JPH09268139A - Production of 1,1,1,3,3-pentafluoropropane - Google Patents

Production of 1,1,1,3,3-pentafluoropropane

Info

Publication number
JPH09268139A
JPH09268139A JP8155696A JP8155696A JPH09268139A JP H09268139 A JPH09268139 A JP H09268139A JP 8155696 A JP8155696 A JP 8155696A JP 8155696 A JP8155696 A JP 8155696A JP H09268139 A JPH09268139 A JP H09268139A
Authority
JP
Japan
Prior art keywords
catalyst
pentafluoropropane
hydrogen fluoride
reaction
chloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8155696A
Other languages
Japanese (ja)
Inventor
Ryoichi Tamai
良一 玉井
Satoru Yoshikawa
悟 吉川
Fuyuhiko Saku
冬彦 佐久
Yasuo Hibino
泰雄 日比野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP8155696A priority Critical patent/JPH09268139A/en
Publication of JPH09268139A publication Critical patent/JPH09268139A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/093Preparation of halogenated hydrocarbons by replacement by halogens
    • C07C17/20Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms
    • C07C17/202Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms two or more compounds being involved in the reaction
    • C07C17/206Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms two or more compounds being involved in the reaction the other compound being HX

Abstract

PROBLEM TO BE SOLVED: To obtain 1,1,1,3,3-pentafluoropropane which is useful as a foaming agent for polyurethane foam or the like or as a refrigerant by using a readily available or readily predicable 1,1,1,3,3-pentachluoropropane as a raw material to effect vapor-phase fluoridation in the presence of a specific catalyst. SOLUTION: 1,1,1,3,3-Pentachluoropropane and hydrogen fluoride are subjected to vapor-phase reaction in the presence of a fluoridation catalyst. As a fluoridation catalyst, are cited one or 2 or more kinds of oxides, fluorides, chlorides or fluorochlorides of metals selected from Al, Cr, Mn, Ni and Co. Particularly, a chromium-supporting alumina catalyst is preferred, This process is industrially advantageous as it can be continuously conducted.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ポリウレタンフォ−ム
等の発泡剤あるいは冷媒等として有用な1,1,1,
3,3−ペンタフルオロプロパンの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to 1,1,1,1 useful as a foaming agent such as polyurethane foam or a refrigerant.
The present invention relates to a method for producing 3,3-pentafluoropropane.

【0002】[0002]

【従来技術】1,1,1,3,3−ペンタフルオロプロ
パンの製造方法としては従来、CF3−CClX−C
2Clを接触水素化する方法(特開平6−25623
5号)、1,1,3,3,3−ペンタフルオロ−1−
プロペンをPd−Al23で水素化する方法(Izve
st.Akad.Nauk S.S.S.R.,Otd
el.Khim.Nauk.1960,1412−1
8;CA 55,349f)、1,2,2−トリクロ
ロペンタフルオロプロパンを水素化する方法(USP2
942036号)、1,1,1,3,3−ペンタクロ
ロプロパンを触媒の存在下液相フッ素化する方法(WO
96/01797)などが知られている。
2. Description of the Related Art As a method for producing 1,1,1,3,3-pentafluoropropane, conventionally, CF 3 -CClX-C
Method for catalytic hydrogenation of F 2 Cl (JP-A-6-25623)
No. 5), 1,1,3,3,3-pentafluoro-1-
Method of hydrogenating propene with Pd-Al 2 O 3 (Izve
st. Akad. Nauk S.D. S. S. R. , Otd
el. Khim. Nauk. 1960, 1412-1
8; CA 55,349f), a method for hydrogenating 1,2,2-trichloropentafluoropropane (USP2)
942036), a method of fluorinating 1,1,1,3,3-pentachloropropane in the presence of a catalyst (WO
96/01797) and the like are known.

【0003】[0003]

【発明が解決しようとする課題】前記した特開平6−2
56235号またはUSP2942036号などに記載
された水素化による塩素原子の水素置換は反応率および
選択率に優れた方法ではあるが、触媒の劣化が著しく、
また、原料であるフッ素化塩素化物を予め調製しなけれ
ばならず、工業的に適用するには困難な点が多い。一
方、前記で示したオレフィンへの水素付加による方法
はすぐれた1,1,1,3,3−ペンタフルオロプロパ
ンの製造方法であるが、原料となる1,1,3,3,3
−ペンタフルオロ−1−プロペンを入手することが困難
であり工業的に採用するには問題がある。また、WO9
6/01797に記載された方法は液相法であり、副生
成物の反応器への滞留など、連続法による工業的方法と
しては困難な点が多い。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
Although hydrogen replacement of chlorine atoms by hydrogenation described in US Pat. No. 56235 or US Pat. No. 2,942,366 is a method excellent in the reaction rate and the selectivity, the deterioration of the catalyst is remarkable.
Further, a fluorinated chlorinated product as a raw material must be prepared in advance, and there are many difficult points for industrial application. On the other hand, the above-mentioned method of adding hydrogen to an olefin is an excellent method for producing 1,1,1,3,3-pentafluoropropane, but it is 1,1,3,3,3 as a raw material.
It is difficult to obtain -pentafluoro-1-propene, and there is a problem in industrial application. In addition, WO9
The method described in 6/01797 is a liquid phase method, and there are many difficulties as an industrial method by a continuous method such as retention of by-products in a reactor.

【0004】[0004]

【課題を解決するための具体的手段】本発明者らはかか
る従来技術の問題点に鑑み、容易に入手できるかもしく
は容易に製造できる原料を使用して工業的規模で1,
1,1,3,3−ペンタフルオロプロパンを製造する方
法を確立するべく各種のプロセスについて鋭意検討を加
えたところ、対応する塩素化物をフッ化水素で気相フッ
素化するにあたって、触媒としてクロム化合物を使用す
ることにより、目的とする1,1,1,3,3−ペンタ
フルオロプロパンを得ることができることを見出し、本
発明に到達したものである。
SUMMARY OF THE INVENTION In view of the above problems of the prior art, the inventors of the present invention use industrially-scaled materials using raw materials that are easily available or easily manufactured.
As a result of extensive studies on various processes in order to establish a method for producing 1,1,3,3-pentafluoropropane, a chromium compound was used as a catalyst when the corresponding chlorinated compound was vapor-phase fluorinated with hydrogen fluoride. The inventors have found that the desired 1,1,1,3,3-pentafluoropropane can be obtained by using, and have reached the present invention.

【0005】すなわち、本発明は気相中においてフッ素
化触媒存在下、1,1,1,3,3−ペンタクロロプロ
パンをフッ化水素と反応させることを特徴とする1,
1,1,3,3−ペンタフルオロプロパンの製造法であ
る。
That is, the present invention is characterized in that 1,1,1,3,3-pentachloropropane is reacted with hydrogen fluoride in the presence of a fluorination catalyst in the gas phase.
This is a method for producing 1,1,3,3-pentafluoropropane.

【0006】本発明に使用する1,1,1,3,3−ペ
ンタクロロプロパンは、塩化ビニリデンとクロロホルム
とを銅アミン触媒存在下に反応させる方法(M.Kot
oraら、React.Kinet.Catal.Le
tt.,44巻,2号,415頁,1991年)、四塩
化炭素と塩化ビニルとを銅アミン触媒存在下に反応させ
る方法(M.Kotoraら、J.of Mol. C
atal.77巻,51頁,1992年)、四塩化炭素
と塩化ビニルを塩化第一鉄触媒の存在下反応させる方法
(J.of Org.Chem.USSR,3巻、21
01頁、1969年)等で得ることができる。
The 1,1,1,3,3-pentachloropropane used in the present invention is prepared by reacting vinylidene chloride with chloroform in the presence of a copper amine catalyst (M. Kot).
ora et al., React. Kinet. Catal. Le
tt. 44, No. 2, p. 415, 1991), a method of reacting carbon tetrachloride and vinyl chloride in the presence of a copper amine catalyst (M. Kotora et al., J. of Mol. C.).
atal. 77, 51, 1992), a method of reacting carbon tetrachloride with vinyl chloride in the presence of a ferrous chloride catalyst (J. Org. Chem. USSR, 3, 21).
01, 1969).

【0007】本発明にかかるフッ素化触媒は、アルミニ
ウム、クロム、マンガン、ニッケル、コバルトの中から
選ばれる1種または2種以上の金属の酸化物、フッ化
物、塩化物、フッ化塩化物、オキシフッ化物、オキシ塩
化物、オキシフッ化塩化物等である。複数の金属を使用
する場合、その1種をクロムとすることは好ましい。こ
れらはまた、公知の担体に担持されていてもよい。担体
としてはアルミニウムの酸化物、フッ化物、塩化物、フ
ッ化塩化物、オキシフッ化物、オキシ塩化物、オキシフ
ッ化塩化物等または活性炭などを用いることができる。
The fluorination catalyst according to the present invention is an oxide, fluoride, chloride, fluorinated chloride or oxyfluoride of one or more metals selected from aluminum, chromium, manganese, nickel and cobalt. Compound, oxychloride, oxyfluorinated chloride and the like. If multiple metals are used, it is preferred that one of them is chromium. These may also be supported on a known carrier. As the carrier, aluminum oxide, fluoride, chloride, fluorinated chloride, oxyfluoride, oxychloride, oxyfluorinated chloride, etc., or activated carbon can be used.

【0008】これらの触媒を調製する方法は限定されな
いが、担体を用いないで触媒を調製する場合、上記金属
の可溶性化合物の溶液から塩基性物質を用いて析出させ
た金属水酸化物から一旦調製された金属酸化物をフッ化
水素、塩化水素、塩素化フッ素化炭化水素などで一部ま
たは完全にハロゲンで修飾することにより得られる。ま
た、担持触媒として使用する場合、γ−アルミナなどの
アルミニウム酸化物または予めフッ化水素、塩化水素、
塩素化フッ素化炭化水素などでハロゲンで修飾されたア
ルミナにクロム、マンガン、ニッケル、コバルトの中か
ら選ばれる1種または2種以上の金属の可溶性化合物を
溶解した溶液を含浸するか、スプレーすることで調製さ
れる。
The method for preparing these catalysts is not limited, but when the catalyst is prepared without using a carrier, it is prepared once from a metal hydroxide precipitated from a solution of the soluble compound of the above metal using a basic substance. It can be obtained by partially or completely modifying the formed metal oxide with hydrogen fluoride, hydrogen chloride, chlorinated fluorinated hydrocarbon or the like. When used as a supported catalyst, aluminum oxide such as γ-alumina or hydrogen fluoride, hydrogen chloride, or
Impregnating or spraying a solution in which a soluble compound of one or more metals selected from chromium, manganese, nickel and cobalt is dissolved in alumina modified with halogen such as chlorinated fluorinated hydrocarbon. Is prepared in.

【0009】金属担持量は0.1〜20wt%、好まし
くは1〜10wt%が適当である。本発明にかかる触媒
においては、副成分としてMg、Ca等のアルカリ土類
元素およびLa、Ce等のランタノイド系元素などを添
加することもできる。これらは、担体または担持金属で
あるオキシハロゲン化物の再結晶化を抑制し活性を維持
させるために添加される。担持金属に対する副成分元素
の重量比としては、50:50〜99.9:0.1、好
ましくは70:30〜99:1が適当である。
The amount of supported metal is 0.1 to 20 wt%, preferably 1 to 10 wt%. In the catalyst according to the present invention, an alkaline earth element such as Mg and Ca and a lanthanoid element such as La and Ce can be added as subcomponents. These are added in order to suppress recrystallization of the oxyhalide which is the carrier or the supported metal and maintain the activity. The weight ratio of the accessory component element to the supported metal is 50:50 to 99.9: 0.1, preferably 70:30 to 99: 1.

【0010】可溶性化合物としては、水、エタノール、
アセトンなどの溶媒に溶解する該当金属の硝酸塩、塩化
物、酸化物などが挙げられる。具体的には、硝酸クロ
ム、三塩化クロム、三酸化クロム、重クロム酸カリウ
ム、硝酸マンガン、塩化マンガン、二酸化マンガン、硝
酸ニッケル、塩化ニッケル、硝酸コバルト、塩化コバル
トなどを用いることができる。
As the soluble compound, water, ethanol,
Examples thereof include nitrates, chlorides, oxides, etc. of the corresponding metals which are soluble in a solvent such as acetone. Specifically, chromium nitrate, chromium trichloride, chromium trioxide, potassium dichromate, manganese nitrate, manganese chloride, manganese dioxide, nickel nitrate, nickel chloride, cobalt nitrate, cobalt chloride and the like can be used.

【0011】何れの方法で調整した触媒も、使用の前に
所定の反応温度以上の温度で予めフッ化水素、フッ素化
またはフッ素化塩素化炭化水素などのフッ素化剤で処理
し、反応中の触媒の組成変化を防止することが有効であ
る。また、反応中に酸素、塩素、フッ素化または塩素化
炭化水素などを反応器中に供給することは触媒寿命の延
長、反応率、反応収率の向上に有効である。
The catalyst prepared by any method is treated in advance with a fluorinating agent such as hydrogen fluoride, fluorinated or fluorinated chlorinated hydrocarbon at a temperature higher than a predetermined reaction temperature before use. It is effective to prevent changes in the composition of the catalyst. Supplying oxygen, chlorine, fluorinated or chlorinated hydrocarbons, etc. into the reactor during the reaction is effective for extending the life of the catalyst, improving the reaction rate, and improving the reaction yield.

【0012】反応温度は200〜500℃、好ましくは
300〜450℃であり、反応温度が低ければ反応は遅
く実用的ではない。反応温度を高くすれば触媒寿命が短
くなり、反応は速く進行するがテトラフルオロプロペン
などのオレフィンが生成し1,1,1,3,3−ペンタ
フルオロプロパンの選択率が低下するので好ましくな
い。
The reaction temperature is 200 to 500 ° C., preferably 300 to 450 ° C. If the reaction temperature is low, the reaction is slow and not practical. If the reaction temperature is raised, the life of the catalyst is shortened and the reaction proceeds rapidly, but olefins such as tetrafluoropropene are produced and the selectivity of 1,1,1,3,3-pentafluoropropane decreases, which is not preferable.

【0013】本発明の方法において、反応領域へ供給す
る1,1,1,3,3−ペンタクロロプロパン/フッ化
水素のモル比は反応温度により変わりうるが、1/5〜
1/30、好ましくは1/6〜1/15である。フッ化
水素が過剰であると、有機物処理量の減少ならびに反応
系から排出された未反応フッ化水素と生成物との混合物
の分離に支障をきたし、フッ化水素が少ないと反応率が
低下して、目的生成物の収率が低下する。しかし、通常
生成物に伴われる低フッ素化物、未反応物またはフッ化
水素は生成物と分離されリサイクルされるのでフッ化水
素の過大または過小は、大規模な製造では致命的ではな
い。
In the method of the present invention, the molar ratio of 1,1,1,3,3-pentachloropropane / hydrogen fluoride supplied to the reaction zone can be changed depending on the reaction temperature, but is 1/5 to
It is 1/30, preferably 1/6 to 1/15. Excessive hydrogen fluoride will hinder the reduction of the amount of organic substances to be treated and the separation of the mixture of unreacted hydrogen fluoride and the product discharged from the reaction system. As a result, the yield of the desired product decreases. However, over- or under-fluorination is not critical in large-scale production, since the low fluorinated, unreacted, or hydrogen fluoride normally associated with the product is separated from the product and recycled.

【0014】反応圧力は特に限定されないが、装置の面
から1〜10kg/cm2で行うのが好ましい。系内に
存在する原料有機物、中間物質およびフッ化水素が、反
応系内で液化しないような条件を選ぶことが望ましい。
接触時間は、通常0.1〜300秒、好ましくは5〜6
0秒である。
The reaction pressure is not particularly limited, but it is preferably 1 to 10 kg / cm 2 from the viewpoint of the apparatus. It is desirable to select conditions so that the raw material organic substances, intermediate substances and hydrogen fluoride present in the system are not liquefied in the reaction system.
The contact time is usually 0.1 to 300 seconds, preferably 5 to 6 seconds.
0 seconds.

【0015】反応器は、耐熱性とフッ化水素、塩化水素
等に対する耐食性を有する材質で作られれば良く、ステ
ンレス鋼、ハステロイ、モネル、白金などが好ましい。
また、これらの金属でライニングされた材料で作ること
もできる。
The reactor may be made of a material having heat resistance and corrosion resistance to hydrogen fluoride, hydrogen chloride and the like, and stainless steel, hastelloy, monel, platinum and the like are preferable.
It can also be made of materials lined with these metals.

【0016】本発明の方法により処理されて反応器より
流出する1,1,1,3,3−ペンタフルオロプロパン
を含む生成物は、公知の方法で精製されて製品となる。
精製方法は限定されないが、例えば、生成物は最初に水
または/およびアルカリ性溶液で洗浄して塩化水素、フ
ッ化水素などの酸性物質を除去し、乾燥の後、蒸留に付
して有機不純物を除くことで行うことができる。
The product containing 1,1,1,3,3-pentafluoropropane discharged from the reactor after being treated by the method of the present invention is purified by a known method to be a product.
Although the purification method is not limited, for example, the product is first washed with water or / and an alkaline solution to remove acidic substances such as hydrogen chloride and hydrogen fluoride, dried and then distilled to remove organic impurities. It can be done by excluding it.

【0017】[0017]

【実施例】【Example】

[調製例1]336gの特級試薬CrCl3・6H2Oを
純水に溶かして1Lとした。この溶液に直径5mm、表
面積340m2の粒状γ−アルミナ250mlを浸漬
し、一昼夜放置した。次に濾過してγ−アルミナを取り
出し、熱風循環式乾燥器中で100℃に保ち、さらに一
昼夜乾燥した。得られたクロム担持アルミナを電気炉を
備えた直径5cm長さ30cmの円筒形SUS316L
製反応管に充填し、窒素ガスを流しながら300℃まで
昇温し、水の流出が見られなくなった時点で、窒素ガス
にフッ化水素を同伴させその濃度を徐々に高めた。充填
されたクロム担持アルミナのフッ素化によるホットスポ
ットが反応管出口端に達したとことで反応器温度を45
0℃に上げ、その状態を1時間保ち触媒の調製を行っ
た。
[Preparation Example 1] 336 g of special grade reagent CrCl 3 .6H 2 O was dissolved in pure water to make 1 L. 250 ml of granular γ-alumina having a diameter of 5 mm and a surface area of 340 m 2 was immersed in this solution, and left standing overnight. Next, γ-alumina was removed by filtration, kept at 100 ° C. in a hot air circulating dryer, and further dried overnight. The obtained chromium-supported alumina was equipped with an electric furnace and had a cylindrical shape of SUS316L having a diameter of 5 cm and a length of 30 cm.
The reaction tube was filled, heated to 300 ° C. while flowing nitrogen gas, and when the outflow of water was no longer observed, hydrogen fluoride was entrained in the nitrogen gas and its concentration was gradually increased. The hot spot due to the fluorination of the filled chromium-supported alumina reached the outlet end of the reaction tube, and the reactor temperature was adjusted to 45
The temperature was raised to 0 ° C., and the state was maintained for 1 hour to prepare a catalyst.

【0018】[実施例1]電気炉を備えた円筒形反応管
からなる気相反応装置(SUS316L製、直径1イン
チ・長さ30cm)に気相フッ素化触媒として調製例1
で調製した触媒を150ml充填した。約155ml/
分の流量で窒素ガスを流しながら反応管の温度を300
℃に上げ、フッ化水素を約0.25g/分の速度で窒素
ガスに同伴させた。そのまま反応管の温度を350℃ま
で昇温し1時間保った。次に反応管の温度を300℃に
下げ、フッ化水素を0.23g/分の供給速度とし、
1,1,1,3,3−ペンタクロロプロパンを予め気化
させて0.21g/分の速度で反応器へ供給開始した。
Example 1 Preparation Example 1 as a gas phase fluorination catalyst in a gas phase reactor (made of SUS316L, diameter 1 inch, length 30 cm) consisting of a cylindrical reaction tube equipped with an electric furnace.
150 ml of the catalyst prepared in the above was charged. About 155 ml /
While flowing nitrogen gas at a flow rate of 300
C., and hydrogen fluoride was entrained in nitrogen gas at a rate of about 0.25 g / min. The temperature of the reaction tube was raised to 350 ° C. and kept for 1 hour. Next, the temperature of the reaction tube was lowered to 300 ° C., hydrogen fluoride was supplied at a rate of 0.23 g / min,
1,1,1,3,3-Pentachloropropane was vaporized in advance and the supply to the reactor was started at a rate of 0.21 g / min.

【0019】反応開始1時間後には反応は安定したの
で、その時から1時間にわたって、反応器から流出する
生成ガスを水中に吹き込み酸性ガスを除去した後、ドラ
イアイス−アセトン−トラップで70gの有機物を捕集
した。得られた有機物をガスクロマトグラフィーで分析
した結果を表1に示した。
After 1 hour from the start of the reaction, the reaction was stable. For 1 hour from that time, the produced gas flowing out of the reactor was blown into water to remove the acid gas, and 70 g of organic matter was removed with a dry ice-acetone trap. I collected it. The results of gas chromatography analysis of the obtained organic matter are shown in Table 1.

【0020】[0020]

【表1】 [Table 1]

【0021】[実施例2]電気炉を備えた円筒形反応管
からなる気相反応装置(SUS316L製、直径1イン
チ・長さ30cm)に気相フッ素化触媒として調製例1
で調製した触媒を150ml充填した。約155ml/
分の流量で窒素ガスを流しながら反応管の温度を300
℃に上げ、フッ化水素を約0.25g/分の速度で窒素
ガスに同伴させた。そのまま反応管の温度を450℃ま
で昇温し1時間保った。次に、フッ化水素を0.23g
/分の供給速度とし、1,1,1,3,3−ペンタクロ
ロプロパンを予め気化させて0.21g/分の速度で反
応器へ供給開始した。
Example 2 Preparation Example 1 as a gas phase fluorination catalyst in a gas phase reactor (made of SUS316L, diameter 1 inch, length 30 cm) consisting of a cylindrical reaction tube equipped with an electric furnace.
150 ml of the catalyst prepared in the above was charged. About 155 ml /
While flowing nitrogen gas at a flow rate of 300
C., and hydrogen fluoride was entrained in nitrogen gas at a rate of about 0.25 g / min. The temperature of the reaction tube was raised to 450 ° C. and kept for 1 hour. Next, 0.23 g of hydrogen fluoride
/ 1,1,3,3-pentachloropropane was vaporized in advance and the supply was started at a rate of 0.21 g / min into the reactor.

【0022】反応開始1時間後には反応は安定したの
で、その時から1時間にわたって、反応器から流出する
生成ガスを水中に吹き込み酸性ガスを除去した後、ドラ
イアイス−アセトン−トラップで67gの有機物を捕集
した。得られた有機物をガスクロマトグラフィーで分析
した結果を表1に示した。
After 1 hour from the start of the reaction, the reaction was stable. For 1 hour from that time, the produced gas flowing out of the reactor was blown into water to remove the acidic gas, and 67 g of organic matter was removed with a dry ice-acetone trap. I collected it. The results of gas chromatography analysis of the obtained organic matter are shown in Table 1.

【0023】[0023]

【発明の効果】本発明の1,1,1,3,3−ペンタフ
ルオロプロパンの製造法は、入手の容易な1,1,1,
3,3−ペンタクロロプロパンを原料とし、連続的に
1,1,1,3,3−ペンタフルオロプロパンを製造で
きるので、工業的な製造法として有用である。
EFFECTS OF THE INVENTION The method for producing 1,1,1,3,3-pentafluoropropane of the present invention is 1,1,1,1 which is easily available.
Since 1,1,1,3,3-pentafluoropropane can be continuously produced from 3,3-pentachloropropane as a raw material, it is useful as an industrial production method.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 日比野 泰雄 埼玉県川越市今福中台2805番地 セントラ ル硝子株式会社化学研究所内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Yasuo Hibino 2805 Imafuku Nakadai, Kawagoe City, Saitama Central Glass Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】気相中においてフッ素化触媒存在下、1,
1,1,3,3−ペンタクロロプロパンをフッ化水素と
反応させることを特徴とする1,1,1,3,3−ペン
タフルオロプロパンの製造法。
1. The method according to claim 1, wherein 1, 1
A method for producing 1,1,1,3,3-pentafluoropropane, which comprises reacting 1,1,3,3-pentachloropropane with hydrogen fluoride.
【請求項2】フッ素化触媒がクロム担持アルミナ触媒で
あることを特徴とする請求項1記載の1,1,1,3,
3−ペンタフルオロプロパンの製造法。
2. The 1,1,1,3 according to claim 1, wherein the fluorination catalyst is a chromium-supported alumina catalyst.
Method for producing 3-pentafluoropropane.
JP8155696A 1996-04-03 1996-04-03 Production of 1,1,1,3,3-pentafluoropropane Pending JPH09268139A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8155696A JPH09268139A (en) 1996-04-03 1996-04-03 Production of 1,1,1,3,3-pentafluoropropane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8155696A JPH09268139A (en) 1996-04-03 1996-04-03 Production of 1,1,1,3,3-pentafluoropropane

Publications (1)

Publication Number Publication Date
JPH09268139A true JPH09268139A (en) 1997-10-14

Family

ID=13749570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8155696A Pending JPH09268139A (en) 1996-04-03 1996-04-03 Production of 1,1,1,3,3-pentafluoropropane

Country Status (1)

Country Link
JP (1) JPH09268139A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999048849A1 (en) * 1998-03-23 1999-09-30 Daikin Industries, Ltd. Process for producing 1,1,1,3,3-pentafluoropropane

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999048849A1 (en) * 1998-03-23 1999-09-30 Daikin Industries, Ltd. Process for producing 1,1,1,3,3-pentafluoropropane

Similar Documents

Publication Publication Date Title
KR101057583B1 (en) Method for preparing 1,3,3,3-tetrafluoropropene
CA2539936C (en) Process for the preparation of 1,1,1,3,3-pentafluoropropane and 1,1,1,2,3-pentafluoropropane
US6235951B1 (en) Method for producing 1,1,1,3,3-pentafluoropropane
JP3465865B2 (en) Method for producing 1,3,3,3-tetrafluoropropene
JP4693811B2 (en) Method for producing 1,3,3,3-tetrafluoropropene
JPH11140002A (en) Production of 1,3,3,3-tetrafluoropropene
US7312367B2 (en) Method of making 1,1,3,3,3-pentafluoropropene
JPH09194404A (en) Production of 1-chloro-3,3,3-trifluoropropene
US6316681B1 (en) Method for producing 1,1,1,3,3-pentafluoropropane
JP3821514B2 (en) Method for producing 1,3,3,3-tetrafluoropropene
ES2770405T3 (en) Process for the manufacture of 2-chloro-3,3,3-trifluoropropene by fluorination in the gas phase of pentachloropropane
US9242910B2 (en) Process to manufacture 2-chloro-1,1,1,2-tetrafluoropropane (HCFC-244bb)
KR20180042281A (en) A novel process for producing 2-chloro-3,3,3-trifluoropropene from 1,2-dichloro-3,3,3-trifluoropropene
JP4271415B2 (en) Method for producing 1,3,3,3-tetrafluoropropene
JP3516324B2 (en) Method for producing 1-chloro-3,3,3-trifluoropropene
US7151197B2 (en) Processes for purifying chlorofluorinated compounds and processes for purifying CF3CFHCF3
JPH09504791A (en) Method for producing high-purity 1,1-dichlorotetrafluoroethane
NZ514648A (en) Method for the preparation of 1,1,1,3,3- pentafluoropropene and 1,1,1,3,3-pentafluoropropane
US20150225317A1 (en) PROCESS TO MANUFACTURE 2-CHLORO-1,1,1,2-TETRAFLUOROPROPANE (HCFC-244bb)
JPH09268139A (en) Production of 1,1,1,3,3-pentafluoropropane
EP0872468A1 (en) Method for producing 3,3-dichloro-1,1,1-trifluoroacetone
JPH09268140A (en) Production of 1,1,1,3,3-pentafluoropropane
JP3480807B2 (en) Method for producing 3,3-dichloro-1,1,1-trifluoroacetone
JP3556853B2 (en) Method for producing 3,3-dichloro-1,1,1-trifluoroacetone
JPH11106358A (en) Production of halopropane

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Effective date: 20060418

Free format text: JAPANESE INTERMEDIATE CODE: A7421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060627

A02 Decision of refusal

Effective date: 20061128

Free format text: JAPANESE INTERMEDIATE CODE: A02