JP4271415B2 - Method for producing 1,3,3,3-tetrafluoropropene - Google Patents

Method for producing 1,3,3,3-tetrafluoropropene Download PDF

Info

Publication number
JP4271415B2
JP4271415B2 JP2002206314A JP2002206314A JP4271415B2 JP 4271415 B2 JP4271415 B2 JP 4271415B2 JP 2002206314 A JP2002206314 A JP 2002206314A JP 2002206314 A JP2002206314 A JP 2002206314A JP 4271415 B2 JP4271415 B2 JP 4271415B2
Authority
JP
Japan
Prior art keywords
reaction
tetrafluoropropene
hydrogen fluoride
catalyst
chloro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002206314A
Other languages
Japanese (ja)
Other versions
JP2004043410A (en
Inventor
悟 吉川
良一 玉井
泰雄 日比野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP2002206314A priority Critical patent/JP4271415B2/en
Publication of JP2004043410A publication Critical patent/JP2004043410A/en
Application granted granted Critical
Publication of JP4271415B2 publication Critical patent/JP4271415B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、医農薬、機能性材料の中間原料あるいは冷媒等として有用な1,3,3,3−テトラフルオロプロペンの製造方法に関する。
【0002】
【従来の技術】
1,3,3,3−テトラフルオロプロペンの製造方法としては、従来、1,3,3,3−テトラフルオロ−1−ヨウ化プロパンをアルコール性水酸化カリウムにより脱ヨウ化水素する方法(R.N.Haszeldineら,J.Chem.Soc.1953,1199−1206; CA 48 5787f)または1,1,1,3,3−ペンタフルオロプロパンをジブチルエーテル中で水酸化カリウムにより脱フッ化水素する方法(I.L.Knunyantsら,Izvest.Akad.Nauk S.S.S.R.,Otdel.Khim.Nauk.1960,1412−18;CA 55,349f)等が知られている。
【0003】
また、本出願人はクロム、チタニウム、アルミニウム、マンガン、コバルト等の金属の酸化物、フッ化物、塩化物、フッ化塩化物、オキシフッ化物、オキシ塩化物、オキシフッ化塩化物を活性炭に担持した触媒を用いて、1,3,3,3−テトラフルオロプロペンを製造する方法を開示している(特開平10−007604号公報)。
【0004】
【発明が解決しようとする課題】
上記のような水酸化カリウムにより脱ハロゲン化水素する方法は、反応率および選択率に優れた方法ではあるが、水酸化カリウムが化学量論量以上必要であること、また原料である1,3,3,3−テトラフルオロ−1−ヨウ化プロパンまたは1,1,1,3,3−ペンタフルオロプロパンを予め調製しなければならず、工業的に適用するには困難な点が多い。
【0005】
【課題を解決するための手段】
本発明者らは、工業的規模で入手できるかもしくは工業的規模で入手できる原料から比較的容易に製造可能な物質を原料とする1,3,3,3−テトラフルオロプロペンの製造方法として、フッ素化触媒の存在下、1−クロロ−3,3,3−トリフルオロプロペンを原料に、これをフッ化水素で気相フッ素化して1,3,3,3−テトラフルオロプロペンを製造する方法について検討したところ、フッ素化触媒として特定の金属を用いることが好適であることを見いだし、本発明に到達した。
【0006】
すなわち、本発明は、気相中でフッ素化触媒存在下、1−クロロ−3,3,3−トリフルオロプロペンをフッ化水素と反応させて1,3,3,3−テトラフルオロプロペンの製造する方法において、フッ素化触媒として、 / クロム触媒を用いることを特徴とする1,3,3,3−テトラフルオロプロペンの製造方法である。
【0007】
1−クロロ−3,3,3−トリフルオロプロペンをフッ化水素と反応させる反応においては、反応条件等により1,3,3,3−テトラフルオロ−1−クロロプロパンや1,1,1,3,3−ペンタフルオロプロパンを副生するが、これらの副生成物の生成を抑えて、1,3,3,3−テトラフルオロプロパンのみを製造することが望ましい。本発明の製造方法を用いることにより、副生成物の顕著な生成は抑えられ、特に1,3,3,3−テトラフルオロ−1−クロロプロパンの生成は認められなくなる。
【0008】
本発明に使用する1−クロロ−3,3,3−トリフルオロプロペンは、3−ブロモ−3−クロロ−1,1,1−トリフルオロプロパンをアルコール性水酸化カリウムにより脱塩化水素する方法(R.N.Haszeldine,J.Chem.Soc.,1951、2495)、3,3,3−トリフルオロプロピンに塩化水素を付加させる方法(J.Chem.Soc.,1952,3490)、3−クロロ−1,1,1−トリフルオロ−3−ヨードプロパンをアルコール性水酸化カリウムにより脱ヨウ化水素する方法(J.Chem.Soc.,1953、1199.)または1,3,3,3−テトラクロロロプロペンをアンチモン触媒でフッ素化する方法(USP2,787,646号公報)等で得ることができる。
【0009】
また本出願人の出願にかかる特開平10−7605号公報には、1,1,1,3,3−ペンタクロロプロパンをフッ化水素により気相フッ素化する方法を開示している。
【0010】
本発明にかかる好適なフッ素化触媒は、クロムまたはチタニウムである。触媒として用いるにあたり、表面積の大きいものが好ましく、例えば、チタニウムは、スポンジチタンであることが好ましい。スポンジチタンは例えば東邦チタニウム(株)で種種の組成のグレード品が得られる。また、これらの金属と他の金属化合物を混合したものを触媒として用いることができ、例えば、クロムと銅化合物との両者を混合し、ペレット化したものが使用できる。
【0011】
また、触媒として使用するにあたり、それぞれの金属に加え、その表面の一部または全部が、酸化物、フッ化物、塩化物、フッ化塩化物、オキシフッ化物、オキシ塩化物、オキシフッ化塩化物等となったものを混合することも可能である。
【0012】
何れの触媒も、使用の前に所定の反応温度以上の温度で予めフッ化水素、フッ素化(および塩素化)炭化水素などのフッ素化剤で処理し、反応中の触媒の組成変化を防止することが有効である。また、反応中に酸素、塩素、フッ素化または塩素化炭化水素などを反応器中に供給することは触媒寿命の延長、反応率、反応収率の向上に有効である。
【0013】
反応温度は200〜600℃、好ましくは300〜500℃であり、反応温度200℃よりも低ければ反応は遅く実用的ではない。反応温度が600℃を超えると触媒寿命が短くなり、また、反応は速く進行するが分解生成物等が生成し、1,3,3,3−テトラフルオロプロペンの選択率が低下するので好ましくない。
【0014】
本発明の方法において、反応領域へ供給する1−クロロ−3,3,3−トリフルオロプロペン/フッ化水素のモル比は反応温度により変わりうるが、1/1〜1/60、好ましくは1/1〜1/30である。フッ化水素が1−クロロ−3,3,3−トリフルオロプロペンの60モル倍を超えると同一反応器における有機物処理量の減少ならびに反応系から排出された未反応フッ化水素と生成物との混合物の分離に支障をきたし、一方、フッ化水素が1モル倍よりも少ないと反応率が低下し、選択率が低下するので好ましくない。
【0015】
本発明の方法においては、過剰量のフッ化水素を使用することが好ましいので、未反応のフッ化水素は未反応有機物および生成物から分離し、反応系へリサイクルする。フッ化水素と有機物の分離は、公知の手段で行うことができる。
【0016】
反応圧力は特に限定されないが、装置の面から1〜10kg/cm2で行うのが好ましい。系内に存在する原料有機物、中間物質およびフッ化水素が、反応系内で液化しないような条件を選ぶことが望ましい。接触時間は、通常0.1〜300秒、好ましくは5〜60秒である。
【0017】
反応器は、耐熱性とフッ化水素、塩化水素等に対する耐食性を有する材質であれば良く、ステンレス鋼、ハステロイ、モネル、白金などが好ましい。また、これらの金属でライニングされた材料で作ることもできる。
【0018】
本発明の方法により処理されて反応器より流出する1,3,3,3−テトラフルオロプロペンを含む生成物は、公知の方法で精製されて製品となる。
【0019】
精製方法は限定されないが、例えば、予め回収されるべきフッ化水素を分離した生成物を最初に水または/およびアルカリ性溶液で洗浄して塩化水素、フッ化水素などの酸性物質を除去し、乾燥の後、蒸留に付して有機不純物を除くことで行うことができる。
【0020】
本発明の方法においては、触媒として金属を用いることより熱効率が良くなるため、温度調節を行う際にコントロールが容易であり、工業的に操作しやすいという利点もある。
【0021】
【実施例】
[実施例1]
電気炉を備えた円筒形反応管からなる気相反応装置(SUS316L製、直径2.5cm・長さ30cm)に気相フッ素化触媒として、銅/クロム(日揮化学製)を150ml充填した。約100ml/分の流量で窒素ガスを流しながら反応管の温度を200℃に上げ、フッ化水素を約0.10g/分の速度で窒素ガスに同伴させた。そのまま反応管の温度を300℃まで昇温し、1時間保った。次に反応管の温度を300℃に下げ、フッ化水素を0.07g/分の供給速度とし、1−クロロ−3,3,3−トリフルオロプロペンを予め気化させて0.06g/分の速度で反応器へ供給開始した。
【0022】
反応開始1時間後には反応は安定したので、その時から2時間にわたって、反応器から流出する生成ガスを水中に吹き込み酸性ガスを除去した後、ドライアイス−アセトン−トラップで6.2gの有機物を捕集した。捕集した有機物をガスクロマトグラフィーで分析した結果、1,3,3,3−テトラフルオロプロペン26.4%、1,1,3,3,3−ペンタフルオロプロパン4.5%及び1−クロロ−3,3,3−トリフルオロプロペン68.8%の生成物を得た。1,3,3,3−テトラフルオロ−1−クロロプロパンの生成は認められなかった。
【0023】
[参考例1]
電気炉を備えた円筒形反応管からなる気相反応装置(SUS316L製、直径2.5cm・長さ30cm)に気相フッ素化触媒としてスポンジチタン(純正化学製、Ti純度>99%)を150ml充填した。約100ml/分の流量で窒素ガスを流しながら反応管の温度を200℃に上げ、フッ化水素を約0.10g/分の速度で窒素ガスに同伴させた。そのまま反応管の温度を300℃まで昇温し、1時間保った。次に反応管の温度を365℃に下げ、フッ化水素を0.07g/分の供給速度とし、1−クロロ−3,3,3−トリフルオロプロペンを予め気化させて0.06g/分の速度で反応器へ供給開始した。
【0024】
反応開始1時間後には反応は安定したので、その時から2時間にわたって、反応器から流出する生成ガスを水中に吹き込み酸性ガスを除去した後、ドライアイス−アセトン−トラップで5.9gの有機物を捕集した。捕集した有機物をガスクロマトグラフィーで分析した結果、1,3,3,3−テトラフルオロプロペン14.4%、1,1,3,3,3−ペンタフルオロプロパン0.3%及び1−クロロ−3,3,3−トリフルオロプロペン80.9%の生成物を得た。1,3,3,3−テトラフルオロ−1−クロロプロパンの生成は認められなかった。
【0025】
【発明の効果】
本発明の1,3,3,3−テトラフルオロプロペンの製造方法は、1−クロロ−3,3,3−トリフルオロプロペンを原料とし、連続的に1,3,3,3−テトラフルオロプロペンを製造できるので、工業的な製造方法として有用である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing 1,3,3,3-tetrafluoropropene useful as an intermediate raw material for medicines and agricultural chemicals, functional materials, or a refrigerant.
[0002]
[Prior art]
As a method for producing 1,3,3,3-tetrafluoropropene, a conventional method in which 1,3,3,3-tetrafluoro-1-iodopropane is dehydroiodized with alcoholic potassium hydroxide (R N. Haszeldine et al., J. Chem. Soc. 1953, 1199-1206; CA 48 5787f) or 1,1,1,3,3-pentafluoropropane is dehydrofluorinated with potassium hydroxide in dibutyl ether. The method (IL Knunants et al., Izbest. Akad. Nauk SSR, Otdel. Khim. Nauk. 1960, 1412-18; CA 55, 349f) and the like are known.
[0003]
In addition, the present applicant is a catalyst in which an oxide of metal such as chromium, titanium, aluminum, manganese, cobalt, fluoride, chloride, fluorinated chloride, oxyfluoride, oxychloride, oxyfluoride chloride is supported on activated carbon. Discloses a method for producing 1,3,3,3-tetrafluoropropene using JP-A-10-007604.
[0004]
[Problems to be solved by the invention]
The method of dehydrohalogenating with potassium hydroxide as described above is a method having excellent reaction rate and selectivity, but potassium hydroxide is required to be a stoichiometric amount or more, and 1,3 which is a raw material. , 3,3-tetrafluoro-1-iodopropane or 1,1,1,3,3-pentafluoropropane must be prepared in advance, which is difficult to apply industrially.
[0005]
[Means for Solving the Problems]
As a method for producing 1,3,3,3-tetrafluoropropene using as a raw material a material that can be obtained on an industrial scale or can be produced relatively easily from a raw material available on an industrial scale, Method for producing 1,3,3,3-tetrafluoropropene by using 1-chloro-3,3,3-trifluoropropene as a raw material and vapor-phase fluorination with hydrogen fluoride in the presence of a fluorination catalyst As a result, the inventors have found that it is preferable to use a specific metal as the fluorination catalyst, and have reached the present invention.
[0006]
That is, the present invention produces 1,3,3,3-tetrafluoropropene by reacting 1-chloro-3,3,3-trifluoropropene with hydrogen fluoride in the presence of a fluorination catalyst in the gas phase. In this method, a copper / chromium catalyst is used as the fluorination catalyst, which is a method for producing 1,3,3,3-tetrafluoropropene.
[0007]
In the reaction of reacting 1-chloro-3,3,3-trifluoropropene with hydrogen fluoride, 1,3,3,3-tetrafluoro-1-chloropropane or 1,1,1,3 depending on the reaction conditions However, it is desirable to produce only 1,3,3,3-tetrafluoropropane while suppressing the formation of these by-products. By using the production method of the present invention, significant production of by-products is suppressed, and in particular, production of 1,3,3,3-tetrafluoro-1-chloropropane is not recognized.
[0008]
1-chloro-3,3,3-trifluoropropene used in the present invention is a method of dehydrochlorinating 3-bromo-3-chloro-1,1,1-trifluoropropane with alcoholic potassium hydroxide ( RN Haszeldine, J. Chem. Soc., 1951, 2495), a method of adding hydrogen chloride to 3,3,3-trifluoropropyne (J. Chem. Soc., 1952, 3490), 3-chloro. -1,1,1-trifluoro-3-iodopropane is dehydroiodinated with alcoholic potassium hydroxide (J. Chem. Soc., 1953, 1199.) or 1,3,3,3-tetra It can be obtained by a method of fluorinating chlorolopropene with an antimony catalyst (USP 2,787,646).
[0009]
Japanese Patent Application Laid-Open No. 10-7605 relating to the application of the present applicant discloses a method for vapor-phase fluorination of 1,1,1,3,3-pentachloropropane with hydrogen fluoride.
[0010]
The preferred fluorination catalyst according to the present invention is chromium or titanium. When used as a catalyst, those having a large surface area are preferable. For example, titanium is preferably sponge titanium. Sponge titanium is available from Toho Titanium Co., Ltd., and grades with various compositions can be obtained. Moreover, what mixed these metals and other metal compounds can be used as a catalyst, for example, what mixed both the chromium and copper compounds and pelletized can be used.
[0011]
When used as a catalyst, in addition to each metal, part or all of its surface is made of oxide, fluoride, chloride, fluorinated chloride, oxyfluoride, oxychloride, oxyfluoride chloride, etc. It is also possible to mix what has become.
[0012]
Any catalyst is treated with a fluorinating agent such as hydrogen fluoride or fluorinated (and chlorinated) hydrocarbon in advance at a temperature equal to or higher than a predetermined reaction temperature before use to prevent changes in the composition of the catalyst during the reaction. It is effective. In addition, supplying oxygen, chlorine, fluorinated or chlorinated hydrocarbons into the reactor during the reaction is effective for extending the catalyst life, improving the reaction rate, and the reaction yield.
[0013]
The reaction temperature is 200 to 600 ° C., preferably 300 to 500 ° C. If the reaction temperature is lower than 200 ° C., the reaction is slow and not practical. When the reaction temperature exceeds 600 ° C., the catalyst life is shortened, and the reaction proceeds rapidly, but decomposition products and the like are generated, and the selectivity for 1,3,3,3-tetrafluoropropene is decreased, which is not preferable. .
[0014]
In the method of the present invention, the molar ratio of 1-chloro-3,3,3-trifluoropropene / hydrogen fluoride supplied to the reaction zone may vary depending on the reaction temperature, but is 1/1 to 1/60, preferably 1 / 1-1 / 30. When the hydrogen fluoride exceeds 60 moles of 1-chloro-3,3,3-trifluoropropene, the amount of organic matter treated in the same reactor is reduced, and the unreacted hydrogen fluoride discharged from the reaction system and the product On the other hand, the separation of the mixture is hindered. On the other hand, when the amount of hydrogen fluoride is less than 1 mole, the reaction rate is lowered and the selectivity is lowered, which is not preferable.
[0015]
In the method of the present invention, since it is preferable to use an excessive amount of hydrogen fluoride, unreacted hydrogen fluoride is separated from unreacted organic substances and products and recycled to the reaction system. Separation of hydrogen fluoride and organic matter can be performed by known means.
[0016]
Although reaction pressure is not specifically limited, It is preferable to carry out by 1-10 kg / cm < 2 > from the surface of an apparatus. It is desirable to select conditions so that the raw organic substances, intermediate substances and hydrogen fluoride present in the system do not liquefy in the reaction system. The contact time is usually 0.1 to 300 seconds, preferably 5 to 60 seconds.
[0017]
The reactor may be any material that has heat resistance and corrosion resistance to hydrogen fluoride, hydrogen chloride, and the like, and stainless steel, hastelloy, monel, platinum, and the like are preferable. It can also be made from materials lined with these metals.
[0018]
The product containing 1,3,3,3-tetrafluoropropene treated by the method of the present invention and discharged from the reactor is purified to a product by a known method.
[0019]
Although the purification method is not limited, for example, the product from which hydrogen fluoride to be recovered in advance is separated is first washed with water or / and an alkaline solution to remove acidic substances such as hydrogen chloride and hydrogen fluoride, and then dried. Then, it can be performed by subjecting it to distillation to remove organic impurities.
[0020]
In the method of the present invention, heat efficiency is improved by using a metal as a catalyst. Therefore, there is an advantage that control is easy when temperature adjustment is performed, and industrial operation is easy.
[0021]
【Example】
[Example 1]
A gas phase reactor (made of SUS316L, diameter 2.5 cm, length 30 cm) composed of a cylindrical reaction tube equipped with an electric furnace was filled with 150 ml of copper / chromium (manufactured by JGC Chemical) as a gas phase fluorination catalyst. While flowing nitrogen gas at a flow rate of about 100 ml / min, the temperature of the reaction tube was raised to 200 ° C., and hydrogen fluoride was entrained with nitrogen gas at a rate of about 0.10 g / min. The temperature of the reaction tube was raised to 300 ° C. as it was and kept for 1 hour. Next, the temperature of the reaction tube is lowered to 300 ° C., the supply rate of hydrogen fluoride is 0.07 g / min, and 1-chloro-3,3,3-trifluoropropene is vaporized in advance to obtain 0.06 g / min. Feeding to the reactor at a rate began.
[0022]
Since the reaction was stable 1 hour after the start of the reaction, the product gas flowing out from the reactor was blown into the water for 2 hours to remove acidic gas, and then 6.2 g of organic matter was trapped with a dry ice-acetone trap. Gathered. The collected organic substance was analyzed by gas chromatography. As a result, 1,3,3,3-tetrafluoropropene was 26.4%, 1,1,3,3,3-pentafluoropropane 4.5% and 1-chloro. A product of 68.8% -3,3,3-trifluoropropene was obtained. Formation of 1,3,3,3-tetrafluoro-1-chloropropane was not observed.
[0023]
[Reference Example 1]
150 ml of sponge titanium (made by Junsei Chemical, Ti purity> 99%) as a gas phase fluorination catalyst in a gas phase reactor (made of SUS316L, diameter 2.5 cm, length 30 cm) comprising a cylindrical reaction tube equipped with an electric furnace Filled. While flowing nitrogen gas at a flow rate of about 100 ml / min, the temperature of the reaction tube was raised to 200 ° C., and hydrogen fluoride was entrained with nitrogen gas at a rate of about 0.10 g / min. The temperature of the reaction tube was raised to 300 ° C. as it was and kept for 1 hour. Next, the temperature of the reaction tube is lowered to 365 ° C., the supply rate of hydrogen fluoride is 0.07 g / min, and 1-chloro-3,3,3-trifluoropropene is vaporized in advance to 0.06 g / min. Feeding to the reactor at a rate began.
[0024]
Since the reaction was stable 1 hour after the start of the reaction, the product gas flowing out from the reactor was blown into the water for 2 hours to remove the acidic gas, and then 5.9 g of organic matter was captured with a dry ice-acetone trap. Gathered. As a result of analyzing the collected organic substance by gas chromatography, it was found that 1,3,3,3-tetrafluoropropene was 14.4%, 1,1,3,3,3-pentafluoropropane 0.3% and 1-chloro. A product of 80.9% -3,3,3-trifluoropropene was obtained. Formation of 1,3,3,3-tetrafluoro-1-chloropropane was not observed.
[0025]
【The invention's effect】
The process for producing 1,3,3,3-tetrafluoropropene according to the present invention uses 1-chloro-3,3,3-trifluoropropene as a raw material and continuously produces 1,3,3,3-tetrafluoropropene. Is useful as an industrial production method.

Claims (1)

気相中で、フッ素化触媒存在下、1−クロロ−3,3,3−トリフルオロプロペンをフッ化水素と反応させて1,3,3,3−テトラフルオロプロペンを製造する方法において、フッ素化触媒として、 / クロム触媒を用いることを特徴とする1,3,3,3−テトラフルオロプロペンの製造方法。In a method for producing 1,3,3,3-tetrafluoropropene by reacting 1-chloro-3,3,3-trifluoropropene with hydrogen fluoride in the gas phase in the presence of a fluorination catalyst, A method for producing 1,3,3,3-tetrafluoropropene, characterized in that a copper / chromium catalyst is used as the catalyst.
JP2002206314A 2002-07-15 2002-07-15 Method for producing 1,3,3,3-tetrafluoropropene Expired - Fee Related JP4271415B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002206314A JP4271415B2 (en) 2002-07-15 2002-07-15 Method for producing 1,3,3,3-tetrafluoropropene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002206314A JP4271415B2 (en) 2002-07-15 2002-07-15 Method for producing 1,3,3,3-tetrafluoropropene

Publications (2)

Publication Number Publication Date
JP2004043410A JP2004043410A (en) 2004-02-12
JP4271415B2 true JP4271415B2 (en) 2009-06-03

Family

ID=31711323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002206314A Expired - Fee Related JP4271415B2 (en) 2002-07-15 2002-07-15 Method for producing 1,3,3,3-tetrafluoropropene

Country Status (1)

Country Link
JP (1) JP4271415B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7279451B2 (en) * 2002-10-25 2007-10-09 Honeywell International Inc. Compositions containing fluorine substituted olefins
US7655610B2 (en) * 2004-04-29 2010-02-02 Honeywell International Inc. Blowing agent compositions comprising fluorinated olefins and carbon dioxide
JP4864878B2 (en) * 2004-04-29 2012-02-01 ハネウェル・インターナショナル・インコーポレーテッド Synthesis method of 1,3,3,3-tetrafluoropropene
EP1837323A1 (en) 2006-03-24 2007-09-26 SOLVAY (Société Anonyme) Process for the manufacture of 1,1,1,3,3-pentafluoropropane
US8563789B2 (en) 2007-06-27 2013-10-22 Arkema Inc. Process for the manufacture of hydrofluoroolefins
WO2009003084A1 (en) 2007-06-27 2008-12-31 Arkema Inc. Process for the manufacture of hydrofluoroolefins
JP2009132626A (en) * 2007-11-28 2009-06-18 Central Glass Co Ltd Method for producing 1,3,3,3-tetrafluoropropene
JP2011525925A (en) * 2008-06-26 2011-09-29 アーケマ・インコーポレイテッド Catalytic gas phase fluorination from 1230xa to 1234yf
JP5515555B2 (en) * 2008-09-25 2014-06-11 セントラル硝子株式会社 Method for producing 1,3,3,3-tetrafluoropropene
JP5747684B2 (en) 2010-09-14 2015-07-15 セントラル硝子株式会社 Method for dehydrating hydrofluorocarbon or hydrochlorofluorocarbon, and method for producing 1,3,3,3-tetrafluoropropene using the dehydration method
JP5817373B2 (en) * 2010-11-10 2015-11-18 セントラル硝子株式会社 Process for producing trans-1,3,3,3-tetrafluoropropene
EP2807137B1 (en) 2012-01-25 2017-04-26 Daikin Industries, Ltd. Process for producing fluorine-containing olefin
JP6233352B2 (en) 2015-06-02 2017-11-22 ダイキン工業株式会社 Method for producing fluorine-containing olefin

Also Published As

Publication number Publication date
JP2004043410A (en) 2004-02-12

Similar Documents

Publication Publication Date Title
US10329227B2 (en) Process for the preparation of 2,3,3,3-tetrafluoropropene
US7312367B2 (en) Method of making 1,1,3,3,3-pentafluoropropene
JP5792280B2 (en) Integrated process for co-production of trans-1-chloro-3,3,3-trifluoropropene and trans-1,3,3,3-tetrafluoropropene
JP6188767B2 (en) Method for extending catalyst life during hydrofluorination
JP3886229B2 (en) Method for producing 1,3,3,3-tetrafluoropropene
US8324436B2 (en) Gas phase synthesis of 2,3,3,3-tetrafluoro-1-propene from 2-chloro-3,3,3-trifluoro-1-propene
KR101057583B1 (en) Method for preparing 1,3,3,3-tetrafluoropropene
EP2154122B1 (en) Method for producing 2,3,3,3-tetrafluoropropene
JP3465865B2 (en) Method for producing 1,3,3,3-tetrafluoropropene
JP6170068B2 (en) Method for producing chlorinated propane and propene
US20050020862A1 (en) Process for the manufacture of 1,3,3,3-tetrafluoropropene
JP4693811B2 (en) Method for producing 1,3,3,3-tetrafluoropropene
JP4077032B2 (en) Process for the preparation of halogenated propane containing fluorine bonded to terminal carbon atoms.
JP4271415B2 (en) Method for producing 1,3,3,3-tetrafluoropropene
JP6688383B2 (en) Process for preparing 2,3,3,3-tetrafluoropropene (1234yf)
JP3821514B2 (en) Method for producing 1,3,3,3-tetrafluoropropene
US5481051A (en) 2,2-dichlorohexafluoropropane hydrogenolysis
JPH09504791A (en) Method for producing high-purity 1,1-dichlorotetrafluoroethane
JP3516324B2 (en) Method for producing 1-chloro-3,3,3-trifluoropropene
US6235950B1 (en) Method of making hydrofluorocarbons
US6313359B1 (en) Method of making hydrofluorocarbons
JP2009132626A (en) Method for producing 1,3,3,3-tetrafluoropropene
WO1998040335A1 (en) Process for producing 1,1,1,3,3-pentafluoropropane
WO2016111227A1 (en) Method for producing (e)-1-chloro-3,3,3-trifluoropropene
CN115803308A (en) Method for preparing 1-chloro-2,3,3-trifluoropropene

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050309

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090224

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090225

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4271415

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140306

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees