JP3821501B2 - Method for producing quartz glass article - Google Patents

Method for producing quartz glass article Download PDF

Info

Publication number
JP3821501B2
JP3821501B2 JP15406995A JP15406995A JP3821501B2 JP 3821501 B2 JP3821501 B2 JP 3821501B2 JP 15406995 A JP15406995 A JP 15406995A JP 15406995 A JP15406995 A JP 15406995A JP 3821501 B2 JP3821501 B2 JP 3821501B2
Authority
JP
Japan
Prior art keywords
quartz glass
glass article
furnace
heat
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15406995A
Other languages
Japanese (ja)
Other versions
JPH08325025A (en
Inventor
透 横田
朗 藤ノ木
恭一 稲木
宜正 吉田
護 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Quartz Products Co Ltd
Original Assignee
Shin Etsu Quartz Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Quartz Products Co Ltd filed Critical Shin Etsu Quartz Products Co Ltd
Priority to JP15406995A priority Critical patent/JP3821501B2/en
Publication of JPH08325025A publication Critical patent/JPH08325025A/en
Application granted granted Critical
Publication of JP3821501B2 publication Critical patent/JP3821501B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/20Uniting glass pieces by fusing without substantial reshaping
    • C03B23/203Uniting glass sheets

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Description

【0001】
【産業上の利用分野】
本発明は石英ガラス体の溶接方法に係り、特に厚板の石英ガラス材の溶接方法に関する。
【0002】
【従来の技術】
従来より半導体製造業界においては、化学的安定性と不純物の溶出を避ける為に更には耐熱性を満足させるために、石英ガラス製の各種治具若しくは容器、更には各種設備に用いられているが、この様な石英ガラス材は軟化温度が1600℃以上と高く、而も供給元より管体若しくは平板材として供給されるものであるために、これを所定形状に加工するには、例えば角槽を形成する場合において、前記平板より底面及び4つの側面を形成する5枚の平板状石英ガラス板を方形状に溶接して方形容器を形成した後、グラインダ等で該容器の溶接跡を除去する事により製造されるが、グラインダ溶接跡を除去するのは多大な手間と熟練を必要し且つ特にその角隅部に位置する溶接跡を完全に除去するのは極めて困難である。
【0003】
又特に厚板の溶接を行うには、溶接によりその内部まで溶接するのは極めて困難であり、この為従来は、溶接不足により内部に気泡が残存したり、又過剰溶接により溶接跡等が残存する場合があり、このような状態で例えば熱処理炉として使用するとその残存部分で強度不足が生じたり、又薬液や洗浄液を投入する処理槽として利用する場合には、例えばバブリング洗浄等において、ウエハより洗浄液側に移行したパーティクル等の微細な塵埃が前記溶接跡に入り込んだ場合、例えフッ酸を用いて前記槽を洗浄した場合にも簡単には取切れず、これが再使用時にウエハに再付着して製品欠陥の原因になるなど効果的な洗浄を行えない場合があった。
【0004】
かかる欠点を解消するために、本出願人が種々の技術を開発している。
その1つが特開平2−102141号で示すように複数の石英ガラス部材の接合部を溶接して形成される石英ガラス製角槽において、円筒管を縦割りにして形成される弧状部材と、少なくとも一部が湾曲された板状部材と、角槽の各壁面幅より小なる幅をもって形成された平板状部材の内、選択された部材同士を組み合わせて前記角槽を形成するとともに、これらの各部材同士の接合部を少なくとも稜線及び複数の稜線が集合する角隅部から外れた位置に設けた石英ガラス製角槽が提案されている。
【0005】
かかる技術によれば、稜線及び角隅部に溶接位置が位置していない為に、角隅部や稜線の溶接を避ける事が出来るが、本発明においても溶接及びグラインダ溶接跡を除去するという基本構成は存在し、従って厚肉の板材の溶接は困難である。
特に前記技術においても局所加熱であるために熱歪の発生があり、一面を溶接する毎に加熱して熱歪を除去する必要がある。特に肉厚が10mmを越えてしまうと熱歪が過大となり、溶接中若しくは溶接直後に石英ガラスがわれてしまい、特に15mm以上の厚肉の石英ガラス板の溶接は不可能であった。
【0006】
かかる厚肉の石英ガラス製品の製造方法として、例えば特開昭58-88129号において、粉末状の石英ガラス原料と中子を用い、回転溶融炉の内壁面と中子との間隙部に石英ガラス粉末を充填し、炉を回転させながら前記中子を引き抜いた後、前記原料粉末をアーク炎又はガス炎により加熱溶融して前記角槽を形成する技術が提案されているが、かかる技術においては原料粉末を直接溶融する構成を取る為に、角槽のように角部を有する石英ガラス物品の形成が困難であり且つ原料粉末が炉壁と直接接触する為に不純物が混入され易く、近年のように大口径で且つ高集積化されたウエハを大量処理する為の製造工程には適さない。
【0007】
又、特開昭62−241840に、半導体単結晶製造の為に使用されるルツボ、チャンバ、ベルジャとして適用される大型石英容器の製造方法として、底部が曲面状に形成された円筒形状の型体内部に、石英ガラス製円板と該円板と同一外径を有する石英ガラス製円筒体とを順次、互いの外縁部が同一円周を形成するように互いに接触させてセットした後、アーク溶融手段により加熱しながら型体を加熱する事により、両部材を互いに熱融着せしめた技術が開示されている。
【0008】
かかる技術においては、粉状体ではなく管体若しくは板材同士を当接した状態で黒鉛、セラミックス等の、十分なる耐熱性を有する型体内に、設置した状態で接合する構成を取るために、前記熱融着後表面研削を行う事により不純物が混入される恐れを完全に解消できる。
【0009】
【発明が解決しようとする課題】
しかしながら前記した技術は、アーク溶融という加熱手段と回転する型体を用いているために、円筒状物品の形成には好ましいが、本発明の目的とする方形容器の形成には図5に示すように、石英ガラス板51各辺の壁面と加熱源52間距離50Aが溶接箇所(対角線角部)までの距離50Bより近い為に、溶接箇所を充分加熱しようとすると、各辺51が加熱により変形が生じてしまう。
【0010】
本発明はかかる従来技術の欠点に鑑み、方形容器若しくは方形筒の様な厚肉の方形石英ガラス物品を製造する場合でも、各辺が加熱により変形が生じる事なく、精度よい外形形状を有する石英ガラス物品の製造方法を提供することを目的とする。
本発明の他の目的は、板材同士を熱融着を図りながら所定形状の石英ガラス物品を形成する際に、前記泡の発生や亀裂の発生を防止し、機械的強度とともに、外観的にも好ましい石英ガラス物品の製造方法を提供することにある。
本発明の他の目的は、融着すべき管体若しくは板材が厚肉の場合でも前記亀裂や泡の発生がなく、高品質に石英ガラス物品を製造する方法を提供することを目的とする。
更に本発明の他の目的とするところは、熱溶着させるべき当接面の全体が、一回の熱融着工程により終了可能な製造方法、言換えれば溶接に関する作業工程を大幅に短縮し得る石英ガラス物品を製造する方法を提供することを目的とする。
【0011】
【課題を解決するための手段】
本発明は、目的とする石英ガラス物品の外形形状に対応させて、内壁側形状を形成した第1の耐熱性型体と、目的とする石英ガラス物品の内形形状に対応させて、外壁側形状を形成した第2の耐熱性型体と、
前記石英ガラス物品の一部となるべき形状を有する円板、方形板等の平板状部材、若しくは管体、弧状体、棒体等の要素ガラス体であって、
該要素ガラス体同士を熱融着させる熱融着界面上の適宜位置に気体逃げ路が形成されている要素ガラス体を前記両型体にセットした後、該セットしたセット体を炉内に載置し、前記炉内空間をほぼ真空下に維持して加熱する加熱工程を含みながら加熱して、前記要素ガラス体同士を熱融着する事により、所定形状の石英ガラス物品を形成する事を特徴とする。
即ち具体的には、前記要素ガラス体を2つの型体の間にセットしたセット体を真空炉に投入し、該真空炉を真空引きした後、該炉温を1600〜1850℃まで上昇させ該炉温を一定時間維持する第1の工程と、
前記真空若しくは負圧下で炉温を一定時間維持した後、窒素その他の不活性ガスを略大気圧になるまで炉内に封入後、再度略大気圧下で前記炉温を所定時間維持する第2の工程とを含む事を特徴とする。
即ち炉温を1850℃以上に設定すると、前記要素ガラス体が軟化し、変形が生じてしまう。又1600℃以下では、完全な熱融着が困難になる。
又泡防止を図るために、前記第1の工程における1700℃以上における加温速度を、9℃/min以下、好ましくは1〜6℃/min,更に好ましくは2〜5℃/minに設定するのがよい。
この場合、例えば底面と側板間若しくは上下の板間の融着界面のように、略水平方向に延在する要素ガラス体同士の融着界面に、前記気体逃げ路を形成するのがよい。
そして前記気体逃げ路は、熱融着界面上に沿ってガラス体の開放面まで延在する刻設溝、好ましくはメッシュ状の溝であるのがよい。
又例えば側板同士の融着界面のように、略垂直方向に延在する要素ガラス体同士の融着界面が存在する場合に、前記要素ガラス体の上面より、型体と同材質の耐熱性質量体その他の加重を印加し、該加重を印加した状態で、前記セット空間の加熱により前記要素ガラス体同士を熱融着するのがよい。
【作用】
本発明は先の従来技術の様に要素ガラス体自体を変形させることなく、要素ガラス体の接合のみを行う為に、外型と内型との間に要素ガラス体を挟んで、加熱成型を行う事を第一の特徴とする。
第二の特徴とするところは、前記要素ガラス体を前記両型体にセットしたセット体を炉内に載置し、前記炉内空間をほぼ真空下に維持して加熱する加熱工程を含みながら加熱する事にある。
これにより、熱融着面に気泡が泡となって顕在化するのを阻止し、きれいな熱融着面が形成出来る。
この場合、前記熱融着界面上に気体逃げ路を形成した状態で熱融着を行う事により、前記泡混入が一層阻止される。
特に前記気泡は側板同士のように垂直方向に延在している溶接面上での発生は少ないが、板材同士の当接面が水平方向に延在する例えば側板と底板との間の熱融着面に気泡が泡となって顕在化し易く、そしてこの泡は板材が厚肉化するほど多く発生するが、前記真空加熱と気体逃げ路の形成により泡発生を完全に阻止できる。
【0012】
尚、真空雰囲気下で前記熱融着接合が終了するまで真空状態で炉温を一定時間維持した場合、軟化状態にある要素ガラス体が変形する恐れがある。
そこで前記熱融着接合が終了するまでの炉温維持時間を2分割し、前半では所定時間真空若しくは負圧下で炉温を維持し、次に後半で窒素その他の不活性ガスを大気圧になるまで炉内に封入した後、再度略大気圧下で前記炉温を所定時間維持するようにしている。
【0013】
更に本発明は融着すべき管体若しくは板材が厚肉の場合でもその上端部に亀裂の発生がないように、例えば左右の側板同士の融着界面のように、前記要素ガラス体の熱融着界面が、略垂直方向に延在する垂直融着界面が存在する場合に特に、該垂直融着界面を形成する隣接する要素ガラス体の上面より加重を印加し、該加重を印加した状態で熱融着を行う。
これにより前記融着すべき管体若しくは板材が厚肉の場合でもその熱融着の際に融着界面に向けての所定の圧接力が必要になる。この場合僅かに軟化状態にある要素ガラス体の上面より荷重を印加する事により、その僅かな側面側に向けての膨出力により、上側接合面にも所定の圧接力が生じ、上端部の亀裂の発生が阻止される。
この場合、前記加重付勢手段は、型体と同材質の耐熱性質量体を用いるのがよく、その荷重は1〜10Kgf/cm2、3〜6Kgf/cm2、好ましくは約5Kgf/cm2であるのがよい。
【0014】
実施の形態
以下、図面に基づいて本発明の実施例を例示的に詳しく説明する。
但し、この実施例に記載されている構成部品の寸法、材質、形状、その相対位置などは特に特定的な記載がない限りは、この発明の範囲をそれのみに限定する趣旨ではなく単なる説明例に過ぎない。
【0015】
図4は、本発明を実施するための成型装置の全体概略図を示し、同図において、1 は真空ポンプ2が連結された真空炉で、該炉壁内側に断熱材3を囲繞させるとともに、ガス導入口4より断熱材3に囲まれた内部空間に窒素ガスその他の不活性ガスが導入可能に構成されている。
そして前記内部空間には、上面に型設置台5aが固設された台座5が立設されており、該型設置台5a上に要素ガラス体21、22が内壁に収容された型体10を戴置可能に構成するとともに、該型体10と台座5の周囲に黒鉛製のヒータ6を囲設し、前記型体10内の要素ガラス体21、22を均一加熱可能に構成する。
【0016】
前記型体は図2(A)に示すように方形黒鉛製外枠12及び内枠11と加重付勢体として機能する黒鉛製の上板13、及び底板14からなる。
次にかかる成型装置1 を用いて下記の要領で例えば図1で示す要素ガラス体21、22を用いて方形の石英ガラス物品20の成型を行った。
先ず図1(A)に示すように、4枚の側板よりなる要素ガラス体21、22で、上方と下方が開口された例えば方形中空体状の石英ガラス物品20を形成する為の石英ガラス製の要素ガラス体21、22を示している。
【0017】
そして前記長辺を形成する一対の側板(要素ガラス体21)は図1(B)及び図2(B)に示すように、その形状を例えばL×H×t:200×140×8(mm)に、又前記短辺を形成する一対の側板(要素ガラス体22)はその形状を例えばW×H×t:140×140×8(mm)に夫々設定したものを黒鉛底板14上に立設した黒鉛外枠12の内壁面と黒鉛内枠11の外壁面との間の空隙に沿って前記要素ガラス体21、22をセットする。
【0018】
即ち黒鉛外枠12はその内壁を前記要素ガラス体21、22を組み立てた外寸法にほぼ合致する内形を有し、又黒鉛内枠11はその内壁を前記要素ガラス体21、22を組み立てた内寸法にほぼ合致する外形を有し、黒鉛底板14上に立設した黒鉛外枠12の内壁面と黒鉛内枠11の外壁面との間の空隙に沿って前記要素ガラス体21、22を図2(B)に示すようにセットする。
【0019】
この際要素ガラス体21、22同士の接合面を焼仕上げ面若しくは鏡面研磨面に夫々仕上げた後、図1(B)及び図2(B)に示すように、前記夫々の要素ガラス体21、22を直接、黒鉛底板14上に立設した黒鉛外枠12の内壁面と黒鉛内枠11の外壁面との間の空隙に沿ってセットした後、その上面に黒鉛製の上板13を載せる。
上板13は前記要素ガラス体21、22の上面全面に5Kgf/cm2程度の加重圧が印加されるように上板13の質量を決定する。
【0020】
次いで、かかる上板13で押蓋した外枠12等を図4に示すように真空炉1内の型設置台5a上にセットして真空引きした後、ヒータ6により10℃/minの昇温速度で加熱し、1550℃に到達した時点で例えば3℃/minに昇温速度を落とし、約1800℃前後の温度まで加熱した後、一定時間(30分)1800℃を維持する。
【0021】
次に窒素を大気圧になるまで炉内に封入した後、再度一定時間(30分)1800℃を維持する。
その後900℃まで徐冷した後、ヒータ6を切って室温まで自然放冷した後炉内を大気圧に戻して炉1内より取り出された型体10より図1(C)に示す石英ガラス物品20を取り出したところ(前提技術)、図6(B)に示すように融着界面20aにおける上端部における亀裂23もなく、又泡24の発生も生じていなかった。
次に図6(A)に示すように黒鉛型の上板13を載せない状態で、前記前提技術と同様な製造手順で行ったところ、側板21、22の上端部に対応する位置に亀裂23が発生した石英ガラス物品が製造されてしまった(比較例1)
【0022】
次に図3(A)に示すように前記前提技術に示す側板21A、22A、側板21B、22Bを上下に2つ重ねた縦長の石英ガラス物品の製造方法を説明する。
【0023】
先ず下側に位置する前記側板21B、22Bの融着界面20aに図3(A)に示すように、1cmピッチで3mm程度の溝深さで、縦横にメッシュ状(桝目状)の溝25を入れた側板21、22を用いて前記前提技術と同様な製造手順で、前記石英ガラス物品を製造したところ(実施例)、図3(C)に示すように泡24の発生が全くないことが確認され、而も寸法も変形が生じていなかった。
この場合、図3(B)に示すように上側側板21A、22Aの底面側に溝25を設けてもよい。
【0024】
次いで前記溝25を設けずに前記と同様な手順で前記石英ガラス物品を製造したところ(比較例)、図3(C)に示すように泡24の発生がみられた。
【0025】
次にメッシュ状(桝目状)の溝25を入れた下側側板21B、22Bと、上側側板21A、22Aを用いて上板13を載せない状態で、前記前提技術と同様な製造手順で行ったところ、上側側板21A、22Aの上端部に図6(A)に示すような亀裂23が発生した石英ガラス物品が製造されてしまった。
【0026】
【発明の効果】
以上記載した如く本発明によれば、方形容器若しくは方形筒の様な厚肉の方形石英ガラス物品を製造する場合でも、各辺が加熱により変形が生じる事なく、精度よい外形形状を有する石英ガラス物品を得る事が出来る。
又本発明によれば、板材同士を熱融着を図りながら所定形状の石英ガラス物品を形成する際に、前記泡の発生や亀裂の発生を防止し、機械的強度とともに、外観的にも好ましい石英ガラス物品を得る事が出来る。
特に本発明は、融着すべき管体若しくは板材が厚肉の場合でも又方形の石英ガラス物品を製造する場合でも前記亀裂や泡の発生がなく、高品質に石英ガラス物品を製造出来る。
更に本発明によれば、熱溶着させるべき当接面の全体が、一階の熱融着工程により終了可能な製造方法、言換えれば溶接に関する作業工程を大幅に短縮し得る石英ガラス物品を製造し得る。
等の種々の著効を有す。
【図面の簡単な説明】
【図1】 本発明の前提技術である製造手順を示し、(A)は要素ガラス体の斜視図、(B)は型体内に要素ガラス体と上板をセットした状態を示す切断正面図、(C)は本発明により製造された石英ガラス物品を示す斜視図である。
【図2】 図1の補充図面を示し、(A)は型枠の斜視図、(B)は型体内に要素ガラス体と上板をセットした状態を示す平面図である。
【図3】 本発明の実施例に係る要素ガラス体を上下にも溶接する場合の製造手順を示し、(A)は上下の要素ガラス体の斜視図、(B)は上側要素ガラス体の底面図、(C)は本発明により製造された石英ガラス物品を示す斜視図である。
【図4】 本発明を実施するための成型装置の全体概略図を示す。
【図5】 従来技術の溶接方法の欠点を示す。
【図6】 上板を加重した場合(B)加重しない場合(A)の溶接状態を示す作用図である。
【符号の説明】
1 真空炉
10 耐熱性型体
11 黒鉛内枠
12 黒鉛外枠
13 加重付勢手段(上板)
20 石英ガラス物品
20a 融着界面
21、22 要素ガラス体(側板)
25 気体逃げ路(溝)
[0001]
[Industrial application fields]
The present invention relates to a method for welding a quartz glass body, and more particularly to a method for welding a thick quartz glass material.
[0002]
[Prior art]
Conventionally, in the semiconductor manufacturing industry, it has been used in various jigs or containers made of quartz glass, and also in various facilities in order to satisfy chemical stability and heat elution in order to avoid elution of impurities. Such a quartz glass material has a softening temperature as high as 1600 ° C. or higher, and is supplied as a tube or a flat plate from the supplier. In the case of forming a square container by welding five flat quartz glass plates that form the bottom surface and four side surfaces from the flat plate to form a rectangular container, the welding marks of the container are removed with a grinder or the like. However, it is extremely difficult to completely remove the welding marks located at the corners of the corners.
[0003]
In particular, when welding thick plates, it is extremely difficult to weld to the inside by welding. For this reason, conventionally, air bubbles remain inside due to insufficient welding, or welding marks etc. remain due to excessive welding. In such a state, if it is used as a heat treatment furnace, for example, the remaining portion may have insufficient strength, or when used as a treatment tank for introducing a chemical solution or a cleaning solution, for example, in bubbling cleaning etc. When fine dust such as particles transferred to the cleaning liquid enters the welding trace, even if the tank is cleaned with hydrofluoric acid, it cannot be easily removed, and it will reattach to the wafer when reused. In some cases, effective cleaning cannot be performed due to product defects.
[0004]
In order to eliminate such drawbacks, the present applicant has developed various techniques.
One of them is a quartz glass square tank formed by welding joint portions of a plurality of quartz glass members as disclosed in JP-A-2-102141, and at least an arc-shaped member formed by dividing a cylindrical tube vertically, A part of the plate-shaped member and a flat plate-shaped member formed with a width smaller than the width of each wall surface of the square tank, the selected members are combined to form the square tank, and each of these There has been proposed a quartz glass square tank in which a joint portion between members is provided at a position deviated from at least a corner portion where a ridge line and a plurality of ridge lines gather.
[0005]
According to such a technique, since the welding position is not located at the ridge line and the corner corner, the welding of the corner corner and the ridge line can be avoided, but in the present invention, the basis of removing the welding and grinder welding traces is also provided. There is a configuration, so it is difficult to weld thick plates.
In particular, even in the above-described technique, thermal strain occurs due to local heating, and it is necessary to remove the thermal strain by heating each time one surface is welded. In particular, if the thickness exceeds 10 mm, the thermal strain becomes excessive, and the quartz glass is broken during or immediately after welding. In particular, it is impossible to weld a thick quartz glass plate of 15 mm or more.
[0006]
As a method for producing such a thick quartz glass product, for example, in Japanese Patent Application Laid-Open No. 58-88129, a quartz glass raw material and a core are used, and a quartz glass is formed in the gap between the inner wall surface of the rotary melting furnace and the core. A technique for filling the powder and pulling out the core while rotating the furnace and then heating and melting the raw material powder with an arc flame or a gas flame to form the square tank has been proposed. Since the raw material powder is directly melted, it is difficult to form a quartz glass article having a corner like a square tank and the raw material powder is in direct contact with the furnace wall, so impurities are easily mixed. Thus, it is not suitable for a manufacturing process for processing a large number of wafers having a large diameter and high integration.
[0007]
Japanese Patent Application Laid-Open No. 62-241840 discloses a cylindrical mold having a curved bottom as a method for producing a large quartz container applied as a crucible, chamber, or bell jar used for semiconductor single crystal production. Inside, a quartz glass disc and a quartz glass cylinder having the same outer diameter as the disc are sequentially set in contact with each other so that their outer edges form the same circumference, and then arc melting A technique is disclosed in which a mold body is heated while being heated by means, whereby both members are heat-sealed to each other.
[0008]
In such a technique, in order to take a configuration in which the tube body or the plate material is brought into contact with each other in a state where the tube body or the plate material are in contact with each other in a mold having sufficient heat resistance, such as graphite and ceramics, The possibility of impurities being mixed can be completely eliminated by performing surface grinding after heat fusion.
[0009]
[Problems to be solved by the invention]
However, since the above-described technique uses a heating means called arc melting and a rotating mold, it is preferable for forming a cylindrical article, but for forming a rectangular container as an object of the present invention, as shown in FIG. Further, since the distance 50A between the wall surface of each side of the quartz glass plate 51 and the heating source 52 is closer than the distance 50B to the welded portion (diagonal corner), when the welded portion is sufficiently heated, each side 51 is deformed by heating. Will occur.
[0010]
In view of the drawbacks of the prior art, the present invention has a precise outer shape without causing deformation on each side even when manufacturing a thick rectangular quartz glass article such as a rectangular container or a rectangular cylinder. It aims at providing the manufacturing method of a glass article.
Another object of the present invention is to prevent the generation of bubbles and cracks when forming a quartz glass article having a predetermined shape while heat-sealing plate materials, and also to improve the mechanical strength and appearance. It is to provide a method for producing a preferable quartz glass article.
Another object of the present invention is to provide a method for producing a quartz glass article of high quality without the occurrence of cracks and bubbles even when the tube or plate to be fused is thick.
Further, another object of the present invention is that the entire contact surface to be thermally welded can be completed by a single heat-sealing process, in other words, the work process related to welding can be greatly shortened. It is an object to provide a method for producing a quartz glass article.
[0011]
[Means for Solving the Problems]
The present invention provides a first heat-resistant mold having an inner wall side shape corresponding to the outer shape of the target quartz glass article, and an outer wall side corresponding to the inner shape of the target quartz glass article. A second heat-resistant mold having a shape;
A flat plate member such as a disk, a rectangular plate or the like having a shape to be a part of the quartz glass article, or an element glass body such as a tube, an arc, or a rod,
After setting the element glass body gas escape path is formed in an appropriate position on the heat-sealing surface thermally fusing the elements glass bodies in the two mold elements, placing a set body in which the set in a furnace And forming a quartz glass article of a predetermined shape by heating and heat-sealing the element glass bodies while including a heating step of heating while maintaining the furnace space under a substantially vacuum. Features.
Specifically, a set body in which the element glass body is set between two mold bodies is put into a vacuum furnace, and after evacuating the vacuum furnace, the furnace temperature is increased to 1600 to 1850 ° C. A first step of maintaining the furnace temperature for a fixed time;
After maintaining the furnace temperature under a vacuum or negative pressure for a certain period of time, after nitrogen and other inert gases are sealed in the furnace until the pressure reaches approximately atmospheric pressure, the furnace temperature is maintained again at approximately atmospheric pressure for a predetermined time. It is characterized by including these processes.
That is, when the furnace temperature is set to 1850 ° C. or higher, the element glass body is softened and deformed. Also, at 1600 ° C. or lower, complete heat fusion becomes difficult.
In order to Mataawa preventing the warming rate at 1 700 ° C. or more that put in the first step, 9 ° C. / min or less, preferably 1 to 6 ° C. / min, more preferably 2 to 5 ° C. / min It is good to set to.
In this case, for example, the gas escape path may be formed at the fusion interface between the element glass bodies extending in the substantially horizontal direction, such as a fusion interface between the bottom surface and the side plates or between the upper and lower plates.
The gas escape path may be an engraved groove, preferably a mesh-shaped groove, extending to the open surface of the glass body along the heat fusion interface.
In addition, when there is a fusion interface between element glass bodies extending in a substantially vertical direction, such as a fusion interface between side plates, the heat resistant mass of the same material as the mold body from the upper surface of the element glass body. It is preferable to heat-bond the element glass bodies to each other by heating the set space in a state where the body and other weights are applied and the weight is applied.
[Action]
In the present invention, in order to perform only the joining of the element glass bodies without deforming the element glass bodies themselves as in the prior art, the element glass bodies are sandwiched between the outer mold and the inner mold, and heat molding is performed. The first feature is to do.
The second feature is that a set body in which the element glass bodies are set in both mold bodies is placed in a furnace, and includes a heating step of heating while maintaining the space in the furnace substantially under vacuum. It is in heating.
Thereby, bubbles are prevented from appearing as bubbles on the heat-sealing surface, and a clean heat-sealing surface can be formed.
In this case, the foam mixing is further prevented by performing heat fusion in a state where a gas escape path is formed on the heat fusion interface.
In particular, the bubbles are less likely to occur on the welding surfaces extending in the vertical direction like the side plates, but the contact surface between the plate materials extends in the horizontal direction, for example, heat fusion between the side plates and the bottom plate. Bubbles are easily manifested as bubbles on the contact surface, and more bubbles are generated as the plate becomes thicker. However, the generation of bubbles can be completely prevented by the vacuum heating and formation of the gas escape path.
[0012]
In addition, when the furnace temperature is maintained for a certain period of time in a vacuum state until the thermal fusion bonding is completed in a vacuum atmosphere, the element glass body in a softened state may be deformed.
Therefore, the furnace temperature maintenance time until the heat fusion bonding is completed is divided into two, the furnace temperature is maintained under vacuum or negative pressure for a predetermined time in the first half, and then nitrogen and other inert gases are brought to atmospheric pressure in the second half. Then, the furnace temperature is again maintained at a substantially atmospheric pressure for a predetermined time.
[0013]
Furthermore, the present invention provides a thermal fusion of the element glass body, such as a fusion interface between the left and right side plates, so that the upper end of the tube or the plate material to be fused is not cracked. In the case where there is a vertical fusion interface extending in a substantially vertical direction, a weight is applied from the upper surface of the adjacent element glass body forming the vertical fusion interface, and the weight is applied. Perform heat fusion.
As a result, even when the tube or plate material to be fused is thick, a predetermined pressing force toward the fusion interface is required during the thermal fusion. In this case, when a load is applied from the upper surface of the element glass body in a slightly softened state, a predetermined pressure contact force is generated also on the upper joint surface due to the bulging output toward the slight side surface, and the upper end crack is cracked. Is prevented from occurring.
In this case, the weight biasing means is preferably a heat-resistant mass body made of the same material as the mold, and the load is 1 to 10 kgf / cm 2 , 3 to 6 kgf / cm 2 , preferably about 5 kgf / cm 2. It is good to be.
[0014]
Embodiment
Hereinafter, embodiments of the present invention will be exemplarily described in detail with reference to the drawings.
However, the dimensions, materials, shapes, relative positions, etc. of the components described in this embodiment are not intended to limit the scope of the present invention only to specific examples unless otherwise specified. Only.
[0015]
FIG. 4 shows an overall schematic view of a molding apparatus for carrying out the present invention, in which 1 is a vacuum furnace to which a vacuum pump 2 is connected, surrounding a heat insulating material 3 inside the furnace wall, Nitrogen gas or other inert gas can be introduced into the internal space surrounded by the heat insulating material 3 from the gas inlet 4.
In the internal space, a pedestal 5 having a mold mounting base 5a fixed on the upper surface is erected, and the mold body 10 in which the element glass bodies 21 and 22 are accommodated in the inner wall is placed on the mold mounting base 5a. In addition to being configured to be able to be placed, a graphite heater 6 is surrounded around the mold body 10 and the pedestal 5 so that the element glass bodies 21 and 22 in the mold body 10 can be heated uniformly.
[0016]
As shown in FIG. 2 (A), the mold comprises a rectangular graphite outer frame 12 and an inner frame 11 and a graphite upper plate 13 and a bottom plate 14 that function as a weighted urging member.
Next, the rectangular quartz glass article 20 was molded using the molding apparatus 1 in the following manner, for example, using the element glass bodies 21 and 22 shown in FIG.
First, as shown in FIG. 1A, the element glass bodies 21 and 22 made of four side plates are made of quartz glass for forming, for example, a rectangular hollow body quartz glass article 20 having an upper and lower opening. The element glass bodies 21 and 22 are shown.
[0017]
Then, as shown in FIGS. 1B and 2B, the pair of side plates (element glass body 21) forming the long side has a shape of, for example, L × H × t: 200 × 140 × 8 (mm). In addition, the pair of side plates (element glass body 22) forming the short sides are set on the graphite bottom plate 14 with their shapes set to, for example, W × H × t: 140 × 140 × 8 (mm). The said element glass bodies 21 and 22 are set along the space | gap between the inner wall surface of the provided graphite outer frame 12, and the outer wall surface of the graphite inner frame 11. FIG.
[0018]
That is, the graphite outer frame 12 has an inner shape whose inner wall substantially matches the outer dimension of the element glass bodies 21 and 22 assembled, and the graphite inner frame 11 has the inner walls assembled the element glass bodies 21 and 22. The element glass bodies 21, 22 have an outer shape that substantially matches the inner dimension, and extend along a gap between the inner wall surface of the graphite outer frame 12 and the outer wall surface of the graphite inner frame 11 that are erected on the graphite bottom plate 14. Set as shown in FIG.
[0019]
At this time, after finishing the bonded surfaces of the element glass bodies 21 and 22 to the finish-finished surface or the mirror-polished surface, respectively, as shown in FIGS. 1 (B) and 2 (B), the respective element glass bodies 21, 22 is set directly along the gap between the inner wall surface of the graphite outer frame 12 and the outer wall surface of the graphite inner frame 11 erected on the graphite bottom plate 14, and the upper plate 13 made of graphite is placed on the upper surface. .
The upper plate 13 determines the mass of the upper plate 13 so that a weighted pressure of about 5 kgf / cm 2 is applied to the entire upper surfaces of the element glass bodies 21 and 22.
[0020]
Next, after the outer frame 12 and the like pressed by the upper plate 13 are set on the mold setting table 5a in the vacuum furnace 1 as shown in FIG. 4 and evacuated, the heater 6 raises the temperature by 10 ° C./min. Heating is performed at a rate, and when the temperature reaches 1550 ° C., the rate of temperature rise is reduced to 3 ° C./min, for example, and after heating to a temperature of about 1800 ° C., 1800 ° C. is maintained for a certain time (30 minutes).
[0021]
Next, nitrogen is sealed in the furnace until atmospheric pressure is reached, and then maintained at 1800 ° C. for a predetermined time (30 minutes).
Then, after gradually cooling to 900 ° C., the heater 6 is turned off, and then naturally cooled to room temperature. Then, the inside of the furnace is returned to atmospheric pressure, and the quartz glass article shown in FIG. When 20 was taken out (premise technology) , as shown in FIG. 6B, there was no crack 23 at the upper end portion of the fusion interface 20a, and no bubble 24 was generated.
Next, as shown in FIG. 6A, when the graphite-type upper plate 13 is not placed and the manufacturing procedure similar to that of the base technology is performed, cracks 23 are formed at positions corresponding to the upper ends of the side plates 21 and 22. The quartz glass article which generate | occur | produced has been manufactured (comparative example 1) .
[0022]
Next, as shown in FIG. 3A, a method for producing a vertically long quartz glass article in which the side plates 21A and 22A and the side plates 21B and 22B shown in the base technology are vertically stacked will be described.
[0023]
First, as shown in FIG. 3A, mesh-like (grid-like) grooves 25 are formed vertically and horizontally on the fusion interface 20a of the side plates 21B and 22B located on the lower side as shown in FIG. When the quartz glass article was manufactured using the side plates 21 and 22 put in the same manufacturing procedure as in the base technology (Example 1 ), no bubbles 24 were generated as shown in FIG. It was confirmed that there was no deformation in both dimensions and dimensions.
In this case, as shown in FIG. 3B, grooves 25 may be provided on the bottom surfaces of the upper side plates 21A and 22A.
[0024]
Next, when the quartz glass article was manufactured by the same procedure as described above without providing the groove 25 (Comparative Example 2 ), generation of bubbles 24 was observed as shown in FIG.
[0025]
Next, the lower side plates 21B and 22B with mesh-like (grid-like) grooves 25 and the upper side plates 21A and 22A were used, and the upper plate 13 was not placed, and the manufacturing procedure was the same as that of the base technology . However, a quartz glass article having a crack 23 as shown in FIG. 6 (A) at the upper end of the upper side plates 21A and 22A has been manufactured.
[0026]
【The invention's effect】
As described above, according to the present invention, even when manufacturing a thick rectangular quartz glass article such as a rectangular container or a rectangular cylinder, each side is not deformed by heating, and the quartz glass has a precise outer shape. You can get the goods.
Further, according to the present invention, when forming a quartz glass article having a predetermined shape while heat-sealing plate materials, the generation of the bubbles and the generation of cracks are prevented, and the mechanical strength and the appearance are preferable. Quartz glass articles can be obtained.
In particular, the present invention can produce a high-quality quartz glass article without the occurrence of cracks and bubbles even when the tube or plate to be fused is thick or when producing a square quartz glass article.
Furthermore, according to the present invention, a manufacturing method in which the entire contact surface to be heat-welded can be completed by the first-floor heat-sealing process, in other words, manufacturing a quartz glass article that can greatly shorten the work process related to welding. Can do.
It has various effects such as.
[Brief description of the drawings]
FIG. 1 shows a manufacturing procedure which is a prerequisite technology of the present invention, (A) is a perspective view of an element glass body, (B) is a cut front view showing a state in which an element glass body and an upper plate are set in a mold body, (C) is a perspective view showing a quartz glass article manufactured according to the present invention.
2A and 2B are supplementary drawings of FIG. 1, in which FIG. 1A is a perspective view of a mold frame, and FIG. 2B is a plan view showing a state in which an element glass body and an upper plate are set in the mold body.
FIGS. 3A and 3B show a manufacturing procedure in the case where the element glass bodies according to the embodiment of the present invention are also welded up and down, wherein FIG. 3A is a perspective view of the upper and lower element glass bodies, and FIG. FIG. 1C is a perspective view showing a quartz glass article manufactured according to the present invention.
FIG. 4 shows an overall schematic view of a molding apparatus for carrying out the present invention.
FIG. 5 illustrates the disadvantages of prior art welding methods.
FIG. 6 is an operation diagram showing a welding state when an upper plate is weighted (B) and not weighted (A).
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Vacuum furnace 10 Heat-resistant type | mold body 11 Graphite inner frame 12 Graphite outer frame 13 Weighting means (upper plate)
20 Quartz glass article 20a Fusion interface 21, 22 Element glass body (side plate)
25 Gas escape route (groove)

Claims (4)

目的とする石英ガラス物品の外形形状に対応させて、内壁側形状を形成した第1の耐熱性型体と、目的とする石英ガラス物品の内形形状に対応させて、外壁側形状を形成した第2の耐熱性型体と、
前記石英ガラス物品の一部となるべき形状を有する円板、方形板等の平板状部材、若しくは管体、弧状体、棒体等の要素ガラス体であって、
該要素ガラス体同士を熱融着させる熱融着界面上の適宜位置に気体逃げ路が形成されている要素ガラス体を前記両型体にセットした後、該セットしたセット体を炉内に載置し、前記炉内空間をほぼ真空下に維持して加熱する加熱工程を含みながら加熱して、前記要素ガラス体同士を熱融着する事により、所定形状の石英ガラス物品を形成することを特徴とする石英ガラス物品の製造方法。
A first heat-resistant mold having an inner wall side shape corresponding to the outer shape of the target quartz glass article, and an outer wall side shape corresponding to the inner shape of the target quartz glass article. A second heat resistant mold,
A flat plate member such as a circular plate, a rectangular plate or the like having a shape to be a part of the quartz glass article, or an element glass body such as a tube, an arc, or a rod,
After setting the element glass body gas escape path is formed in an appropriate position on the heat-sealing surface thermally fusing the elements glass bodies in the two mold elements, placing a set body in which the set in a furnace And forming a quartz glass article having a predetermined shape by heating and heat-sealing the element glass bodies while including a heating step in which the furnace space is heated under a substantially vacuum condition. A method for producing a quartz glass article.
水平方向に延在する要素ガラス体同士の融着界面に、前記気体逃げ路を形成した事を特徴とする請求項1記載の石英ガラス物品の製造方法。 2. The method for producing a quartz glass article according to claim 1, wherein the gas escape passage is formed at a fusion interface between the element glass bodies extending in a substantially horizontal direction. 前記要素ガラス体を2つの型体の間にセットしたセット体を真空炉に投入し、該真空炉を真空引きした後、該炉温を1600〜1850℃まで上昇させ該炉温を一定時間維持する第1の工程と、
前記真空若しくは負圧下で炉温を一定時間維持した後、窒素その他の不活性ガスを略大気圧になるまで炉内に封入後、再度略大気圧下で前記炉温を所定時間維持する第2の工程とを含む事を特徴とする請求項1記載の石英ガラス物品の製造方法。
A set body in which the element glass body is set between two mold bodies is put into a vacuum furnace. After the vacuum furnace is evacuated, the furnace temperature is increased to 1600 to 1850 ° C. and the furnace temperature is maintained for a certain time. A first step of:
After maintaining the furnace temperature under a vacuum or negative pressure for a certain period of time, after nitrogen and other inert gases are sealed in the furnace until the pressure reaches approximately atmospheric pressure, the furnace temperature is maintained again at approximately atmospheric pressure for a predetermined time. The method for producing a quartz glass article according to claim 1, comprising the steps of:
前記第1の工程における1700℃以上における加温速度を、9℃/min以下に設定した事を特徴とする請求項3記載の石英ガラス物品の製造方法。Wherein the first heating rate at 1 700 ° C. or more that put the process method according to claim 3 quartz glass article, wherein a set under 9 ° C. / min or less.
JP15406995A 1995-05-30 1995-05-30 Method for producing quartz glass article Expired - Fee Related JP3821501B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15406995A JP3821501B2 (en) 1995-05-30 1995-05-30 Method for producing quartz glass article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15406995A JP3821501B2 (en) 1995-05-30 1995-05-30 Method for producing quartz glass article

Publications (2)

Publication Number Publication Date
JPH08325025A JPH08325025A (en) 1996-12-10
JP3821501B2 true JP3821501B2 (en) 2006-09-13

Family

ID=15576220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15406995A Expired - Fee Related JP3821501B2 (en) 1995-05-30 1995-05-30 Method for producing quartz glass article

Country Status (1)

Country Link
JP (1) JP3821501B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102659303A (en) * 2012-03-30 2012-09-12 湖州奥博石英科技有限公司 Quartz spliced product and manufacturing method thereof

Also Published As

Publication number Publication date
JPH08325025A (en) 1996-12-10

Similar Documents

Publication Publication Date Title
US5322539A (en) Quartz tank member and method of production thereof
JP2003026433A (en) Method of joining quartz glass member and joining equipment used for this method
JP3821501B2 (en) Method for producing quartz glass article
WO2002054436A1 (en) A method for sealing a flat panel display in a vacuum
JPH03336B2 (en)
JP2565974B2 (en) Molding method for glass products
JPH08151220A (en) Method for molding quartz glass
JP4547706B2 (en) Recycling method of quartz glass jig
JP3394320B2 (en) Method for producing laminated quartz glass member having transparent layer and opaque layer
JPH08338Y2 (en) Quartz glass molding equipment
JPH05345622A (en) Device for forming glass lens
JP3778250B2 (en) Method of forming quartz glass
JP4545505B2 (en) Method for producing silicon
JP2001261459A (en) Silicon carbide ceramic joined body and method for producing the same
JPS63201027A (en) Method for heating and joining quartz parts in vacuum
KR20190024313A (en) Vacuum glass panel and method for manufacturing the same
WO2002075766A1 (en) A seal glass which is adhesive in vacuum, its manufacturing method, and a flat panel display device manufactured by using it
JPS61281031A (en) Production of glass container
KR20170116613A (en) Bonding method for quartz glass
JP2001088217A (en) Method and fusion jig for producing square container made of fluoroplastic resin
JPS61227931A (en) Forming device for glass article
JP2001048559A (en) Method for producing synthetic body from quartz material
JP4560200B2 (en) Method of welding quartz glass members
JPH0764572B2 (en) How to make a seamless glass package body
JPH04155726A (en) Manufacture of display tube cover glass

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060616

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060620

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110630

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110630

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130630

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees