 45.5%, 68.7%, and 79.4%, respectively. It is noticeable that the yield is high.
[0037]
[Example 4]
Except for the pressure being 0.3 MPa (gauge pressure), the same reaction operation, recovery operation, and analysis as in Comparative Example 3 were performed under the conditions shown in Table 1 after the same preparation stage as in Comparative Example 3. The results are shown in Table 1. The starting organic material was 1,3,3,3-tetrafluoropropene (mixture with a trans / cis ratio of 94/6), but unreacted 1,3,3,3-in the organic product. The amount of tetrafluoropropene that was 29.9% in Comparative Example 3 was 14.3% in Example 4, and the 1,1,3,3,3-pentafluoropropane yield was 69.0 respectively. % Was 85.4%, showing a significant improvement.
[0038]
[Reference example]
Crude product obtained in Example 3 (CTFP (t) / CTFP (c) / PFP / TFP (t) / TFP (c) = 11.8 / 1.2 / 79.4 / 6.3 / 1) .1%) 205.9 g of a glass rectifying column having a minimum theoretical plate number of 45 and packed with a stainless steel helipack (No. 2 manufactured by Tokyo Special Wire Mesh Co., Ltd.) having a tower diameter of 25 mmφ, 35 stages from the top of the tower Supplied from the position. Distillation was performed under normal pressure at a reflux ratio of 40/1, a bottom temperature of 20 ° C., a condenser temperature of −20 ° C., and 23.7 g (CTFP (t) / PFP / TFP (t) / TFP (c) = distillate). 4.7 / 31.6 / 54.8 / 8.9%), 182.2 g as a bottom (CTFP (t) / CTFP (c) / PFP / TFP (c) = 10.4 / 7.7) /81.8/0.1%).
[0039]
The raw material supply port of the rectifying column was closed, and 182.2 g of the bottom was distilled as it was. Under normal pressure, distillation was performed at a reflux ratio of 40/1, a bottom temperature of 25 ° C., a condenser temperature of −10 ° C., and 1,1,1,3,3-pentafluoropropane and 1-chloro-3,3,3-tri Fluoropropene (trans isomer) was distilled by forming an azeotrope-like composition of approximately 1/1 (molar ratio), and the initial fraction was 70.5 g (CTFP (t) / PFP / TFP (c) = 26. 87.42.9 / 0.3%), 96.4 g (CTFP (t) /PFP=0.2/99.8%) as the main fraction, and 15.3 g (CTFP (c) / PFP = 91.5 / 8.5%).
[0040]
Here, both the distillate other than the main distillate and the residue can be recycled again into the reaction system.
[0041]
【The invention's effect】
The method for producing 1,1,1,3,3-pentafluoropropane according to the present invention uses 1-chloro-3,3,3-trifluoropropane, which is easily available, as a raw material, and is a continuous and simple method. In addition, 1,1,1,3,3-pentafluoropropane can be produced with a high conversion and high yield, which is useful as an industrial production method.

Claims (1)

フッ素化触媒存在下、気相中において1−クロロ−3,3,3−トリフルオロプロペン(トランス体またはシス体)または1,3,3,3−テトラフルオロプロペン(トランス体またはシス体)のいずれかもしくは両者の混合物と、フッ化水素とを反応させて、1,1,1,3,3−ペンタフルオロプロパンを製造する方法であって、フッ素化触媒として、クロム担持活性炭を用い、該活性炭が、比表面積が400m 2 /gより大きい活性炭であり、反応温度が100〜500℃であり、接触時間が0.1〜300秒であり、1−クロロ−3,3,3−トリフルオロプロペン(トランス体またはシス体)または1,3,3,3−テトラフルオロプロペン(トランス体またはシス体)と、フッ化水素のモル比が、1/2〜1/50であって、反応圧力をゲージ圧で表して0.05〜10MPaの下に反応を行うことからなる、1,1,1,3,3−ペンタフルオロプロパンの製造法。1-chloro-3,3,3-trifluoropropene (trans isomer or cis isomer) or 1,3,3,3-tetrafluoropropene (trans isomer or cis isomer) in the gas phase in the presence of a fluorination catalyst and mixtures of any or both, by reacting with hydrogen fluoride, a method of producing 1,1,1,3,3-pentafluoropropane, a fluorination catalyst, of chromium on activated charcoal, wherein The activated carbon is activated carbon having a specific surface area of greater than 400 m 2 / g, a reaction temperature of 100 to 500 ° C., a contact time of 0.1 to 300 seconds, and 1-chloro-3,3,3-trifluoro The molar ratio of propene (trans isomer or cis isomer) or 1,3,3,3-tetrafluoropropene (trans isomer or cis isomer) to hydrogen fluoride is 1/2 to 1/50, Consists in carrying out the reaction under 0.05~10MPa represents pressure in gauge pressure, 1,1,1,3,3 preparation of pentafluoropropane.
JP27010697A 1997-10-02 1997-10-02 Method for producing halogenated propane Expired - Fee Related JP4079482B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27010697A JP4079482B2 (en) 1997-10-02 1997-10-02 Method for producing halogenated propane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27010697A JP4079482B2 (en) 1997-10-02 1997-10-02 Method for producing halogenated propane

Publications (2)

Publication Number Publication Date
JPH11106358A JPH11106358A (en) 1999-04-20
JP4079482B2 true JP4079482B2 (en) 2008-04-23

Family

ID=17481629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27010697A Expired - Fee Related JP4079482B2 (en) 1997-10-02 1997-10-02 Method for producing halogenated propane

Country Status (1)

Country Link
JP (1) JP4079482B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7279451B2 (en) * 2002-10-25 2007-10-09 Honeywell International Inc. Compositions containing fluorine substituted olefins
US8075797B2 (en) * 2009-01-29 2011-12-13 Honeywell International Inc. Azeotrope-like compositions of pentafluoropropane, chlorotrifluoropropene, and hydrogen fluoride
US8519200B1 (en) * 2012-02-23 2013-08-27 Honeywell International Inc. Azeotropic compositions of 1,1,3,3-tetrachloro-1-fluoropropane and hydrogen fluoride
US9950973B2 (en) * 2016-08-31 2018-04-24 Honeywell International Inc. Azeotropic or azeotrope-like compositions of 1,3-dichloro-3,3-difluoroprop-1-ene (HCFO-1232zd) and hydrogen fluoride (HF)
CN107522592B (en) * 2017-09-07 2020-06-02 浙江衢化氟化学有限公司 Method for coproducing various halogenated olefins and fluorinated alkanes

Also Published As

Publication number Publication date
JPH11106358A (en) 1999-04-20

Similar Documents

Publication Publication Date Title
JP3886229B2 (en) Method for producing 1,3,3,3-tetrafluoropropene
EP2341040B1 (en) Process for producing 1,3,3,3-tetrafluoropropene
US9463432B2 (en) Integrated process and methods of producing (E)-1-chloro-3,3,3-trifluoropropene
EP0939071B1 (en) Method for producing fluorinated propane
US8487144B2 (en) Process for producing fluorinated propene
JP5453757B2 (en) Process for producing trans-1,3,3,3-tetrafluoropropene
JP6225028B2 (en) High purity E-1-chloro-3,3,3-trifluoropropene and method for producing the same
JP3465865B2 (en) Method for producing 1,3,3,3-tetrafluoropropene
JP5515555B2 (en) Method for producing 1,3,3,3-tetrafluoropropene
KR20140079508A (en) Process for producing 2-chloro-3,3,3-trifluoropropene
JP6688383B2 (en) Process for preparing 2,3,3,3-tetrafluoropropene (1234yf)
JP2008019243A (en) Method for producing 1,3,3,3-tetrafluoropropene
JP4271415B2 (en) Method for producing 1,3,3,3-tetrafluoropropene
JP3031465B2 (en) Method for producing 1,1,1,3,3-pentafluoropropane
JP3031464B2 (en) Method for producing 1,1,1,3,3-pentafluoropropane
JP5187212B2 (en) Method for producing 1,3,3,3-tetrafluoropropene
JP4079482B2 (en) Method for producing halogenated propane
JP2000063301A (en) Manufacture of fluorinated propane
JP3154702B2 (en) Method for producing 1,1,1,3,3-pentafluoropropane
JP3880300B2 (en) Process for producing 1,1,1,3,3-pentafluoropropane
JP2000063302A (en) Manufacture of fluorinated propane

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061010

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061130

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070315

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080205

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130215

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130215

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130215

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140215

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees