JP3778250B2 - Method of forming quartz glass - Google Patents

Method of forming quartz glass Download PDF

Info

Publication number
JP3778250B2
JP3778250B2 JP27776699A JP27776699A JP3778250B2 JP 3778250 B2 JP3778250 B2 JP 3778250B2 JP 27776699 A JP27776699 A JP 27776699A JP 27776699 A JP27776699 A JP 27776699A JP 3778250 B2 JP3778250 B2 JP 3778250B2
Authority
JP
Japan
Prior art keywords
mold
quartz glass
top plate
grooves
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP27776699A
Other languages
Japanese (ja)
Other versions
JP2001097731A (en
Inventor
修平 上田
恒夫 沼波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP27776699A priority Critical patent/JP3778250B2/en
Publication of JP2001097731A publication Critical patent/JP2001097731A/en
Application granted granted Critical
Publication of JP3778250B2 publication Critical patent/JP3778250B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/09Other methods of shaping glass by fusing powdered glass in a shaping mould
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B20/00Processes specially adapted for the production of quartz or fused silica articles, not otherwise provided for

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Glass Melting And Manufacturing (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、石英ガラスを成形するに際し、泡の巻き込みを少なくして所望の形状に成形することが可能な石英ガラスの成形方法に関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
石英ガラスは、半導体用フォトマスクや光学系におけるレンズ、ミラー等の光学部品の材料として、欠くことのできない重要な素材である。また、求められる光透過率や耐熱性等から高純度な石英ガラスが求められ、ガラス原料の純化や大がかりな製造装置のため、成形時に得られる石英ガラスの歩留まりは当然のごとく重要である。
【0003】
実際に求められる成形形状は、その後の工程において得られるフォトマスク、レンズ、ウェハーの形状に合わせて、角棒状又は円柱状に成形されるため、そのガラスインゴットの上部又は下部も平坦に成形されるか否かによって、歩留まりが直接的に大きく関与するものである。従って、成形に際しては、型に則して各コーナーまで溶融成形されなければ、マスク、レンズ又はウェハーの形状にスライスされるとき、ガラスインゴット上下部が所望の形状にならず、歩留まりを下げることになる。
【0004】
石英ガラスの成形方法としては、石英ガラスを作業点以上の温度に加熱し、一旦溶融させて所望の形状に成形するが、大気中では使用する炭素又は黒鉛の型材や炉内のカーボンヒーター等が酸化燃焼してしまうため、真空又は減圧にして不活性ガスの封入を行うことが一般的である。また、型内の形状に沿って正確に成形されなければならず、加熱だけではなく、加圧する方法も知られている(特開昭56−129621号公報)。
【0005】
しかし、従来の方法では、ガラス表面と型又はその間に入れる黒鉛又はカーボン製のシートの間にガスが残留し、結果としてガラス形状が型内の形状に沿った所望の形状にならない場合があった。
【0006】
本発明は、上記事情に鑑みなされたもので、泡の巻き込みを少なく、かつ所望の形状に成形することができる石英ガラスの成形方法を提供することを目的とする。
【0007】
【課題を解決するための手段及び発明の実施の形態】
本発明者らは、上記目的を達成するため鋭意検討を行った結果、成形された石英ガラス外周又はコーナー部付近が所望の形状にならないのは、成形の際に型内壁又はカーボン等のシート、繊維、粉といった介在物と石英ガラス表面との間の残留ガスが原因であることを見出した。そして、この残留ガスを排出すべく、黒鉛又は炭素製の型に必要によりその内側に通気性を有するカーボン又は黒鉛のシート等の介在物を装着し、その中に石英ガラスを入れて成形する場合において、型の内面全面に溝を施すことにより、泡の巻き込みを少なく、かつ所望の形状に成形することができることを知見し、本発明をなすに至ったものである。
【0008】
従って、本発明は、下記の石英ガラスの成形方法を提供する。
請求項1:
筒状体の上下端部を閉塞してそれぞれ天板及び底板が設けられた黒鉛又は炭素製の型内で石英ガラスを加熱、溶融して成形するに際し、上記筒状体の内周面全面に上下方向に沿って上端から下端に連続して深さ0.5〜10mm、幅1〜3mmの溝を複数本形成すると共に、上記天板及び底板の内面にそれぞれ深さ0.5〜10mm、幅1〜3mmの溝を一端から他端まで連続して放射状、格子状又は互いにほぼ平行して複数本形成した型を用い、上記成形時に型内の残留ガスを上記溝より外部に排出するようにしたことを特徴とする石英ガラスの成形方法。
請求項
互いにほぼ平行する複数本の溝間の間隙が30mm以下となるように溝を形成した請求項記載の成形方法。
請求項
1400℃以上からの昇温速度が20℃/分以下である請求項1又は2記載の成形方法。
請求項
天板が上下方向移動可能に配設され、この天板を介して型内に仕込まれる石英ガラスにこの石英ガラスの重量の2倍以下の荷重を負荷して成形するようにした請求項1乃至のいずれか1項記載の成形方法。
請求項
型内面と石英ガラスとの間に通気性を有する介在物を介在して成形を行うようにした請求項1乃至のいずれか1項記載の成形方法。
【0009】
以下、本発明につき更に詳しく説明する。
本発明の石英ガラスの成形方法は、円筒状、四角筒状等の筒状体の上下端部を閉塞して、それぞれ天板及び底板が設けられた黒鉛又は炭素製の型を用いて行う。
【0010】
この場合、本発明においては、上記筒状体の内周面全面、天板及び底板の内面にそれぞれ複数本の溝を形成した型を使用することを特徴とするものである。
【0011】
図1は、本発明に用いる型1の一例を示すものであり、この例にあっては、四角筒状体2の上下端部を閉塞して天板3及び底板4が配設された四角箱型形状を有するものであるが、本発明の型はこれに制限されるものではない。
【0012】
また、上記筒状体2の内周面(各側板2aの内面)並びに天板3の内面及び底板4の内面には、それぞれ複数本の溝5が形成されている。
【0013】
このように、本発明に用いられる型は、その内面全面に溝5を形成したものであり、型内面に溝が設けられていない場合、あるいは筒状体内面のみ又は天板、底板の内面のみに溝を設け、他の内面に溝を設けない等、溝が全面に形成されていない場合には、ガラス表面と型又はその間に入れる黒鉛又はカーボン製のシート等の介在物との間にガスが残留し、型内の形状に正確に即して成形されず、泡となってガラス外周部に残ることがある。
【0014】
また、溝の形成態様は、放射状、格子状、縦横又は斜めのいずれか一方向などいずれであってもよく、また型の内面全面が同一の形成態様であっても異なっていてもよく、更には筒状体の内周面において(即ち、側板同士)異なった形成態様であってもよいが、残留ガスが上下面に対しては放射状に、筒状体内周面(側面)に対しては上下方向から抜けると考えられるため、天板、底板(上下面)に対しては放射状、格子状、縦横又は斜めのいずれか一方向、筒状体内周面(側面)に対しては縦方向であることが好ましい。
【0015】
図1の例にあっては、筒状体2(各側板2a)に上下方向に沿って溝5が設けられており、天板3、底板4にはそれぞれ格子状の溝5が設けられている。この場合、図示したように、各溝5は、一端から他端まで連続した状態で形成することが好ましく、また、筒状体2の溝と天板3、底板4の溝とは互いにその端部において連通するように形成することが残留ガスの抜けの点から好ましい。
【0016】
なお、上記型1は、図示したように、固定用土台治具6上に載置され、型1内に石英ガラスインゴット7を入れ、これを加熱、溶融、成形するものであるが、この場合、天板3は、筒状体2内に上下方向摺動可能に配設することができ、天板3上に錘8を乗せて成形されるべき石英ガラスに荷重を負荷することが好適である。なお、図中9は固定用治具である。このように天板3を上下方向摺動可能に配設するなどして、成形時に天板3を筒状体2の上端縁より下方に配置するようにすると、上述したように、筒状体2の上下方向に沿って上端から下端に連続した溝が、その上端部分において上方に開放されて該溝内の残留ガスが外部に抜け、また天板3、底板4の溝が筒状体2の溝と連通している場合は、これら溝内の残留ガスも外部に抜けることが可能になる。
【0017】
ここで、本発明の型の内面に施される溝の大きさ等は、さ0.5〜10mm、好ましくは1〜3mm、幅1〜3mm、好ましくは1.5〜2mm、互いにほぼ平行状態にある各溝の間が30mm以下、好ましくは20mm以下で、5mm以上、特に10mm以上であることが好適である。また、放射状の溝の場合、溝間の角度は10〜30度、特に15〜20度であることが好ましい。溝の深さが0.5mm未満の場合又は溝の幅が1mm未満の場合では、ガスの排出が容易に行われず、結果として残留ガスにより所望の形状に成形できない場合が生じる。また、溝の深さが10mmを超えた場合又は幅が3mmを超えた場合は、石英ガラスが溝に入り込み、成形された石英ガラスの表面に溝の跡が残ってしまい、所望の形状に成形できない場合が生じる。
【0018】
なお、型の厚さは、通常用いられる範囲であれば特に限定されないが、10mm以上、好ましくは20mm以上のものが用いられる。
【0019】
本発明においては、上記型を用いる以外は通常の方法で石英ガラスの成形を行うことができ、通常、上記黒鉛又は炭素製の型の中で、溶融された石英ガラスを1400℃以上、好ましくは1700℃以上の温度にて真空又は減圧下、アルゴン、ヘリウム等の不活性ガス下で成形を行う方法で行われる。
【0020】
この場合、上記型内に石英ガラスインゴットを入れ、1400〜1900℃の温度で加熱、溶融、成形を行うことができるが、この際、昇温速度を好ましくは20℃/分以下、より好ましくは15℃/分以下で、1℃/分以上にすることにより、残留ガスを容易に排出することができる。
【0021】
また、型に仕込まれる石英ガラスにその重量の2倍以下、好ましくは0.5〜2倍、より好ましくは同じ重量の荷重を負荷することにより、型内面の溝にガラスが溶け込むことなく、型内面に沿った所望の形状に成形することができる。
【0022】
なお、成形に際して、型内面に通気性を有する介在物、例えば黒鉛やカーボンの通気性を有するシートを配設し、型内面と成形される石英ガラスとの間に上記介在物を介装して成形を行うことができる。
【0023】
本発明の石英ガラスの成形方法は、レンズやフォトマスク用の石英ガラスの成形に利用されるだけでなく、一般のガラスの成形にも応用することができるものである。
【0024】
【実施例】
以下、実施例と比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。
【0025】
[実施例1]
縦横一辺の長さが200mmの正方形状を有し、高さが800mmの四角柱状の中空部を有する筒状体の下端開放部を閉塞して底板を配設すると共に、上端開放部を閉塞し、かつ上記中空部内を上下方向摺動可能に天板を配設することにより内部の高さを800mmまで可変にした厚さ10mmの四角箱型の図1に示す形状を有し、かつ図1に示したように筒状体の内周面(型の内側面)に対しては上下方向に、天板、底板内面に対しては格子状に深さ0.5mm、幅1mmの溝を溝間の間隔が20mmとなるように、しかも筒状体の溝と天板、底板の溝が連通するように設け、更に型内面全面に通気性を有する厚さ1mmの炭素製シートを装着した型を用い、石英ガラスの成形を行った。
【0026】
まず、上記型内に、高さ700mm、直径195mmの円柱状の43.9kgの石英ガラスを入れ、天板上に重さ20kgの錘を乗せ、最大出力60KWの炉にセットした。真空ポンプを稼働させ、5×10-5Torrまで炉内を減圧にした後、昇温を開始した。
【0027】
1400℃までは30分で昇温し、その後、1850℃までは18℃/分で昇温し、その後も1850℃で120分間保持した。この時、真空ポンプと拡散ポンプを用いて0.5Torrに維持させた。
【0028】
その後、電力を下げて30分間で1300℃とし、この後の電力は直線的に下げて、室温になったところで炉を開放して、高さ520mm、一辺が200mmの正方形状の角棒状石英ガラス43kgを得た。得られた角棒状石英ガラスは、各コーナーも上記型の内形状に沿って正確に形取られ、更に泡の巻き込みも見られなかった。
【0029】
[実施例2]
型内側の側面に対しては縦方向(上下方向)に、上下面に対しては横方向に深さ10mm、幅3mm、間隔が20mmの溝を施した厚さ10mmの炭素製型を用いた以外は実施例1と同様に成形したところ、得られた角棒状石英ガラスは、各コーナーもこの型の内形状に沿って正確に形取られ、更に泡の巻き込みも見られなかった。
【0030】
[比較例1]
型内側全面に溝を設けていない実施例1と同様な炭素製型を用いて実施例1と同様に成形したところ、得られた角棒状石英ガラスは、各コーナーがこの型の内形状に沿って正確に形取られず、更に泡の巻き込みが見られた。
【0031】
【発明の効果】
本発明の石英ガラスの成形方法によれば、石英ガラスを成形するに際し、泡の巻き込みが少なく、かつ所望の形状に成形することができる。
【図面の簡単な説明】
【図1】本発明の実施に用いる成形用型の一例を示す分解斜視図である。
【符号の説明】
1 型
2 筒状体
3 天板
4 底板
5 溝
6 固定用土台治具
7 石英ガラスインゴット
8 錘
9 固定用治具
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for molding quartz glass, which can be molded into a desired shape by reducing entrainment of bubbles when molding quartz glass.
[0002]
[Prior art and problems to be solved by the invention]
Quartz glass is an indispensable material that is indispensable as a material for optical components such as semiconductor photomasks and lenses and mirrors in optical systems. Also, high purity quartz glass is required from the required light transmittance, heat resistance, etc., and the yield of quartz glass obtained at the time of molding is of course important because of the purification of glass raw materials and large-scale manufacturing equipment.
[0003]
The actual shape required is shaped into a square bar or cylinder according to the shape of the photomask, lens, and wafer obtained in the subsequent steps, so the upper or lower part of the glass ingot is also formed flat. Depending on whether or not, the yield is directly involved. Therefore, when molding, if the glass is not melt molded to each corner according to the mold, the upper and lower portions of the glass ingot do not have the desired shape when sliced into the shape of a mask, lens or wafer, thereby reducing the yield. Become.
[0004]
As a method for forming quartz glass, the quartz glass is heated to a temperature higher than the working point, and once melted and formed into a desired shape. In the atmosphere, a carbon or graphite mold material used in the atmosphere, a carbon heater in a furnace, etc. Since oxidative combustion occurs, it is common to seal the inert gas in a vacuum or reduced pressure. In addition, it is necessary to accurately mold along the shape in the mold, and a method of applying pressure as well as heating is known (Japanese Patent Laid-Open No. Sho 56-129621).
[0005]
However, in the conventional method, gas remains between the glass surface and the mold or a graphite or carbon sheet inserted therebetween, and as a result, the glass shape may not be a desired shape along the shape in the mold. .
[0006]
This invention is made | formed in view of the said situation, and it aims at providing the shaping | molding method of quartz glass which can shape | mold into a desired shape with few bubble entrainment.
[0007]
Means for Solving the Problem and Embodiment of the Invention
As a result of intensive studies to achieve the above object, the inventors of the present invention do not have a desired shape around the outer periphery or corner portion of the formed quartz glass. It has been found that the residual gas between the inclusions such as fibers and powders and the quartz glass surface is the cause. And in order to discharge this residual gas, a graphite or carbon mold is fitted with an inclusion such as a breathable carbon or graphite sheet inside if necessary, and quartz glass is put in it and molded. In the above, it has been found that by forming grooves on the entire inner surface of the mold, it is possible to form a desired shape with less entrainment of bubbles, and the present invention has been made.
[0008]
Accordingly, the present invention provides the following method for forming quartz glass.
Claim 1:
Heating the quartz glass in each closed the upper and lower end portions of the tubular body top plate and bottom plate in a graphite or a mold made of carbon is provided, when molded in melt, the inner peripheral surface entire surface of the cylindrical body A plurality of grooves having a depth of 0.5 to 10 mm and a width of 1 to 3 mm are formed continuously from the upper end to the lower end along the vertical direction, and the depths of 0.5 to 10 mm are respectively formed on the inner surfaces of the top plate and the bottom plate. Using a mold in which a plurality of grooves having a width of 1 to 3 mm are continuously formed from one end to the other in a radial, grid, or substantially parallel to each other so that residual gas in the mold is discharged from the grooves to the outside during the molding. A method for forming quartz glass, characterized in that:
Claim 2 :
Molding method according to claim 1, wherein a gap between the plurality of grooves has a groove so as to 30mm or less for substantially parallel to each other.
Claim 3 :
The molding method according to claim 1 or 2 , wherein the rate of temperature rise from 1400 ° C or higher is 20 ° C / min or lower.
Claim 4 :
A top plate is disposed so as to be movable in the vertical direction, and the quartz glass charged in the mold through the top plate is molded by applying a load not more than twice the weight of the quartz glass. molding method according to any one of 3.
Claim 5 :
The molding method according to any one of claims 1 to 4 , wherein the molding is performed by interposing an air-permeable inclusion between the mold inner surface and the quartz glass.
[0009]
Hereinafter, the present invention will be described in more detail.
The method for molding quartz glass of the present invention is performed using a graphite or carbon mold in which the upper and lower ends of a cylindrical body such as a cylinder or a rectangular cylinder are closed and a top plate and a bottom plate are provided.
[0010]
In this case, the present invention uses a mold in which a plurality of grooves are formed on the entire inner peripheral surface of the cylindrical body, and the inner surfaces of the top plate and the bottom plate.
[0011]
FIG. 1 shows an example of a mold 1 used in the present invention. In this example, a square in which a top plate 3 and a bottom plate 4 are disposed by closing the upper and lower ends of a rectangular cylindrical body 2. Although it has a box shape, the mold of the present invention is not limited to this.
[0012]
A plurality of grooves 5 are formed on the inner peripheral surface of the cylindrical body 2 (the inner surface of each side plate 2a), the inner surface of the top plate 3, and the inner surface of the bottom plate 4, respectively.
[0013]
As described above, the mold used in the present invention has the groove 5 formed on the entire inner surface thereof, and when the groove is not provided on the inner surface of the mold, or only the inner surface of the cylindrical body or only the inner surfaces of the top plate and the bottom plate. If the groove is not formed on the entire surface, such as not having a groove on the other inner surface, the gas between the glass surface and the mold or an inclusion such as a graphite or carbon sheet inserted therebetween May remain, and may not be molded accurately according to the shape in the mold, but may remain as bubbles on the outer periphery of the glass.
[0014]
Further, the form of the groove may be any of radial, grid, vertical and horizontal or diagonal directions, and the entire inner surface of the mold may be the same or different. May be formed differently on the inner peripheral surface of the cylindrical body (that is, on the side plates), but the residual gas is radially on the upper and lower surfaces and on the cylindrical inner peripheral surface (side surface). Since the top and bottom plates (upper and lower surfaces) are considered to come out from the vertical direction, they are radial, latticed, vertical and horizontal, or diagonal in one direction, and in the cylindrical body peripheral surface (side surface) in the vertical direction. Preferably there is.
[0015]
In the example of FIG. 1, grooves 5 are provided along the vertical direction on the cylindrical body 2 (each side plate 2 a), and lattice-like grooves 5 are provided on the top plate 3 and the bottom plate 4, respectively. Yes. In this case, as shown in the drawing, each groove 5 is preferably formed in a continuous state from one end to the other end, and the groove of the cylindrical body 2 and the grooves of the top plate 3 and the bottom plate 4 are mutually at their ends. It is preferable from the point of escape of residual gas to form so as to communicate with each other.
[0016]
The mold 1 is placed on a fixing base jig 6 as shown in the figure, and a quartz glass ingot 7 is placed in the mold 1 and heated, melted, and molded. In this case, The top plate 3 can be disposed in the cylindrical body 2 so as to be slidable in the vertical direction, and it is preferable to place a weight 8 on the top plate 3 and load the quartz glass to be formed. is there. In the figure, 9 is a fixing jig. As described above, when the top plate 3 is disposed below the upper end edge of the cylindrical body 2 during molding, for example, by arranging the top plate 3 so as to be slidable in the vertical direction, the cylindrical body as described above. 2, a groove continuous from the upper end to the lower end along the vertical direction is opened upward at the upper end portion so that residual gas in the groove escapes to the outside, and the grooves of the top plate 3 and the bottom plate 4 form the cylindrical body 2. In this case, the residual gas in these grooves can also escape to the outside.
[0017]
Here, the size or the like of the groove formed on the inner surface of the mold of the present invention is 0.5 to 10 mm in depth , preferably 1 to 3 mm, 1 to 3 mm in width, preferably 1.5 to 2 mm, and substantially parallel to each other. The space between the grooves in the state is 30 mm or less, preferably 20 mm or less, and 5 mm or more, particularly 10 mm or more. In the case of radial grooves, the angle between the grooves is preferably 10 to 30 degrees, particularly preferably 15 to 20 degrees. When the depth of the groove is less than 0.5 mm or when the width of the groove is less than 1 mm, the gas is not easily discharged, and as a result, the residual gas cannot be formed into a desired shape. In addition, when the depth of the groove exceeds 10 mm or the width exceeds 3 mm, the quartz glass enters the groove, leaving traces of the groove on the surface of the formed quartz glass, and forming into a desired shape. There are cases where it cannot be done.
[0018]
The thickness of the mold is not particularly limited as long as it is a range that is usually used, but a thickness of 10 mm or more, preferably 20 mm or more is used.
[0019]
In the present invention, quartz glass can be molded by a usual method except that the above mold is used. Usually, in the above graphite or carbon mold, the fused quartz glass is 1400 ° C. or higher, preferably It is performed by a method in which molding is performed at a temperature of 1700 ° C. or higher under vacuum or reduced pressure, and under an inert gas such as argon or helium.
[0020]
In this case, the quartz glass ingot can be put into the mold and heated, melted and molded at a temperature of 1400 to 1900 ° C., but at this time, the rate of temperature rise is preferably 20 ° C./min or less, more preferably Residual gas can be easily discharged by setting it to 15 ° C./min or less and 1 ° C./min or more.
[0021]
Further, by applying a load of not more than twice, preferably 0.5 to 2 times, more preferably the same weight to the quartz glass charged in the mold, the mold does not melt into the groove on the inner surface of the mold. It can be formed into a desired shape along the inner surface.
[0022]
During molding, a gas-permeable inclusion such as graphite or carbon is provided on the inner surface of the mold, and the inclusion is interposed between the mold inner surface and the quartz glass to be molded. Molding can be performed.
[0023]
The method for molding quartz glass of the present invention is not only used for molding quartz glass for lenses and photomasks, but can also be applied to molding of general glass.
[0024]
【Example】
EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated concretely, this invention is not restrict | limited to the following Example.
[0025]
[Example 1]
The bottom plate of the cylindrical body having a square shape with a length of 200 mm in length and width and a rectangular column-shaped hollow portion with a height of 800 mm is closed to dispose the bottom plate, and the upper end open portion is closed. In addition, the top plate is disposed so as to be slidable in the up and down direction in the hollow portion, and has the shape shown in FIG. As shown in Fig. 2, a groove having a depth of 0.5 mm and a width of 1 mm is formed in the vertical direction on the inner peripheral surface (inner surface of the mold) of the cylindrical body and in a lattice shape on the inner surface of the top plate and the bottom plate. A mold in which the groove of the cylindrical body and the groove of the top plate and the bottom plate communicate with each other so that the distance between them is 20 mm, and a 1 mm thick carbon sheet having air permeability is mounted on the entire inner surface of the mold. Was used to mold quartz glass.
[0026]
First, a cylindrical 43.9 kg quartz glass having a height of 700 mm and a diameter of 195 mm was put in the above mold, a weight of 20 kg was placed on the top plate, and set in a furnace with a maximum output of 60 KW. The vacuum pump was operated and the pressure in the furnace was reduced to 5 × 10 −5 Torr, and then the temperature was raised.
[0027]
The temperature was raised to 1400 ° C. in 30 minutes, and then to 1850 ° C., the temperature was raised at 18 ° C./minute, and then maintained at 1850 ° C. for 120 minutes. At this time, it was maintained at 0.5 Torr using a vacuum pump and a diffusion pump.
[0028]
Thereafter, the electric power is lowered to 1300 ° C. in 30 minutes, and the electric power thereafter is lowered linearly. When the room temperature is reached, the furnace is opened, and a square-shaped square bar-shaped quartz glass having a height of 520 mm and a side of 200 mm. 43 kg was obtained. In the obtained square bar-shaped quartz glass, each corner was accurately shaped along the inner shape of the above-mentioned mold, and further no entrainment of bubbles was observed.
[0029]
[Example 2]
A carbon mold having a thickness of 10 mm and a groove having a depth of 10 mm, a width of 3 mm, and an interval of 20 mm is used in the vertical direction (vertical direction) with respect to the side surface inside the mold and in the horizontal direction with respect to the vertical surface. Except for the above, it was molded in the same manner as in Example 1. As a result, the obtained square bar-shaped quartz glass was accurately shaped at the corners along the inner shape of the mold, and no bubble entrainment was observed.
[0030]
[Comparative Example 1]
When the same carbon mold as in Example 1 in which no groove was provided on the entire inner surface of the mold was molded in the same manner as in Example 1, the obtained square bar-shaped quartz glass had corners along the inner shape of the mold. It was not accurately shaped, and further entrainment of bubbles was observed.
[0031]
【The invention's effect】
According to the method for molding quartz glass of the present invention, the quartz glass can be molded into a desired shape with less entrainment of bubbles.
[Brief description of the drawings]
FIG. 1 is an exploded perspective view showing an example of a molding die used in the practice of the present invention.
[Explanation of symbols]
1 Type 2 Tubular body 3 Top plate 4 Bottom plate 5 Groove 6 Fixing base jig 7 Quartz glass ingot 8 Weight 9 Fixing jig

Claims (5)

筒状体の上下端部を閉塞してそれぞれ天板及び底板が設けられた黒鉛又は炭素製の型内で石英ガラスを加熱、溶融して成形するに際し、上記筒状体の内周面全面に上下方向に沿って上端から下端に連続して深さ0.5〜10mm、幅1〜3mmの溝を複数本形成すると共に、上記天板及び底板の内面にそれぞれ深さ0.5〜10mm、幅1〜3mmの溝を一端から他端まで連続して放射状、格子状又は互いにほぼ平行して複数本形成した型を用い、上記成形時に型内の残留ガスを上記溝より外部に排出するようにしたことを特徴とする石英ガラスの成形方法。Heating the quartz glass in each closed the upper and lower end portions of the tubular body top plate and bottom plate in a graphite or a mold made of carbon is provided, when molded in melt, the inner peripheral surface entire surface of the cylindrical body A plurality of grooves having a depth of 0.5 to 10 mm and a width of 1 to 3 mm are formed continuously from the upper end to the lower end along the vertical direction, and the depths of 0.5 to 10 mm are respectively formed on the inner surfaces of the top plate and the bottom plate. Using a mold in which a plurality of grooves having a width of 1 to 3 mm are continuously formed from one end to the other in a radial, grid, or substantially parallel to each other so that residual gas in the mold is discharged from the grooves to the outside during the molding. A method for forming quartz glass, characterized in that: 互いにほぼ平行する複数本の溝間の間隙が30mm以下となるように溝を形成した請求項記載の成形方法。Molding method according to claim 1, wherein a gap between the plurality of grooves has a groove so as to 30mm or less for substantially parallel to each other. 1400℃以上からの昇温速度が20℃/分以下である請求項1又は2記載の成形方法。The molding method according to claim 1 or 2 , wherein the rate of temperature rise from 1400 ° C or higher is 20 ° C / min or lower. 天板が上下方向移動可能に配設され、この天板を介して型内に仕込まれる石英ガラスにこの石英ガラスの重量の2倍以下の荷重を負荷して成形するようにした請求項1乃至のいずれか1項記載の成形方法。A top plate is disposed so as to be movable in the vertical direction, and the quartz glass charged in the mold through the top plate is molded by applying a load not more than twice the weight of the quartz glass. molding method according to any one of 3. 型内面と石英ガラスとの間に通気性を有する介在物を介在して成形を行うようにした請求項1乃至のいずれか1項記載の成形方法。The molding method according to any one of claims 1 to 4 , wherein the molding is performed by interposing an air-permeable inclusion between the mold inner surface and the quartz glass.
JP27776699A 1999-09-30 1999-09-30 Method of forming quartz glass Expired - Lifetime JP3778250B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27776699A JP3778250B2 (en) 1999-09-30 1999-09-30 Method of forming quartz glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27776699A JP3778250B2 (en) 1999-09-30 1999-09-30 Method of forming quartz glass

Publications (2)

Publication Number Publication Date
JP2001097731A JP2001097731A (en) 2001-04-10
JP3778250B2 true JP3778250B2 (en) 2006-05-24

Family

ID=17588043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27776699A Expired - Lifetime JP3778250B2 (en) 1999-09-30 1999-09-30 Method of forming quartz glass

Country Status (1)

Country Link
JP (1) JP3778250B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4676969B2 (en) * 2007-03-29 2011-04-27 コバレントマテリアル徳山株式会社 Manufacturing method of glass substrate
JP2012153586A (en) * 2011-01-27 2012-08-16 Tosoh Quartz Corp Apparatus for producing quartz glass molded body
JP5616267B2 (en) * 2011-03-28 2014-10-29 東ソー・クォーツ株式会社 Method for producing quartz glass molded body
US9027365B2 (en) 2013-01-08 2015-05-12 Heraeus Quartz America Llc System and method for forming fused quartz glass
CN103524020B (en) * 2013-08-15 2015-09-30 东莞华清光学科技有限公司 A kind of making method of mould of hot-work 3D used in glass products

Also Published As

Publication number Publication date
JP2001097731A (en) 2001-04-10

Similar Documents

Publication Publication Date Title
CN106795032B (en) Overpressure assisted gravity bending method and apparatus suitable for use in the method
JP3778250B2 (en) Method of forming quartz glass
JP4014724B2 (en) Method for producing silica glass
JP4281397B2 (en) Quartz glass molding equipment
KR100765868B1 (en) Apparatus and method for forming silica glass element
JP4419701B2 (en) Quartz glass molding equipment
GB2172593A (en) Process for the production of a lightweight mirror blank
KR100552609B1 (en) Press-forming method and machine for glass
JP2005097057A (en) Method and apparatus for molding quartz glass
JPS6183638A (en) Quartz glass forming
DE102010021696A1 (en) Process for the production of a quartz glass crucible with a transparent inner layer of synthetically produced quartz glass
KR101249808B1 (en) Device and method for manufacturing high-purity polycrystalline silicon for solar cell
JP6591034B2 (en) Process for joining opaque fused silica glass to transparent fused silica glass
JPS632421Y2 (en)
JP4054977B2 (en) Mold material for quartz glass and method for molding quartz glass
KR100845492B1 (en) Brake prevention apparatus for forming large quarts dome
JP2002012432A (en) Device for molding glass optical element
JPS6345136A (en) Forming method for optical element
JP3854113B2 (en) Method and apparatus for forming quartz glass element
JPH09202632A (en) Production of cylindrical quartz glass
JP4270477B2 (en) Method for producing transparent quartz glass
JPH08338Y2 (en) Quartz glass molding equipment
JPH063795B2 (en) Heat treatment equipment for semiconductor manufacturing
JP2004359520A (en) Method and apparatus for manufacturing synthetic silica glass
JP4054609B2 (en) Glass mold and molding method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060221

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3778250

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120310

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120310

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150310

Year of fee payment: 9

EXPY Cancellation because of completion of term