JP3821254B2 - Valve timing control device - Google Patents

Valve timing control device Download PDF

Info

Publication number
JP3821254B2
JP3821254B2 JP17249397A JP17249397A JP3821254B2 JP 3821254 B2 JP3821254 B2 JP 3821254B2 JP 17249397 A JP17249397 A JP 17249397A JP 17249397 A JP17249397 A JP 17249397A JP 3821254 B2 JP3821254 B2 JP 3821254B2
Authority
JP
Japan
Prior art keywords
oil chamber
valve
discharge
passage
supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17249397A
Other languages
Japanese (ja)
Other versions
JPH1113433A (en
Inventor
川 和 己 小
嶋 滋 中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Aisin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Aisin Corp filed Critical Aisin Seiki Co Ltd
Priority to JP17249397A priority Critical patent/JP3821254B2/en
Publication of JPH1113433A publication Critical patent/JPH1113433A/en
Application granted granted Critical
Publication of JP3821254B2 publication Critical patent/JP3821254B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Valve-Gear Or Valve Arrangements (AREA)
  • Valve Device For Special Equipments (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関の動弁装置において吸気弁又は排気弁の開閉時期を制御するために使用される弁開閉時期制御装置に関する。
【0002】
【従来の技術】
この種の弁開閉時期制御装置の1つとして、内燃機関のシリンダヘッドに回転自在に組付けられる弁開閉用の回転軸(カムシャフトとこれに一体的に設けた内部ロータからなる)に所定範囲で相対回転可能に外装されクランク軸からの回転動力が伝達される回転伝達部材と、該回転伝達部材と前記回転軸との間に少なくとも前記回転伝達部材に移動可能に設けられる位相変換手段と、前記回転伝達部材と前記回転軸との間に形成され前記位相変換手段により進角用油室と遅角用油室とに二分される流体圧室と、前記進角用油室及び遅角用油室とに接続される第1及び第2接続ポート、排出通路に接続される排出ポート及び油圧供給源に接続される供給ポートを少なくとも有し、前記進角用油室及び前記遅角用油室に作動油を給排すべく前記第1及び第2接続ポートを少なくとも前記供給ポート及び排出ポートもしくは、前記排出ポート及び供給ポートに選択的に夫々連通させる切換弁から成る作動油給排手段とを備えたものがあり、例えば特開平1−92504号公報や実開平2−50105号公報に開示されている。
【0003】
【発明が解決しようとする課題】
上記した各公報に開示される弁開閉時期制御装置においては、遅角用油室(又は進角用油室)の容積が最大となる最遅角時(又は最進角時)には回転伝達部材と回転軸との位相を保持するために、遅角用油室(又は進角用油室)に作動油を供給し、ベーンの遅角用油室側側面(又は進角用油室側側面)に油圧が作用され、進角用油室(又は遅角用油室)は排出ポートに連通される。ところで、回転軸である内燃機関のカムシャフトには変動トルクが作用し、この変動トルクが大きな場合、ベーンに作用する上記した油圧による回転力に変動トルクが打ち勝ち、最遅角或いは最進角時の位相を保持できなくなることがある。この状態を回避するために、上記した従来の弁開閉時期制御装置では、ベーンの受圧面積を増加するか或いは、油圧供給源から供給される作動油圧を増加して変動トルクに対抗する回転力を増大させる以外になく、当該弁開閉時期制御装置の製造コストの増大及び大型化又は、油圧供給源の大型化を招くという問題がある。
【0004】
それゆえ、本発明は当該弁開閉時期制御装置において、製造コストの増大及び大型化を招くことなく、最遅角及び最進角時における所望の位相を確実に保持できるようにすることを、その課題とする。
【0005】
【課題を解決するための手段】
上記課題を解決するために講じた本発明の技術的手段は、弁開閉用の回転軸に所定範囲で相対回転可能に装着される回転伝達部材と、該回転伝達部材と前記回転軸との間に少なくとも前記回転伝達部材及び前記回転軸の一方に対して移動可能に設けられる位相変換手段と、前記回転伝達部材と前記回転軸との間に形成され前記位相変換手段により進角用油室と遅角用油室とに二分される流体圧室と、前記進角用油室及び遅角用油室とに接続される第1及び第2接続ポート、排出通路に接続される排出ポート及び油圧供給源に接続される供給ポートを少なくとも有し、前記進角用油室及び前記遅角用油室に作動油を給排すべく前記第1及び第2接続ポートを少なくとも前記供給ポート及び排出ポートもしくは、前記排出ポート及び供給ポートに選択的に夫々連通させる切換弁から成る作動油給排手段とを備えて、内燃機関の吸気弁又は排気弁の開閉時期を制御するために使用される弁開閉時期制御装置において、前記切換弁の排出ポートと前記排出通路との間に前記排出ポートから前記排出通路への作動油の流通のみを許容する一方向弁を介装したことである。
【0006】
上記した手段において、前記位相変換手段は、前記回転軸又は前記回転伝達部材の一方に取り付けられたベーンにより構成されても良い。
【0007】
上記した手段によれば、最遅角時(又は最進角時)には、遅角用油室(又は進角用油室)に作動油が供給される一方、一方向弁により進角用油室(又は遅角用油室)から切換弁の排出ポートを介して一方向弁に至る密閉空間が形成される。これにより、最遅角時(又は最進角時)に遅角用油室(進角用油室)の容積を減少し且つ進角用油室(遅角用油室)の容積を増大する側に位相変換手段を移動させるように回転軸に変動トルクが作用した際、この変動トルクは遅角用油室(進角用油室)からは正油圧による反力で保持されると共に、進角用油室(遅角用油室)からは負油圧による反力で保持され、位相変換手段の受圧面積を大型化又は供給される作動油油圧を高圧化することなく、位相が安定して保持される。
【0008】
【発明の実施の形態】
以下、本発明に従った弁開閉時期制御装置の一実施形態を図面に基づき、説明する。
【0009】
図1及び図2において、弁開閉時期制御装置は、当該内燃機関のシリンダヘッド70に回転自在に支持されたカムシャフト10とこれの前端(図1の右端)に一体的に組付けた内部ロータ20によって構成した弁開閉用の回転軸と、カムシャフト10及び内部ロータ20に所定範囲で相対回転可能に外装された外部ロータ30、フロントプレート40、リアプレート50及びリアプレート50の外周に一体的に設けたタイミングスプロケット51によって構成した回転伝達部材と、内部ロータ20に組付けた5枚のベーン60により構成される位相変換手段と、切換弁90等から構成される作動油給排手段等によって構成されている。尚、タイミングスプロケット51には、周知のように、図示省略したクランク軸からクランクスプロケットとタイミングチェーンを介して図2の時計方向に回転動力が伝達されるように構成されている。
【0010】
カムシャフト10は、吸気弁を開閉する周知のカム11を有していて、内部にはカムシャフト10の軸方向に延びる進角通路12と遅角通路13が設けられている。進角通路12は、カムシャフト10に設けた径方向通路と環状溝とシリンダヘッド70に設けた接続通路71を通して切換弁90の第1接続ポート91aに接続されている。また、遅角通路13は、カムシャフト10に設けた径方向の通路及び環状溝とシリンダヘッド70に設けた接続通路72を通して切換弁90の第2接続ポート91bに接続されている。
【0011】
切換弁90は、本実施形態では、シリンダヘッド70に設けた取り付け孔74に液密的に嵌合される円筒状のハウジング91と、該ハウジング91内に軸方向に移動可能に嵌挿されるスプール92と、該スプール92を軸方向に付勢するスプリング93と、該スプリング93により付勢されるスプール92と常時当接する軸部を有する可動コア94と、可動コア94の外周を包囲するように配設される円筒状の樹脂製ボビンに巻回されるコイル95と、ボビンとハウジング91の対向面間に配置され両者を結合するヨークと、ボビンの内孔内に可動コア94に隣接して配設される固定コアと、ボビンの外周上に配設される外周ヨークとから構成されており、コイル95へ通電することによって可動コア94及びスプール92をスプリング93に抗して図1の左方向へ移動できるものである。
【0012】
ハウジング91には、接続通路71及び72に夫々連通される環状溝から成る第1及び第2接続ポート91a及び91bが形成され、各接続ポート91a及び91bはハウジング91に形成される複数の径方向通路及び内周環状溝に連通されている。また、ハウジング91には、第1及び第2接続ポート91a及び91b間に、当該内燃機関により駆動されるオイルポンプ(図示省略)からの作動油の供給通路100に接続される環状溝からなる供給ポート91cが形成されていて、該供給ポート91cはハウジング91に形成される複数の径方向通路を通してスプール92の外周面に形成される環状溝92dに常時連通されている。尚、環状溝92dは、第1及び第2接続ポート91a及び91bに夫々連通されるハウジングの各内周環状溝にスプール92の軸方向の移動に応じて選択的に連通されるように軸方向に延びている。スプール92は、シリンダヘッド70に設けた排出通路73を介してシリンダヘッド70内に連通される取り付け孔74に一端を開口して当該切換弁90の排出ポート92cとして機能する内孔を有すると共に、該内孔から径方向に延び外周面に形成される環状溝とを連通する径方向通路92b及び92cとを有している。尚、径方向通路92b及び92cは、第2及び第1接続ポート91b及び91aに夫々連通されるハウジングの各内周環状溝にスプール92の軸方向の移動に応じて夫々連通可能となっている。
【0013】
上記した構成からなる切換弁90は、コイル95の非通電時には供給ポート91cが環状溝92dを介して第2接続ポート91bに連通されると共に、第1接続ポート91aが径方向通路92aを介して排出ポート92cに連通され、またコイル95の通電時には供給ポート91cが環状溝92dを介して第1接続ポート91aに連通されると共に、第2接続ポート91bが径方向通路92bを介して排出ポート92cに連通される。このため、コイル95の非通電時には遅角通路13に作動油が供給され、コイル95の通電時には進角通路12に作動油が供給される。
【0014】
しかして、本実施形態においては、排出ポート92cを構成するスプール92の内孔が段付状を呈しており、そのシリンダヘッド70の取り付け孔74側の大径部内には、チェックボール96、スプリング97及びリテーナ98からなる一方向弁が配設されている。チェックボール96は、スプール92の内孔大径部の開口端に嵌合固定されるリテーナ98に一端を係止されるばね力の小さなスプリング97により常時スプール92の内孔の段部に当接する側に付勢されている。これにより、取り付け孔74から排出ポート92c内への作動油の流通が阻止され、排出ポート92cから取り付け孔74への作動油の流通(スプリング97の小さなばね力に打ち勝つ低い圧力の作動油の流通)のみが許容されている。
【0015】
内部ロータ20は、単一の取り付けボルト81によってカムシャフト10に一体的に固着されていて、5枚の各ベーン60を夫々径方向に移動可能に取り付けるためのベーン溝21を有すると共に、各ベーン60によって区画された進角用油室R1に進角通路12から作動油を給排する通路(進角通路12に連通する環状溝とこの環状溝から径方向外方に延びる5個の連通孔からなる)24と、各ベーン60によって区画された遅角用油室R2に遅角通路13から作動油を給排する通路25を有している。尚、各ベーン60は、ベーン溝21の底部に収容したベーンスプリング61(図1参照)によって径方向外方に付勢されている。
【0016】
外部ロータ30は、内部ロータ20の外周に所定範囲で相対回転可能に組付けられていて、その両側にはフロントプレート40とリアプレート50が接合され、3本の連結ボルト82によって一体的に連結されている。また、外部ロータ30の内周には所定の周方向間隔で5個の突部31が径方向内方に向けて夫々突出形成されていて、これら突部31の内周面が内部ロータ20の外周面に摺接する構成で外部ロータ30が内部ロータ20に回転自在に支承されている。
【0017】
各ベーン60は、先端の断面形状が円弧形状であり、両プレート40、50間にて内部ロータ20のベーン溝21に径方向へ移動可能に取り付けられていて、外部ロータ30の各突部31と内部ロータ20との間に形成される流体圧室R0を進角用油室R1と遅角用油室R2とに二分しており、外部ロータ30に形成した各突部31の周方向端面に当接することにより、当該弁開閉時期制御装置により調整される位相(相対回転量)が制限されるようになっている。
【0018】
上記のように構成した本実施形態の弁開閉時期制御装置においては、切換弁90により進角用油室R1及び遅角用油室R2への作動油の給排を適宜制御することにより、図2に示した状態、即ち最遅角状態(外部ロータ30の各突部31の回転方向側端面に各ベーン60が当接している状態)から最進角状態(外部ロータ30の各突部31の反回転方向側端面に各ベーン60が当接している状態)まで内部ロータ20と外部ロータ30との相対回転量(位相)が制御される。
【0019】
ここで、図2に示す最遅角状態では、切換弁90は図1の状態にあり、供給ポート91cが環状溝92dを介して第2接続ポート91bに連通されて、接続通路72、遅角通路13、通路23及び25を介して図示しないオイルポンプからの作動油が遅角用油室R2に供給される。これにより、遅角用油室R2側の各ベーン60の面積に作用する作動油の油圧により各ベーン60の進角用油室R1側の側面が外部ロータ30の突部31の回転方向側端面に押圧され、所望の最遅角位相が保持される。本実施形態では、この最遅角状態において、一方向弁により進角用油室R1から通路24、進角通路12及び接続通路71を通して排出ポート92cに至る密封空間が形成される。
【0020】
この状態において、カムシャフト10に加わる変動トルクは、遅角用油室R2に作用する作動油の油圧(正油圧)に抗して遅角用油室R2の容積を減少し且つ進角用油室R1の容積を増大する側にベーン60を移動させるように作用するが、このトルクは遅角用油室R2からは正油圧による反力で保持されると共に、一方向弁の作用により上記密封空間に負圧が発生することから進角用油室R1からは負油圧による反力で保持される。したがって、本実施形態によれば、最遅角状態においてカムシャフト10に加わるトルクが各ベーン60の両側面で油圧保持されるため、従来装置に比し約1/2のベーンの受圧面積で最遅角状態における所望の位相を安定して保持することができる。
【0021】
また、最進角状態においても同様に、切換弁90のコイル95が通電されて、供給ポート91cが環状溝92dを介して第1接続ポート91aに連通されて、接続通路71、進角通路12及び通路24を介して図示しないオイルポンプからの作動油が進角用油室R1に供給される一方、一方向弁により遅角用油室R2から通路25、遅角通路13及び接続通路72を通して排出ポート92cに至る密封空間が形成される。これにより、上記した最遅角状態と同様に、カムシャフト10に加わる変動トルクは、各ベーン60の両側面で油圧保持され、最進角状態における所望の位相が安定して保持される。
【0022】
尚、最遅角状態と最進角状態の間の状態である中間位相でのバランス状態(各進角用油室R1内の進角油圧による押圧力が各遅角用油室R2内の遅角油圧による押圧力とカムシャフト10に加わるトルクとの和とバランスしている状態)では、スプール92の環状溝92dが第1接続ポート91aの内周環状溝とわずかに軸方向に重合して供給ポート91cが第1接続ポート91aに連通されると共に、第2接続ポート91bが環状溝92d及び径方向通路92bのいずれにも連通されないように切換弁90のコイル95の通電が制御される。これにより、遅角用油室R2から通路25、遅角通路13及び接続通路72を通して第2接続ポート91bに至る密封空間が形成される。したがって、上記した最遅角及び最進角状態と同様に、カムシャフト10に変動トルクが加わっても、該変動トルクは、各ベーン60の両側面で油圧保持され、中間バランス状態における所望の位相が安定して保持される。
【0023】
上記実施形態においては、リアプレート50の外周にタイミングスプロケット51を一体的に設けて、クランク軸からクランクスプロケットとタイミングチェーンを介して回転動力が伝達されるものに本発明を実施したが、本発明は外部ロータ30の外周にタイミングプーリを一体に設けて(別部材で構成して一体的に固着することも可能)、クランク軸からクランクプーリとタイミングプーリを介して回転動力が伝達されるものにも同様に実施し得るものである。また、上記実施形態においては、吸気用のカムシャフト10に組付けられる弁開閉時期制御装置に本発明を実施したが、本発明は排気用のカムシャフトに組付けられる弁開閉時期制御装置にも同様に実施し得るものである。
【0024】
【発明の効果】
以上の如く、本発明によれば、最遅角時(又は最進角時)には、遅角用油室(又は進角用油室)に作動油が供給される一方、一方向弁により進角用油室(又は遅角用油室)から切換弁の排出ポートを介して一方向弁に至る密閉空間が形成される。これにより、最遅角時(又は最進角時)に遅角用油室(進角用油室)の容積を減少し且つ進角用油室(遅角用油室)の容積を増大する側に位相変換手段を移動させるように回転軸に変動トルクが作用した際、この変動トルクは遅角用油室(進角用油室)からは正油圧による反力で保持されると共に、進角用油室(遅角用油室)からは負油圧による反力で保持されるため、位相変換手段の受圧面積を大型化又は供給される作動油油圧を高圧化することなく、所望の位相を安定して保持することができる。
【図面の簡単な説明】
【図1】本発明に従った弁開閉時期制御装置の一実施形態を示す縦断側面図である。
【図2】図1のA−A線に沿った断面図である。
【符号の説明】
10 カムシャフト(回転軸)
12 進角通路(作動油給排手段)
13 遅角通路(作動油給排手段)
20 内部ロータ(回転軸)
30 外部ロータ(回転伝達部材)
31 突部
40 フロントプレート
50 リアプレート
60 ベーン(位相変換手段)
70 シリンダヘッド
73 排出通路
90 切換弁(作動油給排手段)
91 ハウジング
91a 第1接続ポート
91b 第2接続ポート
91c 供給ポート
92 スプール
92c 排出ポート
96 チェックボール(一方向弁)
97 スプリング(一方向弁)
R0 流体圧室(位相変換手段)
R1 進角用油室(位相変換手段)
R2 遅角用油室(位相変換手段)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a valve opening / closing timing control device used for controlling the opening / closing timing of an intake valve or an exhaust valve in a valve operating apparatus for an internal combustion engine.
[0002]
[Prior art]
As one of the valve opening / closing timing control devices of this type, a predetermined range is provided on a rotary shaft for valve opening / closing (consisting of a camshaft and an internal rotor provided integrally therewith) that is rotatably assembled to a cylinder head of an internal combustion engine. A rotation transmission member which is externally mounted so as to be relatively rotatable and to which rotational power from a crankshaft is transmitted, and phase conversion means which is provided between the rotation transmission member and the rotation shaft so as to be movable at least to the rotation transmission member; A fluid pressure chamber formed between the rotation transmission member and the rotation shaft and divided into an advance oil chamber and a retard oil chamber by the phase conversion means; the advance oil chamber and the retard oil chamber; A first connection port connected to the oil chamber; a discharge port connected to the discharge passage; and a supply port connected to a hydraulic pressure supply source; To supply and discharge hydraulic fluid to the chamber. And a hydraulic fluid supply / discharge means comprising a switching valve for selectively communicating the second connection port with at least the supply port and the discharge port, or the discharge port and the supply port. No. 92504 and Japanese Utility Model Laid-Open No. 2-50105.
[0003]
[Problems to be solved by the invention]
In the valve opening / closing timing control device disclosed in each of the above-mentioned publications, the rotation is transmitted at the most retarded angle (or at the most advanced angle) at which the volume of the retarded oil chamber (or the advanced oil chamber) becomes maximum. In order to maintain the phase between the member and the rotating shaft, the hydraulic oil is supplied to the retarding oil chamber (or the advance oil chamber), and the vane retarding oil chamber side surface (or the advance oil chamber side) Hydraulic pressure is applied to the side surface, and the advance oil chamber (or retard oil chamber) communicates with the discharge port. By the way, fluctuating torque acts on the camshaft of the internal combustion engine, which is the rotating shaft, and when this fluctuating torque is large, the fluctuating torque overcomes the rotational force by the hydraulic pressure acting on the vane, and the most retarded angle or most advanced angle May not be maintained. In order to avoid this state, in the conventional valve timing control apparatus described above, the pressure receiving area of the vane is increased, or the operating hydraulic pressure supplied from the hydraulic pressure supply source is increased to increase the rotational force against the fluctuation torque. In addition to the increase, there is a problem that the manufacturing cost of the valve opening / closing timing control device is increased and increased, or the hydraulic supply source is increased.
[0004]
Therefore, in the valve opening / closing timing control device according to the present invention, it is possible to reliably maintain a desired phase at the most retarded angle and the most advanced angle without causing an increase in manufacturing cost and an increase in size. Let it be an issue.
[0005]
[Means for Solving the Problems]
The technical means of the present invention devised to solve the above-described problems includes a rotation transmission member that is mounted on a rotary shaft for opening and closing a valve so as to be relatively rotatable within a predetermined range, and between the rotation transmission member and the rotary shaft. A phase conversion means provided to be movable relative to at least one of the rotation transmission member and the rotation shaft, and an advance oil chamber formed by the phase conversion means formed between the rotation transmission member and the rotation shaft. A fluid pressure chamber divided into a retard angle oil chamber, first and second connection ports connected to the advance angle oil chamber and the retard angle oil chamber, a discharge port connected to the discharge passage, and a hydraulic pressure At least a supply port connected to a supply source, and at least the first and second connection ports to supply and discharge hydraulic oil to and from the advance angle oil chamber and the retard angle oil chamber. Or in the discharge port and supply port In a valve opening / closing timing control device used for controlling the opening / closing timing of an intake valve or an exhaust valve of an internal combustion engine, comprising a hydraulic oil supply / discharge means comprising a switching valve that selectively communicates with each other. That is, a one-way valve that allows only the flow of hydraulic oil from the discharge port to the discharge passage is interposed between the discharge port and the discharge passage.
[0006]
In the above-described means, the phase converting means may be constituted by a vane attached to one of the rotating shaft or the rotation transmitting member.
[0007]
According to the above means, at the most retarded angle (or at the most advanced angle), the hydraulic oil is supplied to the retarded oil chamber (or the advanced oil chamber), while the one-way valve is used for the advanced angle. A sealed space is formed from the oil chamber (or the retarding oil chamber) to the one-way valve via the discharge port of the switching valve. As a result, the volume of the retard oil chamber (advance oil chamber) is decreased and the volume of the advance oil chamber (retard oil chamber) is increased at the most retarded angle (or most advanced angle). When fluctuating torque is applied to the rotating shaft so as to move the phase conversion means to the side, the fluctuating torque is maintained by the reaction force from the retard oil chamber (advance oil chamber) by the positive hydraulic pressure, and advances. From the corner oil chamber (retarding oil chamber), the phase is stabilized without increasing the pressure receiving area of the phase conversion means or increasing the hydraulic oil pressure to be supplied. Retained.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of a valve timing control apparatus according to the present invention will be described with reference to the drawings.
[0009]
1 and 2, the valve timing control apparatus includes a camshaft 10 that is rotatably supported by a cylinder head 70 of the internal combustion engine and an internal rotor that is integrally assembled at the front end (right end in FIG. 1) thereof. Rotating shaft for valve opening / closing constituted by 20 and the outer periphery of the outer rotor 30, the front plate 40, the rear plate 50, and the rear plate 50 that are externally rotatably mounted on the camshaft 10 and the inner rotor 20 within a predetermined range. By a rotation transmission member constituted by the timing sprocket 51 provided in the motor, a phase conversion means constituted by five vanes 60 assembled to the internal rotor 20, a hydraulic oil supply / discharge means constituted by a switching valve 90 and the like. It is configured. As is well known, the timing sprocket 51 is configured such that rotational power is transmitted in the clockwise direction in FIG. 2 from a crankshaft (not shown) via a crank sprocket and a timing chain.
[0010]
The camshaft 10 has a known cam 11 that opens and closes an intake valve, and an advance angle passage 12 and a retard angle passage 13 that extend in the axial direction of the camshaft 10 are provided therein. The advance passage 12 is connected to the first connection port 91 a of the switching valve 90 through a radial passage provided in the camshaft 10, an annular groove, and a connection passage 71 provided in the cylinder head 70. The retard passage 13 is connected to the second connection port 91 b of the switching valve 90 through a radial passage and an annular groove provided in the camshaft 10 and a connection passage 72 provided in the cylinder head 70.
[0011]
In this embodiment, the switching valve 90 includes a cylindrical housing 91 that is liquid-tightly fitted in a mounting hole 74 provided in the cylinder head 70, and a spool that is fitted into the housing 91 so as to be movable in the axial direction. 92, a spring 93 that urges the spool 92 in the axial direction, a movable core 94 that has a shaft portion that is always in contact with the spool 92 that is urged by the spring 93, and an outer periphery of the movable core 94. A coil 95 wound around a cylindrical resin bobbin disposed, a yoke disposed between opposing surfaces of the bobbin and the housing 91, and a coupling between the two, and a movable core 94 in the bobbin inner hole adjacent to the movable core 94 The movable core 94 and the spool 92 are connected to the spring 93 by energizing the coil 95. The fixed core is disposed on the outer periphery of the bobbin. Anti to those that can be moved to the left in FIG. 1.
[0012]
The housing 91 is formed with first and second connection ports 91a and 91b made of annular grooves communicating with the connection passages 71 and 72, respectively. Each of the connection ports 91a and 91b has a plurality of radial directions formed in the housing 91. The passage communicates with the inner circumferential groove. Further, the housing 91 is provided with an annular groove connected to the hydraulic oil supply passage 100 from an oil pump (not shown) driven by the internal combustion engine between the first and second connection ports 91a and 91b. A port 91 c is formed, and the supply port 91 c is always in communication with an annular groove 92 d formed on the outer peripheral surface of the spool 92 through a plurality of radial passages formed in the housing 91. The annular groove 92d is axially communicated selectively with each inner circumferential annular groove of the housing communicated with the first and second connection ports 91a and 91b in accordance with the axial movement of the spool 92. It extends to. The spool 92 has an inner hole functioning as a discharge port 92c of the switching valve 90 by opening one end of a mounting hole 74 communicating with the cylinder head 70 through a discharge passage 73 provided in the cylinder head 70. It has radial passages 92b and 92c that extend in a radial direction from the inner hole and communicate with an annular groove formed on the outer peripheral surface. The radial passages 92b and 92c can communicate with the inner peripheral annular grooves of the housing communicated with the second and first connection ports 91b and 91a, respectively, in accordance with the axial movement of the spool 92. .
[0013]
In the switching valve 90 configured as described above, when the coil 95 is not energized, the supply port 91c is communicated with the second connection port 91b via the annular groove 92d, and the first connection port 91a is communicated with the radial passage 92a. When the coil 95 is energized, the supply port 91c communicates with the first connection port 91a through the annular groove 92d, and the second connection port 91b communicates with the discharge port 92c through the radial passage 92b. Communicated with Therefore, hydraulic oil is supplied to the retard passage 13 when the coil 95 is not energized, and hydraulic oil is supplied to the advance passage 12 when the coil 95 is energized.
[0014]
Thus, in this embodiment, the inner hole of the spool 92 constituting the discharge port 92c has a stepped shape, and a check ball 96, a spring A one-way valve consisting of 97 and a retainer 98 is provided. The check ball 96 always abuts against the step portion of the inner hole of the spool 92 by a spring 97 having a small spring force that is locked to one end of a retainer 98 that is fitted and fixed to the open end of the inner hole large diameter portion of the spool 92. Is biased to the side. Accordingly, the flow of hydraulic oil from the mounting hole 74 into the discharge port 92c is prevented, and the flow of hydraulic oil from the discharge port 92c to the mounting hole 74 (flow of low-pressure hydraulic oil that overcomes the small spring force of the spring 97). Only) is allowed.
[0015]
The inner rotor 20 is integrally fixed to the camshaft 10 by a single mounting bolt 81, and has vane grooves 21 for mounting the five vanes 60 so as to be movable in the radial direction. A passage for supplying and discharging hydraulic oil from the advance passage 12 to the advance oil chamber R1 defined by 60 (an annular groove communicating with the advance passage 12 and five communication holes extending radially outward from the annular groove) 24) and a passage 25 for supplying and discharging hydraulic oil from the retard passage 13 to the retard oil chamber R2 defined by each vane 60. Each vane 60 is urged radially outward by a vane spring 61 (see FIG. 1) accommodated in the bottom of the vane groove 21.
[0016]
The outer rotor 30 is assembled to the outer periphery of the inner rotor 20 so as to be relatively rotatable within a predetermined range. A front plate 40 and a rear plate 50 are joined to both sides of the outer rotor 30 and are integrally connected by three connecting bolts 82. Has been. In addition, five protrusions 31 are formed on the inner periphery of the outer rotor 30 at predetermined intervals in the radial direction, and the inner peripheral surface of these protrusions 31 is the inner rotor 20. The outer rotor 30 is rotatably supported by the inner rotor 20 so as to be in sliding contact with the outer peripheral surface.
[0017]
Each vane 60 has a circular arc cross-sectional shape at the tip, is attached to the vane groove 21 of the inner rotor 20 between the plates 40 and 50 so as to be movable in the radial direction, and each protrusion 31 of the outer rotor 30. The hydraulic pressure chamber R0 formed between the inner rotor 20 and the inner rotor 20 is divided into an advance oil chamber R1 and a retard oil chamber R2, and the circumferential end surfaces of the protrusions 31 formed on the outer rotor 30 , The phase (relative rotation amount) adjusted by the valve opening / closing timing control device is limited.
[0018]
In the valve timing control apparatus of the present embodiment configured as described above, the switching valve 90 appropriately controls the supply and discharge of hydraulic oil to and from the advance oil chamber R1 and the retard oil chamber R2. 2, that is, the most retarded state (the state in which each vane 60 is in contact with the rotational direction end surface of each projection 31 of the external rotor 30) to the most advanced angle (each projection 31 of the external rotor 30). The relative rotation amount (phase) between the inner rotor 20 and the outer rotor 30 is controlled until the vanes 60 are in contact with the end surface on the opposite side in the rotation direction.
[0019]
Here, in the most retarded state shown in FIG. 2, the switching valve 90 is in the state of FIG. 1, and the supply port 91c is communicated with the second connection port 91b via the annular groove 92d. Hydraulic oil from an oil pump (not shown) is supplied to the retarding oil chamber R2 through the passages 13 and 23 and 25. Accordingly, the side surface of each vane 60 on the advance oil chamber R1 side is the end surface on the rotation direction side of the protrusion 31 of the external rotor 30 by the hydraulic pressure of the hydraulic oil acting on the area of each vane 60 on the retard oil chamber R2 side. And the desired most retarded phase is maintained. In the present embodiment, in this most retarded state, a sealed space is formed by the one-way valve from the advance oil chamber R1 to the discharge port 92c through the passage 24, the advance passage 12 and the connection passage 71.
[0020]
In this state, the fluctuating torque applied to the camshaft 10 reduces the volume of the retarding oil chamber R2 against the hydraulic oil pressure (positive oil pressure) acting on the retarding oil chamber R2, and advances the oil. This acts to move the vane 60 to the side where the volume of the chamber R1 is increased. This torque is maintained from the retarding oil chamber R2 by the reaction force of the positive hydraulic pressure, and the above-mentioned sealing is performed by the action of the one-way valve. Since negative pressure is generated in the space, the advance oil chamber R1 is held by a reaction force due to negative hydraulic pressure. Therefore, according to the present embodiment, the torque applied to the camshaft 10 in the most retarded state is hydraulically maintained on both side surfaces of each vane 60, so that the maximum pressure receiving area of the vane is about ½ that of the conventional device. A desired phase in the retarded state can be stably maintained.
[0021]
Similarly, in the most advanced state, the coil 95 of the switching valve 90 is energized, and the supply port 91c is communicated with the first connection port 91a via the annular groove 92d. The hydraulic oil from an oil pump (not shown) is supplied to the advance oil chamber R1 through the passage 24, and from the retard oil chamber R2 through the passage 25, the retard passage 13 and the connection passage 72 by a one-way valve. A sealed space reaching the discharge port 92c is formed. As a result, similarly to the most retarded state described above, the varying torque applied to the camshaft 10 is hydraulically held on both side surfaces of each vane 60, and the desired phase in the most advanced angle state is stably maintained.
[0022]
It should be noted that the balance state in the intermediate phase, which is the state between the most retarded angle state and the most advanced angle state (the pressing force by the advance hydraulic pressure in each advance angle oil chamber R1 is the delay in each retard angle oil chamber R2). In a state balanced with the sum of the pressure applied by the angular hydraulic pressure and the torque applied to the camshaft 10, the annular groove 92d of the spool 92 is slightly overlapped with the inner peripheral annular groove of the first connection port 91a in the axial direction. Energization of the coil 95 of the switching valve 90 is controlled so that the supply port 91c communicates with the first connection port 91a and the second connection port 91b does not communicate with either the annular groove 92d or the radial passage 92b. As a result, a sealed space is formed from the retarding oil chamber R2 to the second connection port 91b through the passage 25, the retarding passage 13, and the connection passage 72. Therefore, similarly to the above-described most retarded angle and most advanced angle states, even if a varying torque is applied to the camshaft 10, the varying torque is hydraulically held on both side surfaces of each vane 60, and a desired phase in the intermediate balance state. Is held stably.
[0023]
In the above embodiment, the present invention has been implemented in which the timing sprocket 51 is integrally provided on the outer periphery of the rear plate 50 and the rotational power is transmitted from the crankshaft via the crank sprocket and the timing chain. A timing pulley is integrally provided on the outer periphery of the external rotor 30 (which can be configured as a separate member and can be fixed integrally) so that rotational power is transmitted from the crankshaft via the crank pulley and the timing pulley. Can be similarly implemented. In the above embodiment, the present invention is applied to the valve opening / closing timing control device assembled to the intake camshaft 10, but the present invention is also applied to the valve opening / closing timing control device assembled to the exhaust camshaft. It can be implemented similarly.
[0024]
【The invention's effect】
As described above, according to the present invention, at the most retarded angle (or at the most advanced angle), hydraulic oil is supplied to the retarded oil chamber (or the advanced oil chamber), while the one-way valve is used. A sealed space is formed from the advance oil chamber (or the retard oil chamber) to the one-way valve via the discharge port of the switching valve. As a result, the volume of the retard oil chamber (advance oil chamber) is decreased and the volume of the advance oil chamber (retard oil chamber) is increased at the most retarded angle (or most advanced angle). When fluctuating torque is applied to the rotating shaft so as to move the phase conversion means to the side, the fluctuating torque is maintained by the reaction force from the retard oil chamber (advance oil chamber) by the positive hydraulic pressure, and advances. Since the corner oil chamber (retarding oil chamber) is held by the reaction force due to the negative hydraulic pressure, the desired pressure phase can be obtained without increasing the pressure receiving area of the phase conversion means or increasing the supplied hydraulic oil pressure. Can be held stably.
[Brief description of the drawings]
FIG. 1 is a longitudinal side view showing an embodiment of a valve timing control apparatus according to the present invention.
FIG. 2 is a cross-sectional view taken along line AA in FIG.
[Explanation of symbols]
10 Camshaft (Rotating shaft)
12 Advance angle passage (hydraulic oil supply / discharge means)
13 Delay passage (hydraulic oil supply / discharge means)
20 Internal rotor (rotating shaft)
30 External rotor (rotation transmission member)
31 Projection 40 Front plate 50 Rear plate 60 Vane (phase conversion means)
70 Cylinder head 73 Discharge passage 90 Switching valve (hydraulic oil supply / discharge means)
91 Housing 91a First connection port 91b Second connection port 91c Supply port 92 Spool 92c Discharge port 96 Check ball (one-way valve)
97 Spring (one-way valve)
R0 fluid pressure chamber (phase conversion means)
R1 Lead angle oil chamber (phase conversion means)
R2 retarding oil chamber (phase conversion means)

Claims (2)

弁開閉用の回転軸に所定範囲で相対回転可能に装着される回転伝達部材と、該回転伝達部材と前記回転軸との間に少なくとも前記回転伝達部材及び前記回転軸の一方に対して移動可能に設けられる位相変換手段と、前記回転伝達部材と前記回転軸との間に形成され前記位相変換手段により進角用油室と遅角用油室とに二分される流体圧室と、前記進角用油室及び遅角用油室とに接続される第1及び第2接続ポート、排出通路に接続される排出ポート及び油圧供給源に接続される供給ポートを少なくとも有し、前記進角用油室及び前記遅角用油室に作動油を給排すべく前記第1及び第2接続ポートを少なくとも前記供給ポート及び排出ポートもしくは、前記排出ポート及び供給ポートに選択的に夫々連通させる切換弁から成る作動油給排手段とを備えて、内燃機関の吸気弁又は排気弁の開閉時期を制御するために使用される弁開閉時期制御装置において、前記切換弁の排出ポートと前記排出通路との間に前記排出ポートから前記排出通路への作動油の流通のみを許容する一方向弁を介装したことを特徴とする弁開閉時期制御装置。A rotation transmission member mounted on a rotation shaft for opening and closing a valve so as to be relatively rotatable within a predetermined range, and movable between at least one of the rotation transmission member and the rotation shaft between the rotation transmission member and the rotation shaft A phase converting means provided on the rotation transmitting member, a fluid pressure chamber formed between the rotation transmitting member and the rotating shaft and divided into an advance oil chamber and a retard oil chamber by the phase converting means, and the advance At least first and second connection ports connected to the corner oil chamber and the retard oil chamber, a discharge port connected to the discharge passage, and a supply port connected to a hydraulic pressure supply source, A switching valve for selectively communicating the first and second connection ports with at least the supply port and the discharge port or the discharge port and the supply port in order to supply and discharge hydraulic oil to and from the oil chamber and the retarding oil chamber. Hydraulic oil supply / discharge means comprising In the valve opening / closing timing control device used for controlling the opening / closing timing of an intake valve or an exhaust valve of an internal combustion engine, the exhaust passage is connected between the discharge port and the discharge passage of the switching valve. A valve opening / closing timing control device comprising a one-way valve that allows only the flow of hydraulic oil to the valve. 前記位相変換手段は、前記回転軸又は前記回転伝達部材の一方に取り付けられたベーンから成ることを特徴とする請求項1に記載の弁開閉時期制御装置。2. The valve opening / closing timing control device according to claim 1, wherein the phase conversion means comprises a vane attached to one of the rotating shaft and the rotation transmitting member.
JP17249397A 1997-06-27 1997-06-27 Valve timing control device Expired - Fee Related JP3821254B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17249397A JP3821254B2 (en) 1997-06-27 1997-06-27 Valve timing control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17249397A JP3821254B2 (en) 1997-06-27 1997-06-27 Valve timing control device

Publications (2)

Publication Number Publication Date
JPH1113433A JPH1113433A (en) 1999-01-19
JP3821254B2 true JP3821254B2 (en) 2006-09-13

Family

ID=15943008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17249397A Expired - Fee Related JP3821254B2 (en) 1997-06-27 1997-06-27 Valve timing control device

Country Status (1)

Country Link
JP (1) JP3821254B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010255533A (en) * 2009-04-24 2010-11-11 Toyota Motor Corp Variable valve timing device

Also Published As

Publication number Publication date
JPH1113433A (en) 1999-01-19

Similar Documents

Publication Publication Date Title
EP1703087B1 (en) Valve opening/closing timing control device
EP0818609B1 (en) Valve timing control devices
JP3801747B2 (en) Valve timing control device
JP4081893B2 (en) Valve timing control device
JP3906763B2 (en) Valve timing control device
JP4440384B2 (en) Valve timing control device
JP2004143971A (en) Valve timing controller
JP3821254B2 (en) Valve timing control device
JP3845986B2 (en) Valve timing control device
US6439183B1 (en) Valve timing adjusting device
JP3760567B2 (en) Valve timing control device
JP3627340B2 (en) Valve timing control device
JP2001289013A (en) Variable valve timing device
JP4016527B2 (en) Valve timing control device
JP3873466B2 (en) Valve timing control device
JP4645561B2 (en) Valve timing control device
JP3812697B2 (en) Valve timing control device
JP4000696B2 (en) Valve timing control device
JP4506059B2 (en) Valve timing control device
JP4026461B2 (en) Valve timing control device
JP4134495B2 (en) Valve timing control device
JP3991473B2 (en) Valve timing control device
JP4035785B2 (en) Valve timing control device
JPH1089021A (en) Valve timing variable device for internal combustion engine
JP4320903B2 (en) Valve timing control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040518

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060601

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060614

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090630

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110630

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110630

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130630

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees