JP4081893B2 - Valve timing control device - Google Patents

Valve timing control device Download PDF

Info

Publication number
JP4081893B2
JP4081893B2 JP33457398A JP33457398A JP4081893B2 JP 4081893 B2 JP4081893 B2 JP 4081893B2 JP 33457398 A JP33457398 A JP 33457398A JP 33457398 A JP33457398 A JP 33457398A JP 4081893 B2 JP4081893 B2 JP 4081893B2
Authority
JP
Japan
Prior art keywords
relative phase
phase
rotation
combustion engine
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP33457398A
Other languages
Japanese (ja)
Other versions
JPH11223112A (en
Inventor
和己 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Aisin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Aisin Corp filed Critical Aisin Seiki Co Ltd
Priority to JP33457398A priority Critical patent/JP4081893B2/en
Publication of JPH11223112A publication Critical patent/JPH11223112A/en
Application granted granted Critical
Publication of JP4081893B2 publication Critical patent/JP4081893B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Valve-Gear Or Valve Arrangements (AREA)
  • Valve Device For Special Equipments (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関の動弁装置において吸気弁又は排気弁の開閉時期を制御するために使用される弁開閉時期制御装置に関する。
【0002】
【従来の技術】
この種の弁開閉時期制御装置の1つとして、カムシャフトと共に回転する回転部材に所定範囲で相対回転可能に外装されクランクシャフトのクランクスプロケット又はプーリからの回転動力が伝達される回転伝達部材と、回転部材に設けられた複数のベーンと、回転伝達部材に設けられた突部と回転部材との間に形成されベーンによって進角用室と遅角用室とに二分される複数の流体圧室と、進角用室に流体を給排する第1流体通路と、遅角用室に流体を給排する第2流体通路と、回転部材と回転伝達部材の相対位相が所定の位相である時に回転部材と回転伝達部材の相対位相を保持する位相保持機構とを備えたものがあり、例えば特開平1−92504号公報や特開平9−250310号公報に開示されている。
【0003】
上記した各公報に開示されている弁開閉時期制御装置においては、第1流体通路を介して進角用室へ作動流体を供給すると共に第2流体通路を介して遅角用室から作動油を排出することにより、回転部材が回転伝達部材に対してベーンが突部の進角側の周方向端面に当接する最大進角位置までの任意な位置に進角方向へ回転して弁開閉時期が進角され、第2流体通路を介して遅角用室へ作動流体を供給すると共に第1流体通路を介して進角用室から作動油を排出することにより、回転部材が回転伝達部材に対してベーンが突部の遅角側の周方向端面に当接する最大遅角位置までの任意な位置に遅角方向へ回転して弁開閉時期が遅角される。
【0004】
また、上記した各公報に開示されている弁開閉時期制御装置においては、内燃機関の運転中、カムシャフトに作用する変動トルクにより回転部材には常に遅角方向への力が作用しており、内燃機関の停止時に流体圧室への作動油の供給が停止されると、流体圧室の油圧によってベーンを保持できなくなり、回転部材は回転伝達部材に対して遅角方向へ回転し(クランクシャフトが完全に停止するまでの間)、回転部材と回転伝達部材は停止直前の両者の相対位相に応じた相対位相で停止する。この状態にて内燃機関が始動されると、上記した遅角方向への力により回転部材は回転伝達部材に対して遅角方向へ回転し、ベーンが突部の遅角側の周方向端面に当接する最大遅角位置での位相となる。この状態にて内燃機関が始動されると、流体圧室の油圧が上昇し該油圧によりベーンを保持することができるようになるまでは不安定な状態となり、カムシャフトに作用する変動トルクによってベーンが振動し、突部の周方向端面と繰り返して衝突して打音が生じたりするので、これを回避するために、位相保持機構により回転部材と回転伝達部材との相対位相が最大遅角位置にて保持されるようになっている。
【0005】
【発明が解決しようとする課題】
ところで、内燃機関の高速回転域では、ピストンが上死点に向かい始めても、吸気が慣性により更にシリンダ内へ入り込もうとするため、吸気弁の閉時期を遅らせることにより体積効率が向上して内燃機関の出力向上を図ることができることが知られている。
【0006】
しかしながら、上記した各公報に開示される弁開閉時期制御装置を吸気弁の開閉時期を制御するために用いる場合には、最大遅角位置での弁開閉時期は、上記したように内燃機関の始動時に吸気が可能な時期に設定される必要があるため、高速回転域において吸気弁の閉時期を遅らせて吸気の慣性による体積効率の向上を図ることができない。これは、最大遅角位置での弁開閉時期を吸気の慣性による体積効率の向上が可能な時期に設定すると、最大遅角位置での内燃機関の始動時に、ピストンが下死点を過ぎ上死点に向かい始めても吸気弁が開いていて、また吸気に慣性がないため、一度吸入した吸気が逆流して排出してしまい、圧縮比が上がらずに、燃焼ができない状態が発生し、内燃機関の始動が困難となるからである。尚、この問題は、最大遅角位置での弁開閉時期を吸気の慣性による体積効率の向上が可能な時期に設定しなくても、上記した各公報に開示される弁開閉時期制御装置のように、最大遅角位置での弁開閉時期を始動時に吸気が可能な時期に設定した場合であっても、吸気弁の閉時期がピストンの下死点後に設定されていると、気圧の低い高所等では発生しやすい。
【0007】
また、上記した各公報に開示される弁開閉時期制御装置を排気弁の開閉時期を制御するために用いる場合にも、排気弁の閉時期を同様に遅らせると、吸気弁と排気弁のオーバーラップ期間が長くなり、内部EGR量(排気ガス再循環量)が増大して内燃機関の始動性の低下を招く。
【0008】
それゆえ、本発明は、内燃機関の始動時におけるベーンによる打音の発生及び始動不良を防止しつつ、その可変制御領域を拡大させることができる弁開閉時期制御装置を提供することを、その課題とする。
【0009】
【課題を解決するための手段】
内燃機関のクランクシャフト又はカムシャフトの一方と共に回転する回転部材と、該回転部材に所定範囲で相対回転可能に装着され前記クランクシャフト又は前記カムシャフトの他方と共に回転する回転伝達部材と、前記回転部材に設けられたベーンと、前記回転部材と前記回転伝達部材との間に形成され前記ベーンによって進角用室と遅角用室とに二分される流体圧室と、前記回転部材と前記回転伝達部材の相対位相が所定の位相である時に前記回転部材と前記回転伝達部材の相対位相を保持する位相保持機構とを備え、前記進角用室及び前記遅角用室へ印加される流体圧によって前記回転部材と前記回転伝達部材が相対回転し、前記クランクシャフトの回転位相に対する前記カムシャフトの回転位相が変更させられることによって前記カムシャフトにより駆動される弁の開閉時期を変更する弁開閉時期制御装置において、前記ベーンにより前記遅角用室の容積が最小とされる最大進角状態における前記回転部材と前記回転伝達部材の相対位相と前記ベーンにより前記進角用室の容積が最小とされる最大遅角状態における前記回転部材と前記回転伝達部材の相対位相の間の中間的な相対位相であって、前記内燃機関が始動可能な弁開閉時期にある時の所定の中間的な相対位相時に前記位相保持機構により前記回転部材と前記回転伝達部材の相対位相が保持されるようにすると共に、前記回転部材と前記回転伝達部材の相対位相を前記内燃機関の始動時に前記所定の中間的な相対位相に規制可能であり、前記内燃機関の停止直前の前記回転部材と前記回転伝達部材との相対位相が、前記所定の中間的な相対位相よりも進角側にある場合には、前記カムシャフトを駆動するために必要な変動トルクの平均値よりも小さい付勢力で進角側に付勢する付勢部材で構成される相対位相規制手段を設けたことである。
【0010】
上記した手段によれば、内燃機関の停止時に流体圧室への作動流体の供給が停止されると、流体圧室の流体圧によってベーンを保持できなくなり、回転部材は回転伝達部材に対して遅角方向へ回転するものの、内燃機関の始動時には相対位相規制手段により回転部材と回転伝達部材の相対位相が所定の中間的な相対位相に規制され、位相保持機構により回転部材と回転伝達部材の相対位相が中間的な相対位相に保持される。これにより、内燃機関の始動時にベーンが回転伝達部材の周方向端面に衝突して打音が発生するのが的確に防止される。
【0011】
また、内燃機関の始動時の弁開閉時期が上記した中間的な相対位相時に得られるので、最遅角位置では中間的な相対位相時よりも更に弁の開閉時期を遅らせることができ、吸気の慣性を利用して体積効率の向上を図ることが可能となると共に、始動時の弁開閉時期を進角させることができ、圧縮比低下等による内燃機関の始動不良を防止することが可能となる。
【0013】
また、上記した手段において、前記位相保持機構を、前記所定の相対位相時において前記第1流体通路及び前記第2流体通路の流体圧が低下した時に前記回転部材と前記回転伝達部材の相対位相を保持するように構成しても良い。
【0014】
【発明の実施の形態】
以下、本発明に従った弁開閉時期制御装置の一実施形態を図面に基づき、説明する。
【0015】
図1乃至図4に示した弁開閉時期制御装置の一実施形態は、当該内燃機関のシリンダヘッド70に回転自在に支持されたカムシャフト10の先端部(図1の右端)に一体的に組付けた内部ロータ20とからなる弁開閉用の回転部材と、カムシャフト10及び内部ロータ20に所定範囲で相対回転可能に外装された外部ロータ30、フロントプレート40、リアプレート50及びリアプレート50の外周に一体的に設けたタイミングスプロケット51から成る回転伝達部材と、内部ロータ20に組付けた5枚のベーン60と、外部ロータ30に組付けたロックピン101等からなる位相保持機構等によって構成されている。なお、タイミングスプロケット51には、周知のように、クランクシャフト53から図示しないクランクスプロケットとタイミングチェーン54を介して図3の時計方向に回転動力が伝達されるように構成されている。
【0016】
カムシャフト10は、吸気弁を開閉する周知のカム11を有していて、内部にはカムシャフト10の軸方向に延びる進角通路12と遅角通路13が設けられている。進角通路12は、カムシャフト10に設けた径方向の通路及び環状溝とシリンダヘッド70に設けた接続通路71を通して制御弁90のハウジング91の接続ポート91aに接続されている。また、遅角通路13は、カムシャフト10に設けた径方向の通路及び環状溝とシリンダヘッド70に設けた接続通路72を介して制御弁90のハウジング91の接続ポート91bに接続されている。尚、図1中、14は遅角通路13の一端開口を閉塞するボールである。
【0017】
図1及び図2において、制御弁90は、ソレノイド95へ通電することによりハウジング91内に軸方向に移動可能に嵌挿されたスプール92を可動コア94と共にスプリング93に抗して図1の左方向へ移動できるものであり、非通電時には当該内燃機関によって駆動されるオイルポンプ110に供給通路100を介して接続されたハウジング91の供給ポート91cがスプール92の環状溝92aを介して接続ポート91bに連通すると共に、接続ポート91aがスプール92の連通路92bを介して排出ポート91dに連通するように、また通電時には供給ポート91cが環状溝92aを介して接続ポート91aに連通すると共に、接続ポート91bが排出ポート91dにスプール92の連通路92cを介して連通するように構成されている。このため、ソレノイド95の非通電時には遅角通路13に作動油が供給され、通電時には進角通路12に作動油が供給され、そのソレノイド95の通電が図示しない制御装置によりデューティ制御される。尚、排出ポート91dはシリンダヘッド70に設けた排出通路73を通してオイルパン111に連通している。
【0018】
図2に示すように、接続通路72には、制御弁90をバイパスしてオイルパン111に連通されるバイパス通路74が接続されている。バイパス通路74中には切換弁120が介装されている。切換弁120は、ソレノイド122へ通電することによりハウジング内に軸方向に移動可能に嵌挿されたスプール121をスプリング123に抗して図2の左側へ移動できるものである。切換弁120は、ソレノイド122の非通電時には接続通路71のバイパス通路74を介したオイルパン111との連通を遮断し、ソレノイド122の通電時には接続通路72をバイパス通路74を介してドレンに連通するように構成されている。尚、ソレノイド122への通電は図示しない制御装置によりオン・オフ制御される。
【0019】
内部ロータ20は、単一の取付ボルト81によってカムシャフト10に一体的に固着されていて、5枚の各ベーン60を夫々径方向に移動可能に取り付けるためのベーン溝21を有すると共に、カムシャフト10及び内部ロータ20と外部ロータ30の相対位相が後述する所定の位相(ベーンの中立位置)で同期したときロックピン101の小径部101aの頭部が所定量嵌入される受容孔26と、この受容孔26に遅角通路12から作動油を給排する通路27と、各ベーン60によって区画された進角用室R1に進角通路12から作動油を給排する通路(進角通路12に連通する径方向通路22と、この径方向通路22に連通する環状溝と、この環状溝から径方向外方に延びる5個の連通孔からなる)24と、各ベーン60によって区画された遅角用室R2に遅角通路13から作動油を給排する通路25を有している。受容孔26は、内部ロータ20の外周に径方向に形成されている。尚、各ベーン60は、ベーン溝21の底部に収容したベーンスプリング61(図1参照)によって径方向外方に付勢されている。
【0020】
外部ロータ30は、内部ロータ20の外周に所定範囲で相対回転可能に組付けられていて、その両側にはフロントプレート40とリアプレート50が接合され、3本の連結ボルト82によって一体的に連結されている。また、外部ロータ30の内周には所定の周方向間隔で5個の突部31が径方向内方に向けて夫々突出形成されていて、これら突部31の内周面が内部ロータ20の外周面に摺接する構成で外部ロータ30が内部ロータ20に回転自在に支承されており、一つの突部31にはロックピン101とスプリング102を収容する段付状の退避孔32が外部ロータ30の径方向に形成されている。
【0021】
各ベーン60は、先端の断面形状が円弧形状であり、両プレート40、50間にて内部ロータ20のベーン溝21に径方向に移動可能に取り付けられていて、外部ロータ30と、外部ロータ30の各突部31と、内部ロータ20と、フロントプレート40と、リアプレート50との間に形成される流体圧室R0を進角用室R1と遅角用室R2とに二分しており、外部ロータ30に形成した各突部31の周方向端面に当接することにより、当該弁開閉時期制御装置により調整される位相(相対回転量)が制限されるようになっている。
【0022】
ロックピン101は、その小径部101a及び大径部101bを段付状の退避孔32内に軸方向へ摺動可能に組み付けられていて、スプリング102によって内部ロータ20に向けて付勢されている。スプリング102はロックピン101とリテーナ103間に介装されていて、リテーナ103は退避孔32内にてスナップリング104により抜け止め固定されている。ロックピン101の小径部101aと大径部101b間の段部には環状の窪みが形成されていて、カムシャフト10及び内部ロータ20と外部ロータ30の相対位相が、受容孔26と退避孔32が同期する所定の位相(ベーンの中立位置)にて、ロックピン101の小径部101aの頭部が受容孔26に嵌入された図3の状態にて、退避孔32の段部との間で環状空間34が形成されるようになっている。この環状空間34は、突部31に形成される連通孔33を介して隣設された進角用室R1に連通されている。
【0023】
ところで、カムシャフト10を駆動するために必要なトルクは、一定ではなく、図示しない吸気弁の開閉駆動に基いて変動している。即ち、図5に示すように、このトルクは、カムシャフト10が吸気弁を開弁する際に生じる遅角側トルク(カムシャフト10を遅角方向(図3、図4における反時計方向)へ回転させるように作用するトルク)の最大値とカムシャフト10が吸気弁を閉弁させる際に生じる進角側トルク(カムシャフト10を進角方向(図3、図4における時計方向)へ回転させるように作用するトルク)の最大値との間で周期的に変動している。図5に示すように、この変動トルクの遅角側トルクの最大値は進角側トルクの最大値よりも大きく、そのため、変動トルクの平均値は図5に一点鎖線で示すように遅角側トルク側に存在している。従って、内燃機関の運転中、変動トルクは、平均的にカムシャフト10を遅角側に回転させるように作用している。
【0024】
本実施形態においては、カムシャフト10が内部ロータ20及びベーン60からなる回転部材と共に外部ロータ30、フロントプレート40、リアプレート50及びリアプレート50等からなる回転伝達部材に対して、トーションコイルスプリング80により上記変動トルクの平均値相当の付勢力で常時進角方向に付勢されている。トーションコイルスプリング80は、内部ロータ20の後端面に対向するリアプレート50の部分に内部ロータ20側に開口するように形成された環状の中空部52内に収容されている。トーションコイルスプリング80の一端は、中空部52の底部に形成される係止孔50aに係止され、他端は中空部52の開口に対向する内部ロータ20の端面に形成される係止孔20aに係止されている。
【0025】
また、本実施形態においては、上記したようにカムシャフト10及び内部ロータ20と外部ロータ30の相対位相が、各ベーン60が各流体圧室R0内にて中立位置にある時(各ベーンが各突部31の進角側の周方向端面及び遅角側の周方向端面にも当接しない位置にある中間位相の時)に退避孔32と受容孔26が同期するようになっていて、この相対位相にある時、図示しない吸気弁の開閉時期が内燃機関の始動が可能な時期になるように設定されている。
【0026】
上記のように構成した本実施形態の弁開閉時期制御装置においては、図4に示した状態、すなわち内燃機関が始動され各進角用室R1及び各遅角用室R2に所定油圧が供給される中間位相でのバランス状態(各進角用室R1内の進角油圧による押圧力とトーションコイルスプリング80の付勢力との和が、各遅角用室R2内の遅角油圧による押圧力とカムシャフト10に作用する変動トルクの平均トルクとの和とバランスしている状態)において、内燃機関の運転状態に応じて、制御弁90のソレノイド95へ供給される電流のデューティ比を高くすることにより、進角通路12と通路24を通して各進角用室R1に作動油が供給されると共に、各遅角用室R2から各通路25と遅角通路13と制御弁90等を通して作動油が排出されると、内部ロータ20と各ベーン60が外部ロータ30、両プレート40、50等に対して進角側(図4の時計方向)に相対回転し、この相対回転量(最大進角量)は図4に一点鎖線で示すように各ベーン60が突部31の進角側の周方向端面に当接することにより制限される。また、制御弁90のソレノイド95へ供給される電流のデューティ比を低くすることにより、遅角通路13と通路25を通して各遅角用室R2に作動油が供給されると共に、各進角用室R1から各通路24と進角通路12と制御弁90等を通して作動油が排出されると、内部ロータ20と各ベーン60が外部ロータ30、両プレート40、50等に対して遅角側(図4の反時計方向)に相対回転し、この相対回転量(最大遅角量)は各ベーン60が突部31の他端面に当接することにより制限される。尚、この位相変換制御中は、受容孔26或いは退避孔32内の環状空間34の少なくともいずれか一方に通路27或いは連通孔33を通して所定油圧が供給されており、ロックピン101がスプリング102に抗して移動し、ロックピン101の小径部101aの頭部が受容孔26から退避孔32に退避して、ロックピン101によるロックが解除されている。また、上記した位相変換制御中、切換弁120は非通電状態にあり、接続通路72とオイルパン111との連通を遮断している。
【0027】
本実施形態においては、上記したように内部ロータ20と外部ロータ30の相対位相が、各ベーン60が各流体圧室R0内にて中立位置(図3、図4に示す位置)にあり、退避孔32と受容孔26が同期する所定位相にある時、図示しない吸気弁の開閉時期が内燃機関の始動が可能な時期になるように設定されている。そのため、この中立位置からベーン60が遅角側の突部31の周方向端面に当接する最遅角位置までは内燃機関が始動可能な弁開閉時期よりも更に弁の開閉時期を遅らせることができ、内燃機関の高速回転時に、上記したように制御弁90を制御して中立位置より遅角側へ位相変換し、内燃機関の始動が困難な時期まで図示しない吸気弁の閉時期を遅らせることで、吸気の慣性により体積効率が向上し、内燃機関の出力向上を図ることができる。
【0028】
内燃機関の停止時には、オイルポンプ110の駆動が停止されて流体圧室R0への作動油の供給が停止されると共に、制御弁90が非通電状態とされる。これにより、進角用室R1内の進角油圧による押圧力と遅角用室R2内の遅角油圧による押圧力がベーン60に作用しなくなり、内部ロータ20及びカムシャフト10には、上記した変動トルクの平均値(内燃機関のクランクシャフト53が完全に停止するまでの間)とトーションコイルスプリング80の付勢力のみが作用しており、停止直前の内部ロータ20と外部ロータ30の相対位相に応じて停止時の内部ロータ20と外部ロータ30の相対位相が決まることになる。この時、停止時の内部ロータ20と外部ロータ30の相対位相が、退避孔32と受容孔26が同期する所定位相にあれば、図3に示すように、スプリング102によりロックピン101の小径部101aの頭部が受容孔26内に嵌入し、内部ロータ20と外部ロータ30の相対位相が保持(ロック)される。また、停止直前の内部ロータ20と外部ロータ30の相対位相が、退避孔32と受容孔26が同期する所定位相よりも進角側にある場合には、カムシャフト10に作用する変動トルクの遅角側トルクにより内部ロータ20及びカムシャフト10が外部ロータ30に対して遅角側へ回転し、退避孔32と受容孔26が同期する所定位相になった時にスプリング102によりロックピン101の小径部101aの頭部が受容孔26内に嵌入し、内部ロータ20と外部ロータ30の相対位相が保持(ロック)される。尚、この時、内燃機関のクランクシャフト53が完全に停止するまでの間は、図5に示す変動トルクがカムシャフト10に作用するが、制御弁90が非通電状態とされているため、カムシャフト10に作用する進角側トルクにより内部ロータ20及びカムシャフト10は外部ロータ30に対して進角側には回転し難く、遅角側には遅角側トルクにより回転し易くなる。また、トーションコイルスプリング80により内部ロータ20が変動トルクの平均値相当の付勢力で外部ロータ30に対して進角側に付勢されているため、カムシャフト10に作用する遅角側トルクの最大値は減少されており、外部ロータ30に対する内部ロータ20の上記した遅角側への回転時にロックピン101の小径部101aの頭部が受容孔26内に嵌入し易い。
【0029】
本実施形態においては、内燃機関の始動時に図示しないスタータスイッチがオンされると、スタータスイッチがオンされてから所定時間だけ切換弁120のソレノイド122へ通電されて、遅角通路13に連通される接続通路72がオイルパン111に接続される。これにより、内燃機関の始動時には、制御弁90は非通電状態にあることから、進角用室R1及び遅角用室R2は共にオイルパン111に連通される。このため、内燃機関の始動時にはトーションコイルスプリング80の付勢力とカムシャフト10に作用する変動トルクにより内部ロータ20が外部ロータ30に対して遅角側及び進角側に大きくばたつき易くなる(振動し易くなる)。この時、上記したように、内燃機関の停止時の内部ロータ20と外部ロータ30の相対位相が退避孔32と受容孔26が同期する所定位相、或いは内燃機関の停止直前の内部ロータ20と外部ロータ30の相対位相が所定位相よりも進角側にある場合には、ロックピン101の小径部101aの頭部が受容孔26内に嵌入しているため、内部ロータ20及びベーン60のばたつきが防止される。
【0030】
ところで、内燃機関の停止直前の内部ロータ20と外部ロータ30の相対位相が、退避孔32と受容孔26が同期する所定位相よりも遅角側にある場合には、ロックピン101の頭部が受容孔26に嵌入されない状態で内燃機関が停止されることがある。この状態にて内燃機関が始動されると、カムシャフト10に作用する変動トルクにより内部ロータ20及びカムシャフト10が外部ロータ30に対して遅角側に回転し、最大遅角状態となり、内燃機関の始動が困難となる恐れがある。本実施形態においては、上記したように、内燃機関の始動時に進角用室R1と遅角用室R2が共にオイルパン111に連通されていると共に内部ロータ20がトーションコイルスプリング80により外部ロータ30に対して変動トルクの平均値相当の付勢力で進角側に付勢されているため、変動トルクにより内部ロータ20及びカムシャフト10が進角側及び遅角側に大きくばたつき(振動し)、進角側へばたついた時に、退避孔32と受容孔26が同期してロックピン101の小径部101aの頭部が受容孔26内に嵌入し、内部ロータ20と外部ロータ30の相対位相が保持(ロック)される。
【0031】
よって、内燃機関の始動時には、内部ロータ20及び各ベーン60等から成るの回転部材と、外部ロータ30、フロントプレート40及びリアプレート50等から成る回転伝達部材の不必要な相対回転が規制され、カムシャフト10に作用する変動トルクに起因する回転部材と回転伝達部材の不必要な相対回転に伴うベーン60による打音の発生を防止することができる。
【0032】
以上のように、本実施形態によれば、内燃機関の始動時におけるベーン60と突部31の周方向端面との衝突による打音の発生を防止しつつ、内燃機関の高速回転域において体積効率の向上を図ることができる。
【0033】
上記した実施形態においては、各ベーン60が各突部31の周方向端面に当接することにより、内部ロータ20等の回転部材と外部ロータ30等の回転伝達部材の相対回転量が制限される弁開閉時期制御装置に本発明を実施したが、本発明は1枚のベーンのみが対応する突部の周方向端面に当接することにより回転部材と回転伝達部材の相対回転量が制限される弁開閉時期制御装置にも同様に実施し得るものである。また、本実施形態においては、ベーンが内部ロータと別体に設けられると共に、受容孔及び退避孔が径方向に形成され、ロックピンが径方向に移動する弁開閉時期制御装置に本発明を実施したが、本発明はベーンが周方向に厚肉とされて内部ロータに一体に設けられ、該ベーン又はリアプレート(又はフロントプレート)に退避孔を軸方向に形成すると共にリアプレート(又はフロントプレート)又はベーンに受容孔を軸方向に形成し、ロックピンが軸方向に移動する弁開閉時期制御装置にも同様に実施し得るものである。
【0034】
また、更に、上記実施形態においては、吸気用のカムシャフト10に組付けられる弁開閉時期制御装置に本発明を実施したが、本発明は排気用のカムシャフトに組付けられる弁開閉時期制御装置にも同様に実施し得るものである。
【0035】
【発明の効果】
以上の如く、本発明によれば、内燃機関の停止時に流体圧室への作動流体の供給が停止されると、流体圧室の流体圧によってベーンを保持できなくなり、回転部材は回転伝達部材に対して遅角方向へ回転するものの、内燃機関の始動時には相対位相規制手段により回転部材と回転伝達部材の相対位相が最大遅角位置と最大進角位置の間の中間的な相対位相であって、内燃機関が始動可能な弁開閉時期にある時の回転部材と回転伝達部材の所定の相対位相に位置され、この所定の相対位相が位相保持機構により保持される。これにより、内燃機関の始動時に、カムシャフトに作用する変動トルクによりベーンが回転伝達部材の周方向端面に衝突して打音が発生するのを的確に防止することができる。
【0036】
また、内燃機関の始動時の弁開閉時期が上記した中間的な相対位相時に得られるので、最遅角位置では中間的な相対位相時よりも更に弁の開閉時期を遅らせることができ、内燃機関の高速回転時に吸気の慣性を利用して体積効率の向上を図ることで内燃機関の出力を向上することができると共に、始動時の弁開閉時期を進角させることができ、圧縮比低下等による内燃機関の始動不良を防止することができる。
【図面の簡単な説明】
【図1】本発明に従った弁開閉時期制御装置の一実施形態を示す縦断側面図である。
【図2】図1に示す一実施形態における制御弁及び切換弁の概略構成図である。
【図3】位相保持機構により位相が保持されている状態を示す図1のA−A断面図である。
【図4】位相保持機構が解除されている状態を示す図1のA−A断面図である。
【図5】カムシャフトに作用するトルクの変動を示すグラフである。
【符号の説明】
10 カムシャフト
12 進角通路
13 遅角通路
20 内部ロータ(回転部材)
24 通路
25 通路
26 受容孔
30 外部ロータ(回転伝達部材)
31 突部
32 退避孔
33 連通孔
40 フロントプレート(回転伝達部材)
50 リアプレート(回転伝達部材)
51 タイミングスプロケット(回転伝達部材)
53 クランクシャフト
60 ベーン
70 シリンダヘッド
80 トーションコイルスプリング(相対位相規制手段、付勢部材)
90 制御弁
120 切換弁
R0 流体圧室
R1 進角用室
R2 遅角用室
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a valve opening / closing timing control device used for controlling the opening / closing timing of an intake valve or an exhaust valve in a valve operating apparatus for an internal combustion engine.
[0002]
[Prior art]
As one of the valve opening / closing timing control devices of this type, a rotation transmission member that is mounted on a rotation member that rotates together with a camshaft so as to be relatively rotatable in a predetermined range and that transmits rotational power from a crank sprocket or pulley of the crankshaft; A plurality of vanes provided on the rotating member, and a plurality of fluid pressure chambers formed between the protrusion provided on the rotation transmitting member and the rotating member and divided into an advance chamber and a retard chamber by the vane A first fluid passage for supplying and discharging fluid to the advance chamber, a second fluid passage for supplying and discharging fluid to the retard chamber, and a relative phase of the rotation member and the rotation transmission member is a predetermined phase Some have a phase holding mechanism that holds the relative phase of the rotating member and the rotation transmitting member, and are disclosed in, for example, Japanese Patent Laid-Open Nos. 1-92504 and 9-250310.
[0003]
In the valve opening / closing timing control device disclosed in each of the above publications, the working fluid is supplied to the advance chamber through the first fluid passage, and the working oil is supplied from the retard chamber through the second fluid passage. By discharging, the rotation member rotates in the advance direction to any position up to the maximum advance position where the vane contacts the circumferential end surface on the advance side of the protrusion with respect to the rotation transmission member, and the valve opening / closing timing is The rotating member is advanced and supplied to the retarding chamber through the second fluid passage, and the working oil is discharged from the advance chamber through the first fluid passage, so that the rotating member moves against the rotation transmitting member. Then, the vane rotates in the retarding direction to an arbitrary position up to the maximum retarding position where the vane contacts the circumferential end surface on the retarding side of the protrusion, and the valve opening / closing timing is retarded.
[0004]
Further, in the valve opening / closing timing control device disclosed in each of the above-mentioned publications, during the operation of the internal combustion engine, a force in the retarding direction always acts on the rotating member due to the variable torque acting on the camshaft, If the supply of hydraulic oil to the fluid pressure chamber is stopped when the internal combustion engine is stopped, the vane cannot be held by the hydraulic pressure in the fluid pressure chamber, and the rotating member rotates in a retarded direction with respect to the rotation transmission member (crankshaft). Until the rotation is completely stopped), the rotation member and the rotation transmission member are stopped at a relative phase corresponding to the relative phase of both of them immediately before the stop. When the internal combustion engine is started in this state, the rotating member rotates in the retarding direction with respect to the rotation transmitting member by the force in the retarding direction described above, and the vane is placed on the circumferential end surface on the retarding side of the protrusion. It is the phase at the maximum retard angle position that abuts. When the internal combustion engine is started in this state, the hydraulic pressure in the fluid pressure chamber rises and becomes unstable until the vane can be held by the hydraulic pressure, and the vane is caused by the fluctuation torque acting on the camshaft. In order to avoid this, the relative phase between the rotating member and the rotation transmitting member is set to the maximum retarded angle position by the phase holding mechanism. It is to be held at.
[0005]
[Problems to be solved by the invention]
By the way, in the high-speed rotation region of the internal combustion engine, even if the piston starts to approach the top dead center, the intake air tends to enter the cylinder further due to inertia, so that the volume efficiency is improved by delaying the closing timing of the intake valve. It is known that the output can be improved.
[0006]
However, when the valve opening / closing timing control device disclosed in each of the above publications is used to control the opening / closing timing of the intake valve, the valve opening / closing timing at the maximum retard position is determined as described above. Since it is sometimes necessary to set the timing at which intake is possible, the volumetric efficiency cannot be improved due to the inertia of the intake by delaying the closing timing of the intake valve in the high-speed rotation range. This is because if the valve opening / closing timing at the maximum retarded position is set to a time when volumetric efficiency can be improved by the inertia of the intake air, the piston will pass the bottom dead center at the time of starting the internal combustion engine at the maximum retarded position and top dead. The intake valve is open even if it starts to reach the point, and since there is no inertia in the intake air, the intake air once sucked back flows out and is discharged, the compression ratio does not rise, and the combustion cannot occur, and the internal combustion engine This is because it becomes difficult to start. Note that this problem is not caused by the valve opening / closing timing control device disclosed in each of the above publications, even if the valve opening / closing timing at the maximum retardation position is not set to a time at which volumetric efficiency can be improved by the inertia of intake air. Even when the valve opening / closing timing at the maximum retarded angle position is set to a timing at which intake is possible at start-up, if the closing timing of the intake valve is set after the bottom dead center of the piston, It is likely to occur in places.
[0007]
Further, when the valve opening / closing timing control device disclosed in each of the above publications is used to control the opening / closing timing of the exhaust valve, if the closing timing of the exhaust valve is similarly delayed, the overlap between the intake valve and the exhaust valve is also achieved. The period becomes longer, the internal EGR amount (exhaust gas recirculation amount) increases, and the startability of the internal combustion engine decreases.
[0008]
SUMMARY OF THE INVENTION Therefore, it is an object of the present invention to provide a valve opening / closing timing control device capable of expanding the variable control region while preventing the occurrence of a hammering sound caused by a vane at the time of starting an internal combustion engine and starting failure. And
[0009]
[Means for Solving the Problems]
A rotating member that rotates together with one of a crankshaft or a camshaft of an internal combustion engine, a rotation transmission member that is mounted on the rotating member so as to be relatively rotatable within a predetermined range, and that rotates together with the other of the crankshaft or the camshaft; A fluid pressure chamber formed between the rotation member and the rotation transmission member and divided into an advance chamber and a retard chamber by the vane, and the rotation member and the rotation transmission. Element When The rotation member and the rotation transmission member when the relative phase of the rotation is a predetermined phase When A phase holding mechanism for holding the relative phase of the rotating member and the rotation transmitting member by fluid pressure applied to the advance angle chamber and the retard angle chamber. When In the valve opening / closing timing control device that changes the opening / closing timing of the valve driven by the camshaft by changing the rotation phase of the camshaft relative to the rotation phase of the crankshaft. The rotating member and the rotation transmitting member in a maximum advance state in which the volume of the corner chamber is minimized When The rotating member and the rotation transmitting member in the maximum retarded state in which the volume of the advance chamber is minimized by the relative phase of the vane and the vane When Between the relative phases of the rotating member and the rotation transmitting member by the phase holding mechanism at a predetermined intermediate relative phase when the internal combustion engine is in a valve opening / closing timing at which the internal combustion engine can be started. When The relative phase of the rotating member and the rotation transmitting member are maintained. When Relative phase of the predetermined phase when the internal combustion engine is started. Intermediate Regulated to relative phase And when the relative phase between the rotating member and the rotation transmitting member immediately before the stop of the internal combustion engine is on the advance side with respect to the predetermined intermediate relative phase, the camshaft is driven. It is composed of a biasing member that biases to the advance side with a biasing force smaller than the average value of the fluctuation torque required for The relative phase restricting means is provided.
[0010]
According to the above means, if the supply of the working fluid to the fluid pressure chamber is stopped when the internal combustion engine is stopped, the vane cannot be held by the fluid pressure in the fluid pressure chamber, and the rotating member is delayed with respect to the rotation transmitting member. Although rotating in the angular direction, when the internal combustion engine is started, the relative phase restriction means restricts the relative phase between the rotating member and the rotation transmitting member to a predetermined intermediate relative phase, and the phase holding mechanism causes the relative rotation between the rotating member and the rotation transmitting member. The phase is maintained at an intermediate relative phase. As a result, it is possible to accurately prevent the vane from colliding with the circumferential end surface of the rotation transmission member and generating sound when starting the internal combustion engine.
[0011]
Further, since the valve opening / closing timing at the start of the internal combustion engine is obtained at the intermediate relative phase described above, the valve opening / closing timing can be further delayed at the most retarded position than at the intermediate relative phase, It is possible to improve the volumetric efficiency by utilizing inertia, advance the valve opening / closing timing at the time of starting, and prevent the starting failure of the internal combustion engine due to a decrease in the compression ratio or the like. .
[0013]
In the above-described means, the phase holding mechanism may be configured to change a relative phase between the rotating member and the rotation transmitting member when a fluid pressure in the first fluid passage and the second fluid passage is reduced at the predetermined relative phase. You may comprise so that it may hold | maintain.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of a valve timing control apparatus according to the present invention will be described with reference to the drawings.
[0015]
One embodiment of the valve opening / closing timing control device shown in FIGS. 1 to 4 is assembled integrally with the tip end portion (right end in FIG. 1) of the camshaft 10 rotatably supported by the cylinder head 70 of the internal combustion engine. A rotary member for opening and closing a valve comprising an attached internal rotor 20, and an external rotor 30, a front plate 40, a rear plate 50, and a rear plate 50 that are externally mounted on the camshaft 10 and the internal rotor 20 so as to be relatively rotatable within a predetermined range. A rotation transmission member composed of a timing sprocket 51 provided integrally on the outer periphery, five vanes 60 assembled to the inner rotor 20, a phase holding mechanism composed of a lock pin 101 and the like assembled to the outer rotor 30, etc. Has been. As is well known, the timing sprocket 51 is configured so that rotational power is transmitted in the clockwise direction in FIG. 3 from a crankshaft 53 via a crank sprocket (not shown) and a timing chain 54.
[0016]
The camshaft 10 has a known cam 11 that opens and closes an intake valve, and an advance angle passage 12 and a retard angle passage 13 that extend in the axial direction of the camshaft 10 are provided therein. The advance passage 12 is connected to a connection port 91 a of the housing 91 of the control valve 90 through a radial passage provided in the camshaft 10 and an annular groove and a connection passage 71 provided in the cylinder head 70. The retard passage 13 is connected to a connection port 91 b of the housing 91 of the control valve 90 via a radial passage provided in the camshaft 10 and an annular groove and a connection passage 72 provided in the cylinder head 70. In FIG. 1, reference numeral 14 denotes a ball that closes one end opening of the retard passage 13.
[0017]
1 and 2, the control valve 90 has a spool 92, which is inserted in the housing 91 so as to be movable in the axial direction by energizing the solenoid 95, together with the movable core 94 against the spring 93. The supply port 91c of the housing 91, which is connected to the oil pump 110 driven by the internal combustion engine through the supply passage 100 when not energized, is connected to the connection port 91b via the annular groove 92a of the spool 92. And the connection port 91a communicates with the discharge port 91d through the communication passage 92b of the spool 92, and the supply port 91c communicates with the connection port 91a through the annular groove 92a when energized. 91 b is configured to communicate with the discharge port 91 d through the communication path 92 c of the spool 92. There. Therefore, hydraulic oil is supplied to the retard passage 13 when the solenoid 95 is not energized, and hydraulic oil is supplied to the advance passage 12 when the solenoid 95 is energized. The energization of the solenoid 95 is duty-controlled by a control device (not shown). The discharge port 91 d communicates with the oil pan 111 through a discharge passage 73 provided in the cylinder head 70.
[0018]
As shown in FIG. 2, a bypass passage 74 that bypasses the control valve 90 and communicates with the oil pan 111 is connected to the connection passage 72. A switching valve 120 is interposed in the bypass passage 74. The switching valve 120 can move the spool 121 inserted in the housing so as to be movable in the axial direction to the left in FIG. The switching valve 120 blocks communication with the oil pan 111 via the bypass passage 74 of the connection passage 71 when the solenoid 122 is not energized, and connects the connection passage 72 to the drain via the bypass passage 74 when the solenoid 122 is energized. It is configured as follows. The energization of the solenoid 122 is on / off controlled by a control device (not shown).
[0019]
The inner rotor 20 is integrally fixed to the camshaft 10 by a single mounting bolt 81, has a vane groove 21 for movably mounting each of the five vanes 60 in the radial direction, and the camshaft. 10 and a receiving hole 26 into which a predetermined amount of the head of the small-diameter portion 101a of the lock pin 101 is inserted when the relative phases of the inner rotor 20 and the outer rotor 30 are synchronized at a predetermined phase (vane neutral position) described later. A passage 27 for supplying and discharging hydraulic oil from the retard passage 12 to the receiving hole 26, and a passage for supplying and discharging hydraulic oil from the advance passage 12 to the advance chamber R1 defined by the vanes 60 (in the advance passage 12). Each of the vanes 60 is defined by a radial passage 22 that communicates, an annular groove that communicates with the radial passage 22, and five communication holes that extend radially outward from the annular groove. And a passage 25 for supplying and discharging hydraulic oil from the retarded angle passage 13 to the retarded angle chamber R2 was. The receiving hole 26 is formed in the radial direction on the outer periphery of the inner rotor 20. Each vane 60 is urged radially outward by a vane spring 61 (see FIG. 1) accommodated in the bottom of the vane groove 21.
[0020]
The outer rotor 30 is assembled to the outer periphery of the inner rotor 20 so as to be relatively rotatable within a predetermined range. A front plate 40 and a rear plate 50 are joined to both sides of the outer rotor 30 and are integrally connected by three connecting bolts 82. Has been. In addition, five protrusions 31 are formed on the inner periphery of the outer rotor 30 at predetermined intervals in the radial direction, and the inner peripheral surface of these protrusions 31 is the inner rotor 20. The outer rotor 30 is rotatably supported by the inner rotor 20 so as to be in sliding contact with the outer peripheral surface. A stepped retraction hole 32 that accommodates the lock pin 101 and the spring 102 is provided in one protrusion 31. It is formed in the radial direction.
[0021]
Each vane 60 has a circular arc cross-sectional shape at the tip, and is attached to the vane groove 21 of the internal rotor 20 between the plates 40 and 50 so as to be movable in the radial direction. The fluid pressure chamber R0 formed between each of the projections 31, the inner rotor 20, the front plate 40, and the rear plate 50 is divided into an advance chamber R1 and a retard chamber R2. The phase (relative rotation amount) adjusted by the valve opening / closing timing control device is limited by coming into contact with the circumferential end surface of each protrusion 31 formed on the external rotor 30.
[0022]
The lock pin 101 is assembled such that the small diameter portion 101 a and the large diameter portion 101 b are slidable in the axial direction in the stepped retraction hole 32, and is urged toward the internal rotor 20 by the spring 102. . The spring 102 is interposed between the lock pin 101 and the retainer 103, and the retainer 103 is secured to the escape hole 32 by a snap ring 104. An annular recess is formed in the step portion between the small diameter portion 101 a and the large diameter portion 101 b of the lock pin 101, and the relative phase of the camshaft 10, the internal rotor 20, and the external rotor 30 depends on the receiving hole 26 and the retraction hole 32. 3 in a state where the head of the small-diameter portion 101a of the lock pin 101 is fitted into the receiving hole 26 at a predetermined phase (vane neutral position) synchronized with the stepped portion of the retraction hole 32. An annular space 34 is formed. The annular space 34 communicates with an advance angle chamber R <b> 1 provided adjacently via a communication hole 33 formed in the protrusion 31.
[0023]
By the way, the torque required to drive the camshaft 10 is not constant and varies based on opening / closing driving of an intake valve (not shown). That is, as shown in FIG. 5, this torque is retarded when the camshaft 10 opens the intake valve (the camshaft 10 is moved in the retarding direction (counterclockwise in FIGS. 3 and 4)). (The torque that acts to rotate) and the advance side torque generated when the camshaft 10 closes the intake valve (rotates the camshaft 10 in the advance direction (clockwise in FIGS. 3 and 4)). And the maximum value of the torque that acts in this manner are periodically fluctuating. As shown in FIG. 5, the maximum value of the retard side torque of the variable torque is larger than the maximum value of the advance side torque. Therefore, the average value of the variable torque is on the retard side as shown by a one-dot chain line in FIG. Present on the torque side. Therefore, during operation of the internal combustion engine, the fluctuation torque acts to rotate the camshaft 10 to the retard side on average.
[0024]
In the present embodiment, the torsion coil spring 80 is applied to the rotation transmission member including the outer rotor 30, the front plate 40, the rear plate 50, the rear plate 50 and the like together with the rotating member including the camshaft 10 including the inner rotor 20 and the vane 60. Therefore, it is always urged in the advance angle direction with an urging force equivalent to the average value of the above-mentioned fluctuation torque. The torsion coil spring 80 is accommodated in an annular hollow portion 52 formed so as to open to the inner rotor 20 side at a portion of the rear plate 50 facing the rear end surface of the inner rotor 20. One end of the torsion coil spring 80 is locked in a locking hole 50 a formed at the bottom of the hollow portion 52, and the other end is a locking hole 20 a formed in the end surface of the internal rotor 20 facing the opening of the hollow portion 52. It is locked to.
[0025]
In the present embodiment, as described above, the relative phases of the camshaft 10, the inner rotor 20, and the outer rotor 30 are determined when each vane 60 is in a neutral position in each fluid pressure chamber R0 (each vane is The retracting hole 32 and the receiving hole 26 are synchronized with each other at the intermediate phase at a position where they do not contact the circumferential end surface on the advance side and the circumferential end surface on the retard side of the protrusion 31. When in the relative phase, the opening / closing timing of an intake valve (not shown) is set to a timing at which the internal combustion engine can be started.
[0026]
In the valve timing control apparatus of the present embodiment configured as described above, the state shown in FIG. 4, that is, the internal combustion engine is started, and a predetermined hydraulic pressure is supplied to each advance chamber R1 and each retard chamber R2. (The sum of the pressing force by the advance hydraulic pressure in each advance chamber R1 and the urging force of the torsion coil spring 80 is the sum of the pressing force by the retard hydraulic pressure in each retard chamber R2) In a state balanced with the sum of the average torque of the fluctuating torque acting on the camshaft 10), the duty ratio of the current supplied to the solenoid 95 of the control valve 90 is increased in accordance with the operating state of the internal combustion engine. Thus, hydraulic oil is supplied to each advance chamber R1 through the advance passage 12 and the passage 24, and the hydraulic oil is discharged from each retard chamber R2 through each passage 25, the retard passage 13, the control valve 90, and the like. When The rotor 20 and the vanes 60 rotate relative to the external rotor 30, the plates 40, 50, etc. in the advance side (clockwise in FIG. 4), and the relative rotation amount (maximum advance angle amount) is shown in FIG. As indicated by the alternate long and short dash line, each vane 60 is restricted by contacting the circumferential end surface of the protrusion 31 on the advance side. Further, by reducing the duty ratio of the current supplied to the solenoid 95 of the control valve 90, the hydraulic oil is supplied to each retard chamber R2 through the retard passage 13 and the passage 25, and each advance chamber is provided. When hydraulic fluid is discharged from R1 through each passage 24, advance passage 12, control valve 90, etc., the inner rotor 20 and each vane 60 are retarded with respect to the outer rotor 30, both plates 40, 50, etc. (see FIG. 4 (counterclockwise 4), and the relative rotation amount (maximum retardation amount) is limited by the contact of each vane 60 with the other end surface of the protrusion 31. During the phase conversion control, a predetermined hydraulic pressure is supplied to at least one of the receiving hole 26 or the annular space 34 in the retraction hole 32 through the passage 27 or the communication hole 33, and the lock pin 101 resists the spring 102. Thus, the head of the small-diameter portion 101a of the lock pin 101 is retracted from the receiving hole 26 to the retract hole 32, and the lock by the lock pin 101 is released. Further, during the phase conversion control described above, the switching valve 120 is in a non-energized state and blocks communication between the connection passage 72 and the oil pan 111.
[0027]
In the present embodiment, as described above, the relative phase between the inner rotor 20 and the outer rotor 30 is such that each vane 60 is in a neutral position (position shown in FIGS. 3 and 4) in each fluid pressure chamber R0, and is retracted. When the hole 32 and the receiving hole 26 are in a predetermined phase that is synchronized, the opening / closing timing of an intake valve (not shown) is set to be a timing at which the internal combustion engine can be started. Therefore, the valve opening / closing timing can be further delayed from the neutral position to the most retarded position where the vane 60 comes into contact with the circumferential end surface of the retarded protrusion 31 from the valve opening / closing timing at which the internal combustion engine can be started. When the internal combustion engine rotates at high speed, the control valve 90 is controlled as described above to perform phase conversion from the neutral position to the retard side, thereby delaying the closing timing of the intake valve (not shown) until it is difficult to start the internal combustion engine. The volumetric efficiency is improved by the inertia of the intake air, and the output of the internal combustion engine can be improved.
[0028]
When the internal combustion engine is stopped, the drive of the oil pump 110 is stopped, the supply of hydraulic oil to the fluid pressure chamber R0 is stopped, and the control valve 90 is turned off. As a result, the pressing force by the advance hydraulic pressure in the advance chamber R1 and the press force by the retard hydraulic pressure in the retard chamber R2 do not act on the vane 60, and the internal rotor 20 and the camshaft 10 have the above-described effects. Only the average value of the fluctuating torque (until the crankshaft 53 of the internal combustion engine completely stops) and the urging force of the torsion coil spring 80 are acting, and the relative phases of the internal rotor 20 and the external rotor 30 immediately before the stop are acting. Accordingly, the relative phase between the internal rotor 20 and the external rotor 30 at the time of stop is determined. At this time, if the relative phase between the internal rotor 20 and the external rotor 30 at the time of stop is in a predetermined phase in which the retracting hole 32 and the receiving hole 26 are synchronized, as shown in FIG. The head of 101a is fitted into the receiving hole 26, and the relative phase between the inner rotor 20 and the outer rotor 30 is maintained (locked). Further, when the relative phase of the internal rotor 20 and the external rotor 30 immediately before the stop is on the advance side with respect to the predetermined phase in which the retraction hole 32 and the receiving hole 26 are synchronized, the fluctuation torque acting on the camshaft 10 is delayed. When the internal rotor 20 and the camshaft 10 are rotated to the retard side with respect to the external rotor 30 by the angular side torque, and the retraction hole 32 and the receiving hole 26 are in a predetermined phase, the small diameter portion of the lock pin 101 is caused by the spring 102. The head of 101a is fitted into the receiving hole 26, and the relative phase between the inner rotor 20 and the outer rotor 30 is maintained (locked). At this time, until the crankshaft 53 of the internal combustion engine is completely stopped, the fluctuating torque shown in FIG. 5 acts on the camshaft 10, but the control valve 90 is in a non-energized state. Due to the advance side torque acting on the shaft 10, the internal rotor 20 and the camshaft 10 are difficult to rotate on the advance side with respect to the external rotor 30, and easily turn on the retard side due to the retard side torque. In addition, since the internal rotor 20 is urged toward the advance side with respect to the external rotor 30 by the urging force corresponding to the average value of the fluctuation torque by the torsion coil spring 80, the maximum retard side torque acting on the camshaft 10 is obtained. The value is reduced, and the head of the small-diameter portion 101a of the lock pin 101 is likely to be fitted into the receiving hole 26 when the inner rotor 20 is rotated toward the retard side with respect to the outer rotor 30.
[0029]
In this embodiment, when a starter switch (not shown) is turned on at the time of starting the internal combustion engine, the solenoid 122 of the switching valve 120 is energized for a predetermined time after the starter switch is turned on, and is communicated with the retard passage 13. The connection passage 72 is connected to the oil pan 111. As a result, when the internal combustion engine is started, the control valve 90 is in a non-energized state, so that both the advance chamber R1 and the retard chamber R2 are communicated with the oil pan 111. For this reason, when the internal combustion engine is started, the inner rotor 20 is likely to flutter to the retard side and the advance side with respect to the outer rotor 30 due to the biasing force of the torsion coil spring 80 and the fluctuating torque acting on the camshaft 10 (vibrates). Easier). At this time, as described above, the relative phase between the internal rotor 20 and the external rotor 30 when the internal combustion engine is stopped is a predetermined phase in which the escape hole 32 and the receiving hole 26 are synchronized, or the internal rotor 20 and the external rotor immediately before the internal combustion engine is stopped. When the relative phase of the rotor 30 is more advanced than the predetermined phase, the head of the small-diameter portion 101a of the lock pin 101 is fitted in the receiving hole 26, so that the internal rotor 20 and the vane 60 flutter. Is prevented.
[0030]
By the way, when the relative phase of the internal rotor 20 and the external rotor 30 immediately before the stop of the internal combustion engine is on the retard side with respect to a predetermined phase in which the retraction hole 32 and the receiving hole 26 are synchronized, the head of the lock pin 101 is The internal combustion engine may be stopped in a state where it is not fitted into the receiving hole 26. When the internal combustion engine is started in this state, the internal rotor 20 and the camshaft 10 are rotated to the retard side with respect to the external rotor 30 by the fluctuating torque acting on the camshaft 10 to reach the maximum retarded state. May be difficult to start. In the present embodiment, as described above, both the advance chamber R1 and the retard chamber R2 are communicated with the oil pan 111 when the internal combustion engine is started, and the internal rotor 20 is connected to the external rotor 30 by the torsion coil spring 80. The internal rotor 20 and the camshaft 10 greatly fluctuate (vibrate) toward the advance side and the retard side due to the fluctuation torque because the biasing force is biased toward the advance side by the biasing force equivalent to the average value of the fluctuation torque. When flapping toward the advance side, the retraction hole 32 and the receiving hole 26 are synchronized, and the head of the small diameter portion 101a of the lock pin 101 is fitted into the receiving hole 26, and the relative phase between the inner rotor 20 and the outer rotor 30 is increased. Is held (locked).
[0031]
Therefore, when the internal combustion engine is started, unnecessary relative rotation of the rotation member composed of the internal rotor 20 and the vanes 60 and the rotation transmission member composed of the external rotor 30, the front plate 40, the rear plate 50, and the like is restricted. It is possible to prevent occurrence of hitting sound by the vane 60 due to unnecessary relative rotation between the rotating member and the rotation transmitting member due to the varying torque acting on the camshaft 10.
[0032]
As described above, according to the present embodiment, the volumetric efficiency in the high-speed rotation region of the internal combustion engine is prevented while preventing the generation of a hitting sound due to the collision between the vane 60 and the circumferential end surface of the protrusion 31 when the internal combustion engine is started. Can be improved.
[0033]
In the above-described embodiment, each vane 60 abuts on the circumferential end surface of each protrusion 31, so that the relative rotation amount of the rotation member such as the internal rotor 20 and the rotation transmission member such as the external rotor 30 is limited. Although the present invention has been implemented in the opening / closing timing control device, the present invention relates to a valve opening / closing in which the relative rotation amount of the rotating member and the rotation transmitting member is limited by only one vane contacting the circumferential end surface of the corresponding protrusion. The timing control device can be similarly implemented. In this embodiment, the present invention is applied to a valve opening / closing timing control device in which a vane is provided separately from the internal rotor, a receiving hole and a retraction hole are formed in the radial direction, and the lock pin moves in the radial direction. However, according to the present invention, the vane is thickened in the circumferential direction and is provided integrally with the inner rotor, and a retraction hole is formed in the vane or the rear plate (or front plate) in the axial direction and the rear plate (or front plate). Or a valve opening / closing timing control device in which a receiving hole is formed in the vane in the axial direction and the lock pin moves in the axial direction.
[0034]
Furthermore, in the above embodiment, the present invention is applied to the valve opening / closing timing control device assembled to the intake camshaft 10. However, the present invention relates to the valve opening / closing timing control device assembled to the exhaust camshaft. Similarly, it can be implemented.
[0035]
【The invention's effect】
As described above, according to the present invention, when the supply of the working fluid to the fluid pressure chamber is stopped when the internal combustion engine is stopped, the vane cannot be held by the fluid pressure in the fluid pressure chamber, and the rotating member becomes the rotation transmitting member. However, when the internal combustion engine is started, the relative phase between the rotating member and the rotation transmitting member is an intermediate relative phase between the maximum retarded angle position and the maximum advanced angle position when the internal combustion engine is started. The rotation member and the rotation transmission member are positioned at a predetermined relative phase when the internal combustion engine is at a valve opening / closing timing at which the internal combustion engine can be started, and this predetermined relative phase is held by the phase holding mechanism. Thereby, when the internal combustion engine is started, it is possible to accurately prevent the vane from colliding with the circumferential end surface of the rotation transmitting member due to fluctuating torque acting on the camshaft and generating sound.
[0036]
Further, since the valve opening / closing timing at the start of the internal combustion engine is obtained at the intermediate relative phase described above, the valve opening / closing timing can be further delayed at the most retarded position than at the intermediate relative phase. By improving the volumetric efficiency by utilizing the inertia of the intake air during high-speed rotation of the engine, the output of the internal combustion engine can be improved, the valve opening / closing timing at the start can be advanced, and the compression ratio is reduced, etc. It is possible to prevent starting failure of the internal combustion engine.
[Brief description of the drawings]
FIG. 1 is a longitudinal side view showing an embodiment of a valve timing control apparatus according to the present invention.
FIG. 2 is a schematic configuration diagram of a control valve and a switching valve in the embodiment shown in FIG. 1;
3 is a cross-sectional view taken along the line AA of FIG. 1 showing a state in which the phase is held by the phase holding mechanism.
4 is a cross-sectional view taken along the line AA of FIG. 1 showing a state in which the phase holding mechanism is released.
FIG. 5 is a graph showing fluctuations in torque acting on the camshaft.
[Explanation of symbols]
10 Camshaft
12 advance passage
13 retarded passage
20 Internal rotor (rotating member)
24 passage
25 passage
26 Receiving hole
30 External rotor (rotation transmission member)
31 Projection
32 Retraction hole
33 communication hole
40 Front plate (Rotation transmission member)
50 Rear plate (Rotation transmission member)
51 Timing sprocket (Rotation transmission member)
53 Crankshaft
60 Vane
70 Cylinder head
80 Torsion coil spring (relative phase regulating means, biasing member)
90 Control valve
120 selector valve
R0 fluid pressure chamber
R1 advance angle chamber
R2 retarding chamber

Claims (2)

内燃機関のクランクシャフト又はカムシャフトの一方と共に回転する回転部材と、
該回転部材に所定範囲で相対回転可能に装着され前記クランクシャフト又は前記カムシャフトの他方と共に回転する回転伝達部材と、
前記回転部材に設けられたベーンと、
前記回転部材と前記回転伝達部材との間に形成され前記ベーンによって進角用室と遅角用室とに二分される流体圧室と、
前記回転部材と前記回転伝達部材の相対位相が所定の位相である時に前記回転部材と前記回転伝達部材の相対位相を保持する位相保持機構とを備え、
前記進角用室及び前記遅角用室へ印加される流体圧によって前記回転部材と前記回転伝達部材が相対回転し、前記クランクシャフトの回転位相に対する前記カムシャフトの回転位相が変更させられることによって前記カムシャフトにより駆動される弁の開閉時期を変更する弁開閉時期制御装置において、
前記ベーンにより前記遅角用室の容積が最小とされる最大進角状態における前記回転部材と前記回転伝達部材の相対位相と前記ベーンにより前記進角用室の容積が最小とされる最大遅角状態における前記回転部材と前記回転伝達部材の相対位相の間の中間的な相対位相であって、
前記内燃機関が始動可能な弁開閉時期にある時の所定の中間的な相対位相時に前記位相保持機構により前記回転部材と前記回転伝達部材の相対位相が保持されるようにすると共に、前記回転部材と前記回転伝達部材の相対位相を前記内燃機関の始動時に前記所定の中間的な相対位相に規制可能であり、
前記内燃機関の停止直前の前記回転部材と前記回転伝達部材との相対位相が、前記所定の中間的な相対位相よりも進角側にある場合には、前記カムシャフトを駆動するために必要な変動トルクの平均値よりも小さい付勢力で進角側に付勢する付勢部材で構成される相対位相規制手段を設けたことを特徴とする弁開閉時期制御装置。
A rotating member that rotates with one of the crankshaft or camshaft of the internal combustion engine;
A rotation transmitting member mounted on the rotating member so as to be relatively rotatable within a predetermined range and rotating with the other of the crankshaft or the camshaft;
A vane provided on the rotating member;
A fluid pressure chamber formed between the rotation member and the rotation transmission member and divided into an advance chamber and a retard chamber by the vane;
And a phase holding mechanism relative phase between the rotation transmission member and the rotating member holding the relative phase between the rotation transmission member and the rotating member when a predetermined phase,
Wherein the rotary member and the rotation transmitting member is relatively rotated by the fluid pressure applied to the advance angle chamber and the retarded angle chamber, the rotation phase of the camshaft relative to the rotational phase of the crankshaft is caused to change In the valve opening / closing timing control device for changing the opening / closing timing of the valve driven by the camshaft,
The maximum delay in which the volume of the advance chamber is minimized by the vane and the relative phase of the rotation member and the rotation transmission member in the maximum advance state in which the volume of the retard chamber is minimized by the vane. a intermediate relative phase between the relative phase between the rotation transmission member and the rotating member at the corner condition,
The relative phase between the rotating member and the rotation transmitting member is held by the phase holding mechanism at a predetermined intermediate relative phase when the internal combustion engine is in a valve opening / closing timing at which the internal combustion engine can be started, and the rotation The relative phase between the member and the rotation transmission member can be restricted to the predetermined intermediate relative phase when starting the internal combustion engine ,
Necessary for driving the camshaft when the relative phase between the rotating member and the rotation transmitting member immediately before the stop of the internal combustion engine is more advanced than the predetermined intermediate relative phase. A valve opening / closing timing control device comprising a relative phase restricting means comprising an urging member that urges the advance side with an urging force smaller than an average value of the fluctuation torque .
前記位相保持機構は、前記所定の相対位相時において前記進角用室及び前記遅角用室の流体圧が低下した時に前記回転部材と前記回転伝達部材の相対位相を保持することを特徴とする請求項1に記載の弁開閉時期制御装置。 The phase holding mechanism holds a relative phase between the rotating member and the rotation transmitting member when fluid pressures in the advance angle chamber and the retard angle chamber are reduced at the predetermined relative phase. The valve opening / closing timing control device according to claim 1.
JP33457398A 1997-11-28 1998-11-25 Valve timing control device Expired - Lifetime JP4081893B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33457398A JP4081893B2 (en) 1997-11-28 1998-11-25 Valve timing control device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9-327732 1997-11-28
JP32773297 1997-11-28
JP33457398A JP4081893B2 (en) 1997-11-28 1998-11-25 Valve timing control device

Publications (2)

Publication Number Publication Date
JPH11223112A JPH11223112A (en) 1999-08-17
JP4081893B2 true JP4081893B2 (en) 2008-04-30

Family

ID=33312487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33457398A Expired - Lifetime JP4081893B2 (en) 1997-11-28 1998-11-25 Valve timing control device

Country Status (1)

Country Link
JP (1) JP4081893B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19983890T1 (en) 1999-11-10 2002-03-07 Mitsubishi Electric Corp Ventiltaktgebungsjustiereinrichtung
ES2214362T3 (en) * 2000-06-16 2004-09-16 Dr.Ing. H.C.F. Porsche Aktiengesellschaft DEVICE FOR THE REGULATION OF THE TURNING ANGLE OF A CAMSHAFT OF A COMBUSTION ENGINE WITH REGARD TO A DRIVE WHEEL.
JP4465846B2 (en) * 2000-09-27 2010-05-26 アイシン精機株式会社 Valve timing control device
US6439184B1 (en) * 2001-01-31 2002-08-27 Denso Corporation Valve timing adjusting system of internal combustion engine
JP4423799B2 (en) * 2001-03-22 2010-03-03 アイシン精機株式会社 Valve timing control device
DE102004049123A1 (en) * 2004-10-07 2006-04-13 Ina-Schaeffler Kg Device for changing the timing of gas exchange valves of an internal combustion engine
JP5124204B2 (en) * 2007-08-06 2013-01-23 本田技研工業株式会社 Electric motor control device
US8612123B2 (en) 2008-05-19 2013-12-17 Nissan Motor Co., Ltd. Internal combustion engine control device
JP6255777B2 (en) * 2013-07-31 2018-01-10 アイシン精機株式会社 Valve timing control device
KR101664728B1 (en) * 2015-07-23 2016-10-12 현대자동차주식회사 Cvvt apparatus for engine

Also Published As

Publication number Publication date
JPH11223112A (en) 1999-08-17

Similar Documents

Publication Publication Date Title
JP3918971B2 (en) Valve timing control device
JP4147435B2 (en) Valve timing control device
US6450137B2 (en) Variable valve timing system
US6058897A (en) Valve timing device
JP3536692B2 (en) Valve timing control device for internal combustion engine
JP3846605B2 (en) Valve timing control device
JP4253109B2 (en) Variable valve operating device for internal combustion engine
US6155219A (en) Valve timing adjusting apparatus for internal combustion engine
JP4284871B2 (en) Valve timing adjusting device for internal combustion engine
JP4081893B2 (en) Valve timing control device
JP3801747B2 (en) Valve timing control device
JP4389383B2 (en) Valve timing control device
JP3925672B2 (en) Valve timing control device
JP3845986B2 (en) Valve timing control device
JP3812137B2 (en) Valve timing control device
JP3760567B2 (en) Valve timing control device
JP4000696B2 (en) Valve timing control device
EP2778356B1 (en) Valve timing control apparatus
JP4390295B2 (en) Valve timing control device
JP2000045724A (en) Valve operation timing controller
JP4273618B2 (en) Valve timing control device
JPH10159515A (en) Valve timing controlling device for internal combustion engine
JP2000186513A (en) Valve opening/closing timing controller
JP6797342B2 (en) Valve timing adjuster
JP4506059B2 (en) Valve timing control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051014

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140222

Year of fee payment: 6

EXPY Cancellation because of completion of term