JP3821241B2 - Internal combustion engine control device - Google Patents

Internal combustion engine control device Download PDF

Info

Publication number
JP3821241B2
JP3821241B2 JP23805695A JP23805695A JP3821241B2 JP 3821241 B2 JP3821241 B2 JP 3821241B2 JP 23805695 A JP23805695 A JP 23805695A JP 23805695 A JP23805695 A JP 23805695A JP 3821241 B2 JP3821241 B2 JP 3821241B2
Authority
JP
Japan
Prior art keywords
catalyst
control
warm
temperature
injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP23805695A
Other languages
Japanese (ja)
Other versions
JPH0988564A (en
Inventor
大治 磯部
謙一 佐合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP23805695A priority Critical patent/JP3821241B2/en
Priority to US08/706,692 priority patent/US5845492A/en
Publication of JPH0988564A publication Critical patent/JPH0988564A/en
Priority to US09/168,321 priority patent/US5974792A/en
Application granted granted Critical
Publication of JP3821241B2 publication Critical patent/JP3821241B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/024Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • F02P5/1502Digital data processing using one central computing unit
    • F02P5/1506Digital data processing using one central computing unit with particular means during starting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Description

【0001】
【発明の属する技術分野】
本発明は、機関始動後、排出ガス浄化用の触媒を早期に活性温度にまで温度上昇させる触媒早期暖機制御を行うようにした内燃機関制御装置に関するものである。
【0002】
【従来の技術】
一般に、車両に搭載されている排出ガス浄化用の三元触媒は、排出ガス中の有害成分(HC,CO,NOx)を高温状態下で酸化/還元反応させて無害化するものであり、その排出ガス浄化能力を有効に発揮させるためには、触媒の温度を活性温度(一般的には300〜350℃)まで上昇させる必要がある。従って、エンジン始動後に触媒温度が活性温度に上昇するまでは、排出ガス浄化能力が低く、排出ガス中の有害成分の排出量が多くなり、エミッションが悪化する。
【0003】
この問題を解決するために、近年、エンジン始動後に触媒を早期暖機するために、始動時のエンジン冷却水温が低いときに触媒早期暖機制御を実行するようにしたものがある。ここで、触媒早期暖機制御は、例えば特開昭60−88870号公報に示すように、エンジンの点火時期を遅角し、同時にアイドル回転数を上昇させることにより、排出ガス温度を上昇させて、触媒温度を早期に活性温度に上昇させたり、或は、特開平4−308311号公報に示すように、燃料噴射量をジグザグ状に増減補正する噴射ディザ制御を行い、触媒内でHC,COの酸化反応を増加させて、その酸化反応による発熱で触媒を内部から加熱するようにしたものがある。
【0004】
【発明が解決しようとする課題】
しかしながら、点火遅角制御による触媒早期暖機では、点火遅角によりエンジントルクが低下するため、ドライバビリティに悪影響を及ぼす欠点がある。しかも、排出ガスの熱で触媒を暖機するため、触媒暖機時間を短くするには、アイドル回転数を上昇させて、排出ガス量を増加させなければならず、触媒早期暖機中のエミッションや燃費を悪化させる欠点がある。
【0005】
一方、噴射ディザ制御による触媒早期暖機では、触媒内でHC,COの酸化反応を促進し、その反応熱で触媒を暖機するため、触媒が冷えた状態では、触媒内でHC,COの酸化反応が促進されず、触媒の温度上昇が遅れて、触媒早期暖機中のエミッションが悪化する欠点がある。
【0006】
本発明はこのような事情を考慮してなされたものであり、従ってその目的は、触媒早期暖機制御中のエミッションやドライバビリティを向上させながら、触媒暖機時間を短くすることができる内燃機関制御装置を提供することにある。
【0007】
【課題を解決するための手段】
上記目的を達成するために、本発明の請求項1の内燃機関制御装置は、内燃機関の排気経路に配設された排出ガス浄化用の触媒と、前記内燃機関の運転状態に基づいて点火時期を演算する点火時期演算手段と、前記内燃機関の運転状態に基づいて燃料噴射量を演算する燃料噴射量演算手段と、前記触媒の暖機状態を検出する暖機状態検出手段と、機関始動後、前記暖機状態検出手段により前記触媒の暖機完了が検出されるまで前記触媒を早期暖機する触媒早期暖機制御を実行する触媒早期暖機制御手段とを備え、前記触媒早期暖機制御手段は、触媒早期暖機制御開始から前記点火時期を遅角補正することで前記触媒の昇温を促進する第1の触媒昇温手段と、触媒早期暖機制御の途中で前記触媒がCO、HC成分の酸化反応を促進できる状態まで暖機された時点から前記燃料噴射量を増減補正する噴射ディザ制御を行うことで前記触媒を更に昇温させる第2の触媒昇温手段とを有する。
【0008】
この構成では、触媒早期暖機制御を、最初は点火遅角制御で行い、途中で噴射ディザ制御に切り替えて行う。つまり、始動直後の触媒が冷えた状態では、触媒内でのHC,COの酸化反応が起こりにくいので、触媒温度がある程度上昇するまで、点火遅角制御による触媒早期暖機を行い、排出ガスの熱で触媒を暖機する。これにより、触媒温度がある程度上昇すれば、触媒内でHC,COの酸化反応が次第に促進されるようになるので、その時点で、点火遅角制御による触媒早期暖機から噴射ディザ制御による触媒早期暖機に切り替え、触媒内でのHC,COの酸化反応の発熱で触媒を内部から効率良く暖機する。
【0009】
この場合、点火遅角制御から噴射ディザ制御への切替えタイミングは、以下に説明する請求項2又は3の方法で決めれば良い。
即ち、請求項2では、前記触媒早期暖機制御手段は、触媒早期暖機制御開始からの経過時間を計時するタイマを有し、その計時時間が所定時間に達したときに前記第1の触媒昇温手段による点火遅角制御から前記第2の触媒昇温手段による噴射ディザ制御に切り替える。つまり、触媒早期暖機制御開始後の時間の経過に伴って点火遅角制御によって触媒が暖機され、触媒温度が上昇するので、触媒早期暖機制御開始からの経過時間がある程度の時間になれば、触媒温度は触媒内でHC,COの酸化反応が発生する温度に上昇しているものと推定される。従って、触媒内でHC,COの酸化反応が促進される温度に上昇するまでの時間を“所定時間”に設定し、触媒早期暖機制御開始からの経過時間が“所定時間”に達したときに点火遅角制御から噴射ディザ制御へ切り替えることで、その切替えタイミングが適切なものとなる。
【0010】
また、請求項3では、前記暖機状態検出手段は、前記触媒の温度又は触媒温度を反映した温度情報を検出する温度センサを有し、前記触媒早期暖機制御手段は前記温度センサの出力信号に基づいて触媒温度が所定温度に達したと判定したときに前記第1の触媒昇温手段による点火遅角制御から前記第2の触媒昇温手段による噴射ディザ制御に切り替える。
【0011】
前述した請求項2のタイマ計時時間による切替えでは、始動時の触媒温度によって“所定時間”経過後の触媒温度が異なってくるため、点火遅角制御から噴射ディザ制御への切替え直後の噴射ディザ制御による暖機効果が始動時の触媒温度によって変動するが、請求項3では、触媒温度を直接又は間接的に判定して、触媒温度が所定温度に達したときに、点火遅角制御から噴射ディザ制御へ切り替えるので、切替え直後の噴射ディザ制御による暖機効果が始動時の触媒温度の影響を受けなくなり、安定した暖機効果が得られる。
【0012】
また、請求項4では、前記触媒早期暖機制御手段は、前記第1の触媒昇温手段による点火遅角制御から前記第2の触媒昇温手段による噴射ディザ制御に切り替える際にその切替えの前後で前記点火遅角制御と前記噴射ディザ制御とを重複させる切替期間を設定し、この切替期間内において点火遅角量を徐々に減衰させながら噴射ディザ量を徐々に増加させる。
【0013】
つまり、触媒暖機効果を高めるために点火遅角量を大きくした状態から、点火時期を急激に進角側に戻すと、エンジントルクの変動が大きくなり、ドライバビリティに悪影響を及ぼす。また、噴射ディザ制御への切替え当初から噴射ディザ量(噴射増減量)を大きくした場合でも、エンジントルクの変動が大きくなり、ドライバビリティに悪影響を及ぼす。この点、上記請求項4のように、切替え時に点火遅角量を徐々に減衰させながら噴射ディザ量を徐々に増加させると、切替え時のエンジントルクの変動が抑えられ、ドライバビリティが向上する。
【0014】
更に、請求項5では、前記触媒早期暖機制御手段は、触媒早期暖機制御を終了する際に噴射ディザ量を徐々に減衰させる。これにより、触媒早期暖機制御終了時のエンジントルクの変動も抑えられる。
【0015】
【発明の実施の形態】
以下、本発明の第1の実施形態を図1乃至図8に基づいて説明する。まず、図1に基づいてエンジン制御システム全体の概略構成を説明する。内燃機関であるエンジン11の吸気管12の最上流部には、エアクリーナ13が設けられ、このエアクリーナ13の下流側に吸気温度Tamを検出する吸気温センサ14が設けられ、この吸気温センサ14の下流側にスロットルバルブ15とスロットル開度THを検出するスロットル開度センサ16とが設けられている。更に、スロットルバルブ15の下流側には、吸気管圧力PMを検出する吸気管圧力センサ17が設けられ、この吸気管圧力センサ17の下流側にサージタンク18が設けられている。このサージタンク18には、エンジン11の各気筒に空気を導入する吸気マニホールド19が接続され、この吸気マニホールド19の各気筒の分岐管部にそれぞれ燃料を噴射するインジェクタ20a〜20dが取り付けられている。
【0016】
また、エンジン11には各気筒毎に点火プラグ21が取り付けられ、各点火プラグ21には、点火回路22で発生した高圧電流がディストリビュータ23を介して供給される。このディストリビュータ23には、720℃A(クランク軸2回転)毎に例えば24個のパルス信号を出力するクランク角センサ24が設けられ、このクランク角センサ24の出力パルス間隔によってエンジン回転数NEを検出するようになっている。また、エンジン11には、エンジン冷却水温THWを検出する水温センサ38が取り付けられている。
【0017】
一方、エンジン11の排気ポート(図示せず)には、排気マニホールド25を介して排気管26(排気通路)が接続され、この排気管26の途中に、排出ガス中の有害成分(CO,HC,NOx等)を低減させる三元触媒等の触媒27が設けられている。この触媒27の上流側には、排出ガスの空燃比に応じたリニアな空燃比信号を出力する空燃比センサ28が設けられ、また、触媒27の下流側には、排出ガス中の空燃比がリッチかリーンかによって出力が反転する酸素センサ29が設けられている。
【0018】
上述した各種のセンサの出力は電子制御回路30内に入力ポート31を介して読み込まれる。電子制御回路30は、マイクロコンピュータを主体として構成され、CPU32、ROM33、RAM34、バックアップRAM35等を備え、後述するように各種センサ出力から得られたエンジン運転状態パラメータを用いて燃料噴射量TAUや点火時期Ig等を演算し、その演算結果に応じた信号を出力ポート36からインジェクタ20a〜20dや点火回路22に出力する。
【0019】
更に、この電子制御回路30は、図2に示すプログラムを実行することで、エンジン始動後に触媒27を早期暖機する触媒早期暖機制御手段としても機能し、更にこの触媒早期暖機制御手段(触媒早期暖機制御期間)は、触媒早期暖機制御開始から点火時期を遅角補正することで触媒27の昇温を促進する第1の触媒昇温手段(点火遅角制御期間)と、触媒早期暖機制御期間の途中から燃料噴射量をジグザグ状に増減補正する噴射ディザ制御を行うことで触媒27を更に昇温させる第2の触媒昇温手段(噴射ディザ制御期間)とに区分される。
【0020】
以下、図2に示す触媒早期暖機制御ルーチンの処理の流れを説明する。本ルーチンは、一定時間毎(例えば40ms毎)に実行され、まずステップ101で、水温センサ38から読み込んだエンジン冷却水温THWが所定の完全暖機温度T2以下か否か(つまり触媒早期暖機制御が必要か否か)を判定する。ここで、完全暖機温度T2は、エンジン11及び触媒27の双方が完全暖機したと判断される温度であり、例えばT2=60℃である。もし、エンジン冷却水温THWが完全暖機温度T2より低ければ、ステップ102に進み、エンジン冷却水温THWが所定の暖機制御下限温度T1以上か否かを判定する。ここで、暖機制御下限温度T1は、触媒早期暖機制御実行時にドライバビリティに悪影響を与えない下限温度であり、例えばT1=20℃である。
【0021】
もし、エンジン冷却水温THW≧T1であれば、ステップ103に進み、エンジン始動が完了しているか否かをエンジン回転数NE≧500RPMであるか否かで判定する。もし、始動完了であれば、ステップ104に進み、始動後の触媒早期暖機時間を計時する始動後経過時間カウンタCSTAをインクリメントし、次のステップ105で、始動後経過時間カウンタCSTAが第1の所定時間αに到達したか否かを判定する。ここで、第1の所定時間αは、始動後の点火遅角制御による触媒27の暖機によって触媒27内でCO,HC成分が効率良く酸化反応できる状態に暖機されるまでに必要な点火遅角制御時間である。
【0022】
もし、始動後経過時間カウンタCSTAが所定時間αに到達していなければ、ステップ106に進み、第1の触媒昇温手段許可フラグFLG1を点火遅角制御実行を示す「1」にセットして、点火遅角制御を実行/継続し、本ルーチンを終了する。
【0023】
その後、始動後経過時間カウンタCSTAが第1の所定時間αに到達した時点で、噴射ディザ制御による触媒暖機が効果的になる触媒温度に到達したと判断して、ステップ105からステップ107へ進み、第1の触媒昇温手段許可フラグFLG1を点火遅角制御終了を示す「0」にセットし、点火遅角制御を終了する。そして、次のステップ108で、始動後経過時間カウンタCSTAが第2の所定時間βに到達したか否かを判定する。ここで、第2の所定時間βは、噴射ディザ制御により触媒温度が活性化温度に上昇するのに必要な始動後の経過時間(触媒早期暖機制御の実行時間)であり、上記ステップ108の処理が特許請求の範囲でいう暖機状態検出手段として機能する。
【0024】
もし、始動後経過時間カウンタCSTAが第2の所定時間βに到達していなければ、ステップ108からステップ109に進み、第2の触媒昇温手段許可フラグFLG2を噴射ディザ制御実行を示す「1」にセットして、噴射ディザ制御を実行/継続し、本ルーチンを終了する。その後、始動後経過時間カウンタCSTAが第2の所定時間βに到達した時点で、触媒温度が活性化温度に到達したと判断して、ステップ108からステップ110に進み、第2の触媒昇温手段許可フラグFLG2を噴射ディザ制御終了を示す「0」にセットして噴射ディザ制御を終了し、続くステップ111で、始動後経過時間カウンタCSTAのオーバーフロー防止処理(CSTA←β+1)を行い、本ルーチンを終了する。
【0025】
一方、前述したステップ101で、エンジン冷却水温THWが完全暖機温度T2以上と判定されると、エンジン11及び触媒27の双方が完全暖機していると判断して、ステップ112に進み、上記ステップ111と同じく、始動後経過時間カウンタCSTAのオーバーフロー防止処理を行い、続くステップ114,115で、第1の触媒昇温手段許可フラグFLG1及び第2の触媒昇温手段許可フラグFLG2を共に「0」にリセットして触媒早期暖機制御を禁止し、本ルーチンを終了する。要するに、始動前のエンジン停止時間が短い場合等、エンジン11や触媒27が既に暖まった状態で始動される場合には、触媒早期暖機制御が不要若しくは暖機時間を短縮できるので、エンジン冷却水温THWを所定の完全暖機温度T2と比較し、THW≧T2の時に触媒早期暖機制御を禁止することで、エミッション、ドライバビリティ、燃費を向上するものである。
【0026】
また、前記ステップ102,103のいずれかで「No」と判定された場合、つまり、エンジン冷却水温THWが暖機制御下限温度T1(=20℃)より低い場合、又はエンジン回転数NE<500RPMである場合には、いずれもエンジン回転が不安定で、触媒早期暖機制御を行うとドライバビリティに悪影響を及ぼすので、ステップ113に進み、始動後経過時間カウンタCSTAをリセットし、続くステップ114,115で、第1の触媒昇温手段許可フラグFLG1及び第2の触媒昇温手段許可フラグFLG2を共に「0」にリセットして触媒早期暖機制御を禁止し、本ルーチンを終了する。
【0027】
次に、最終燃料噴射量TAUを演算する図3の燃料噴射量演算ルーチンの処理の流れを説明する。本ルーチンは180℃A毎(各気筒の上死点毎)に実行され、特許請求の範囲でいう燃料噴射量演算手段として機能する。本ルーチンの処理が開始されると、まずステップ121,122で、エンジン回転数NEと吸気管圧力PMを読み込み、次のステップ123で、第2の触媒昇温手段許可フラグFLG2が噴射ディザ制御実行を示す「1」にセットされているか否かを判定する。もし、FLG2=1であれば、ステップ124に進み、ディザ係数KDITをエンジン冷却水温THWに対応してROM33に記憶されたマップより算出する。この場合、ディザ係数KDITは0〜0.1までの範囲で、エンジン冷却水温THWが高くなるほど大きな値をとるように設定されている。これは、空燃比に対応する失火領域がエンジン冷却水温THWが低い時ほど広いため、低温時は空燃比を理論空燃比より大きくリッチ側/リーン側に振ることができないが、エンジン冷却水温THWが高くなると、空燃比を低温時に比べて大きく振ることができるためである。
【0028】
そして、次のステップ125で、特定条件が成立するか否かを判定する。ここで、特定条件とは、理論空燃比(λ=1)よりリッチ側に燃料噴射量を設定する高負荷域若しくは高回転域、又は、燃焼の安定しない低回転域若しくは低負荷域でないことである。この特定条件が成立すると、ステップ126に進み、ディザ係数KDITを補正するディザ補正量KNE,KPMをそれぞれエンジン回転数NEに対応したマップ及び吸気管圧力PMに対応したマップより算出する。これらのマップはROM33に記憶されている。
【0029】
以上のようにしてステップ126で、ディザ補正量KNE,KPMを算出すると、ステップ127に進み、前回空燃比をリッチ側に振ったかリーン側に振ったかを表すディザ確認フラグRFLGが「1」にセットされているか否かを判定する。このディザ確認フラグRFLGが「1」にセットされているとき即ち前回空燃比がリーン側に振られた場合には、ステップ128に進み、今回はリッチ側に空燃比を設定するように、最終ディザ係数TDitをディザ係数KDITとディザ補正量KNE,KPMを用いて次式により算出する。
TDit=1+KDIT×KNE×KPM
この後、ステップ129で、ディザ確認フラグRFLGを「0」に反転して、ステップ133に進む。
【0030】
一方、上記ステップ127で、ディザ確認フラグRFLGが「0」にリセットされている場合、即ち前回空燃比がリッチ側に振られた場合には、ステップ130に進み、今回はリーン側に空燃比を設定するように、最終ディザ係数TDitをディザ係数KDITとディザ補正量KNE,KPMを用いて次式により算出する。
TDit=1−KDIT×KNE×KPM
この後、ステップ131で、ディザ確認フラグRFLGを「1」に反転して、ステップ133に進む。
【0031】
また、前述したステップ123又は125のいずれかで「No」と判定された場合、すなわち第2の触媒昇温手段許可フラグFLG2が「0」にリセットされ、噴射ディザ制御が禁止されている場合、又は特定条件が成立しない場合には、ステップ132に進み、最終ディザ補正係数TDitを「1」に設定した後、ステップ133に進む。
【0032】
そして、このステップ133では、エンジン回転数NE及び吸気管圧力PMと基本燃料噴射量TPとの関係を規定する二次元マップより現在のNE,PMに応じた基本燃料噴射量TPを算出する。この後、ステップ134で、最終燃料噴射量TAUを、基本燃料噴射量TP、最終ディザ係数TDit、基本燃料噴射量補正係数FC及び無効噴射時間TVを用いて次式により算出して、本ルーチンを終了する。
TAU=TP×TDit×FC+TV
【0033】
次に、最終点火時期AESAを演算する図4の点火時期演算ルーチンの処理の流れを説明する。本ルーチンは180℃A毎(各気筒の上死点毎)に実行され、特許請求の範囲でいう点火時期演算手段として機能する。本ルーチンの処理が開始されると、まずステップ141,142で、エンジン回転数NEと吸気管圧力PMを読み込み、続くステップ143で、第1の触媒昇温手段許可フラグFLG1が点火遅角制御実行を示す「1」にセットされているか否かを判定する。この第1の触媒昇温手段許可フラグFLG1が「1」にセットされている場合には、ステップ144に進み、遅角量KRETをエンジン冷却水温THWに対応してROM33に記憶されたマップより算出する。この場合、遅角量KRETは0〜10℃Aまでの範囲で、エンジン冷却水温THWが高くなるにほど大きな値をとるように設定されている。
【0034】
そして、次のステップ145では、遅角量KRETを補正するための補正量KRNE,KRPMをそれぞれエンジン回転数NEに対応したマップと吸気管圧力PMに対応したマップより算出する。なお、これらのマップはROM33に記憶されている。この後、ステップ146で、最終遅角量ARETを遅角量KRETと補正量KRNE,KRPMを用いて次式により算出して、ステップ147に進む。
ARET=KRET×KRNE×KRPM
【0035】
一方、前述したステップ143で、第1の触媒昇温手段許可フラグFLG1が「0」と判定されたときには、ステップ149に進み、最終遅角量ARETを0として補正を禁止し、ステップ147に進む。
【0036】
次のステップ147で、エンジン回転数NEと吸気管圧力PMの二次元マップより現在のNe,PMに対応する基本点火時期ABASEを算出する。この後、ステップ148で、最終点火時期AESAを基本点火時期ABASE、基本点火時期補正量C、最終遅角量ARETを用いて次式より算出し、本ルーチンを終了する。
AESE=ABASE+C−ARET
ここで、最終点火時期AESAはBTDC(上死点前)の角度で表される。
【0037】
図3のフローチャートで説明した燃料噴射制御の動作を図5のタイムチャート(4気筒エンジンの例)に基づいて説明する。信号Aは180℃A毎(クランク角センサ24から30℃A毎に出力されるパルス信号の6パルス毎)に発生するクランク位置信号であり、各気筒の上死点(TDC)で発生する。信号B〜Eはそれぞれ第1、第3、第4及び第2気筒に設けたインジェクタ20a,20c,20d,20bを駆動させる噴射パルス信号であり、図3の燃料噴射演算ルーチンは信号Aの入力毎に起動される。
【0038】
例えば、図5の時刻eで図3の燃料噴射演算ルーチンが起動されたと仮定すると、時刻eより数マイクロ秒経過後(燃料噴射演算ルーチン終了後)にステップ134で算出された最終燃料噴射量TAUに相当する噴射信号が第3気筒(信号B)のインジェクタ20cに出力される。同様に、時刻gで起動された燃料噴射演算ルーチンで算出された最終燃料噴射量TAUは第4気筒用である。そして、第1、第3、第4、第2の気筒の順で最終燃料噴射量TAUはリーン側、リッチ側に交互に振られる。
【0039】
この例では、1噴射毎に噴射量をリッチ側、リーン側に交互に振っているが、複数噴射毎にリッチ側、リーン側に振っても良い。また、所定噴射毎に燃料噴射量をリーン側、リッチ側に振るのではなく、所定時間ごとに燃料噴射量をリーン側、リッチ側に振ったりしても良い。
【0040】
このように燃料噴射量をリッチ/リーンに振るこで触媒を早期暖機する噴射ディザ制御は、燃料噴射量を燃焼毎に増減させて空燃比を理論空燃比に対してリッチ側とリーン側に振ることでリッチ燃焼とリーン燃焼とを繰り返し、リッチ燃焼により一酸化炭素(CO)を発生し、リーン燃焼により酸素(O2 )を発生する。そして、このように発生させた一酸化炭素と酸素は、触媒27の触媒作用により次式に示す酸化反応を行い、熱(Q)を発生する。
2CO+O2 =2CO2 +Q
この酸化反応によって発生する熱(Q)で触媒27内を通る排出ガス温度が上昇し、触媒27の暖機が促進される。
【0041】
以上説明した触媒早期暖機制御の流れを図6のタイムチャートを用いて説明する。図6に示すように、始動(この場合、エンジン冷却水温25℃にて始動)後、走行した場合を想定する。始動によりエンジン回転数が上昇し、所定回転数(500RPM)に達すると始動完了する。
【0042】
始動完了後、経過時間カウンタCSTAを積算していき、触媒温度が点火遅角制御によりA点に達すると推定される時間αまでの間、第1の触媒昇温手段許可フラグFLG1を点火遅角制御実行を示す「1」にセットして、その間を点火遅角制御する。その後、始動から時間αが経過し、噴射ディザ制御するのに適した温度まで触媒27が暖機されたと推定されるときに、第1の触媒昇温手段許可フラグFLG1を「0」にリセットして、第1の触媒昇温手段(点火遅角制御)を禁止し、第2の触媒昇温手段許可フラグFLG2を噴射ディザ制御実行を示す「1」にセットして、噴射ディザ制御による触媒27の暖機に切り替える。
【0043】
その後、噴射ディザ制御による暖機により触媒温度がB点(活性化温度)に到達すると推定される時間βまで噴射ディザ制御を続け、触媒27が完全活性すると推定されるB点つまりCSTA≧βとなったときに、第2の触媒昇温手段許可フラグFLG2を「0」にリセットして、第2の触媒昇温手段(噴射ディザ制御)を禁止する。その後は、通常の点火時期制御で通常の燃料噴射制御を行う。
【0044】
以上説明した第1の実施形態の効果について、従来技術と比較して図7を用いて説明する。図7において、▲1▼は上記実施形態の触媒早期暖機制御を示し、▲2▼は始動後に噴射ディザ制御のみを行う従来の触媒早期暖機制御を示し、▲3▼は触媒早期暖機制御を全く行わない場合を示している。
【0045】
始動後に噴射ディザ制御のみを行う従来の触媒早期暖機制御▲2▼では、触媒早期暖機制御を全く行わない▲3▼と比較して、A点より触媒の昇温は早くなる。しかし始動後からA’点までの間は、触媒の温度が低いため、噴射ディザ制御しても触媒内で排出ガス中のCO,HCの酸化反応が促進されず、逆に未反応のまま排気管のテールパイプより排出され、その間はエミッションが悪化してしまう。
【0046】
この点、上記実施形態によれば、触媒27の温度が低い間は、エミッションに悪影響を及ぼす噴射ディザ制御を行わず、点火遅角制御で触媒27を早期暖機し、触媒27内でCO,HCが酸化反応し易くなる温度まで触媒27の温度を素早く昇温させ(A点)、排気管26から排出される排出ガス中のHC,NOx等の有害ガス成分を低減する。
【0047】
その後、触媒27の温度がCO,HCの酸化反応を促進する温度になって始めて噴射ディザ制御を開始し、触媒27内でのHC,COの酸化反応の発熱で触媒27を内部から効率良く暖機する。このように、触媒早期暖機制御の途中で点火遅角制御から噴射ディザ制御へ切り替えれば、エンジントルク低下を招く点火遅角を必要最小限の時間に抑えることができ、ドライバビリティも向上できる。
【0048】
ところで、点火遅角制御による触媒暖機効果を高めるために点火遅角量を大きくした状態から、点火時期を急激に進角側に戻すと、エンジントルクの変動が大きくなり、ドライバビリティに悪影響を及ぼす。また、噴射ディザ制御への切替え当初から噴射ディザ量(噴射増減量)を大きくした場合でも、エンジントルクの変動が大きくなり、ドライバビリティに悪影響を及ぼす。
【0049】
この欠点を解消する手段として、点火遅角制御から噴射ディザ制御に切り替える際にその切替えの前後で点火遅角制御と噴射ディザ制御とを重複させる切替期間を設定し、この切替期間内において点火遅角量を徐々に減衰させながら噴射ディザ量を徐々に増加させると、切替え時のエンジントルクの変動が抑えられ、ドライバビリティが向上する。
【0050】
以下、これを具体化した第2の実施形態を図8乃至図11に基づいて説明する。まず、第2の実施形態の触媒早期暖機制御の概要を図8に示すタイムチャートを用いて説明する。すなわち、触媒27内でCO,HCが酸化反応し易くなる温度(A点)に触媒27を暖機するのに必要と考えられる始動後経過時間カウンタCSTAの判断時間αの前後にそれぞれ時間β2,α2を設けて、このα2+β2を切替期間とし、この切替期間内において点火遅角量を徐々に減衰させながら噴射ディザ量を徐々に増加させることで、点火遅角制御から噴射ディザ制御へスムーズに切り替え、ドライバビリティやエミッションの悪化を防止する。
【0051】
このような切替えを行うため、第1の触媒昇温手段許可フラグFLG1は、(α+α2)点で「0」にリセットし、第2の触媒昇温手段許可フラグFLG2は、(α−β2)点で「1」にセットする。そして、点火遅角量KRETは(α−β2)点にて減衰させ始め、(α+α2)点にてゼロとするように変化させる。一方、噴射ディザ係数KDITは(α−β2)点にて徐々に増加させ始め、(α+α2)点にて通常の補正値になるように設定する。
【0052】
また、この第2の実施形態では、噴射ディザ制御終了時のエンジントルクの変動も抑えて、ドライバビリティを更に向上させるために、触媒27が完全活性する温度(B点)に触媒27を暖機するのに必要と考えられる始動後経過時間カウンタCSTAの判断時間βの直前にβ3の時間を設けて、このβ3の間に徐々にディザ係数KDITを減衰させ、βにてゼロとするように設定する。つまり、目標となる触媒活性化温度と経過時間で推定する温度との偏差が小さくなるに従って、徐々に噴射ディザ量を減衰させ、ドライバビリティを向上させる。
【0053】
以下、この第2の実施形態の具体的な制御の流れを図9乃至図11のフローチャートを用いて説明する。図9は、第1の実施形態で用いた図2の触媒早期暖機制御ルーチンの変更点を示す。ステップ105aで、始動後時間経過カウンタCSTAが(α−β2)以上経過しているか否かを判定し、経過していなければ、ステップ116に進み、第1の触媒昇温手段許可フラグFLG1を「1」にセットし、続くステップ117で、第2の触媒昇温手段許可フラグFLG2を「0」にリセットする。これにより、CSTA<(α−β2)のときは点火遅角制御のみを実行する。
【0054】
その後、始動後時間経過カウンタCSTAが(α−β2)に達すると、ステップ105aからステップ105bに進み、第2の触媒昇温手段許可フラグFLG2を「1」にセットして、噴射ディザ制御を開始する。このとき、第1の触媒昇温手段許可フラグFLG1は上記ステップ116の処理により「1」にセットされたままで、点火遅角制御も継続して行われる。そして、次のステップ105cで、始動後時間経過カウンタCSTAが(α+α2)以上経過しているか否かを判定し、経過していなければ、以降の処理を行わずに、本ルーチンを終了する。これにより、始動後時間経過カウンタCSTAが(α+α2)経過するまで、点火遅角制御と噴射ディザ制御とが重複して行われ、その後、CSTA≧(α+α2)になった時点で、ステップ105cからステップ107に進み、第1の触媒昇温手段許可フラグFLG1を「0」にリセットして点火遅角制御を終了し、以後、噴射ディザ制御のみを実行する。
【0055】
この噴射ディザ制御は、触媒27の温度が活性化温度に上昇するのに必要な時間βになるまで行われ、CSTA≧βになった時点で、ステップ108からステップ110に進み、第2の触媒昇温手段許可フラグFLG2を噴射ディザ制御終了を示す「0」にセットして噴射ディザ制御を終了し、続くステップ111で、始動後経過時間カウンタCSTAのオーバーフロー防止処理(CSTA←β+1)を行い、本ルーチンを終了する。
【0056】
一方、図10は第2の実施形態の燃料噴射量演算ルーチンの主要部であり、図3との変更点について説明する。ステップ125で、特定条件が成立すれば、ステップ125aに進み、始動後経過時間カウンタCSTAが(α+α2)以上経過しているか否かを判定する。もし、CSTA<(α+α2)であれば、ステップ126に進み、ディザ係数KDITを補正するディザ補正量KNE,KPMをそれぞれエンジン回転数NEに対応したマップ及び吸気管圧力PMに対応したマップによって算出する。
【0057】
この後、CSTA≧(α+α2)になった時点で、ステップ125bに進み、CSTA<(β−β3)であるか否かを判定し、CSTA<(β−β3)であれば、ステップ125dに進み、(α2+β2)時間の間に実行される燃料噴射量算出回数Xを次式により算出する。
X=(α2+β2)/T180
ここで、T180はクランク軸が180℃A回転するのに要する時間である(単位はCSTAと同じとする)。
【0058】
そして、次のステップ125dで、現在の噴射ディザ係数KDITを燃料噴射量算出回数Xで除算してディザ係数増加値K2を求める。この後、ステップ125fで、現在の噴射ディザ係数KDITに前記ディザ係数増加値K2を加算してステップ126へ進む。このような処理の繰り返しにより、噴射ディザ係数KDITは徐々に増加し、急激に大きな値を加算することを避ける。
【0059】
その後、CSTA≧(β−β3)になった時点で、ステップ125bからステップ125gに進み、β3をT180で除算することでβ間での燃料噴射量算出回数X2を求め、続くステップ125hで、現在の噴射ディザ係数KDITを燃料噴射量算出回数X2で除算してディザ係数減衰値K3を求める。この後、ステップ125iで、現在の噴射ディザ係数KDITから前記ディザ係数減衰値K3を減算してステップ126へ進む。このような処理の繰り返しにより、噴射ディザ係数KDITは徐々に小さくなり、β時間が経過したときに噴射ディザ係数KDITはゼロとなる。
【0060】
一方、図11は第2の実施形態の点火時期演算ルーチンの主要部であり、図4との変更点のみを説明する。ステップ146で、最終遅角量ARETを遅角量KRETと補正量KRNE,KRPMを用いて算出した後、ステップ146aに進み、始動後時間経過カウンタCSTAが(α−β2)以上経過しているか否かを判定し、経過していなければ、ステップ147に進み、エンジン回転数NEと吸気管圧力PMの二次元マップより現在のNe,PMに対応する基本点火時期ABASEを算出する。
【0061】
その後、CSTA≧(α−β2)になった時点で、ステップ146bに進み、図10の燃料噴射量演算ルーチンで説明したのと同様に、(α2+β2)間の点火時期算出回数Xを求め、続くステップ146cで、現在の遅角量ARETを点火時期算出回数Xで除算して遅角量減衰値K1を求め、本ルーチン実行毎にその時点の遅角量ARETから遅角量減衰値K1を減算していく(ステップ146d)。このような処理により、徐々に遅角量ARETを減らし、始動後経過時間が(α+α2)になったときに、遅角量ARETがゼロとなるようする。
【0062】
以上説明した第1及び第2の両実施形態では、始動後の経過時間を始動後時間経過カウンタCSTAでカウントし、始動後の経過時間によって触媒27の温度を推定して点火遅角制御から噴射ディザ制御への切替えを行うようにした。しかし、このような時間を基準にした切替えでは、始動時の触媒温度によって“所定時間”経過後の触媒温度が異なってくるため、点火遅角制御から噴射ディザ制御への切替え直後の噴射ディザ制御による暖機効果が始動時の触媒温度によって変動することは避けられない。
【0063】
そこで、図12に示す第3の実施形態では、触媒27に、触媒温度を検出する触媒温度センサ40を取り付け、この触媒温度センサ40の出力信号から触媒温度を判定し、触媒温度が図6のA点(つまり触媒27内でHC,COの酸化反応が促進される温度)になったときに点火遅角制御から噴射ディザ制御へ切り替え、その後、触媒温度が図6のB点(つまり触媒27が完全に活性化する温度)になったときに噴射ディザ制御を終了する。
【0064】
この第3の実施形態では、触媒温度センサ40により検出した触媒温度が所定温度(A点)に達したときに、点火遅角制御から噴射ディザ制御へ切り替えるので、切替え直後の噴射ディザ制御による暖機効果が始動時の触媒温度の影響を受けなくなり、安定した暖機効果が得られる利点がある。しかも、触媒温度センサ40により検出した触媒温度が所定温度(B点)に達したときに、噴射ディザ制御を終了するので、始動時の触媒温度の影響を受けずに、触媒早期暖機を過不足なく行うことができる。
【0065】
この第3の実施形態においても、前記第2の実施形態のように、点火遅角制御から噴射ディザ制御に切り替える際にその切替えの前後で点火遅角制御と噴射ディザ制御とを重複させる切替期間を設定し、この切替期間内において点火遅角量を徐々に減衰させながら噴射ディザ量を徐々に増加させるようにしても良い。また、噴射ディザ制御を終了する際に噴射ディザ量を徐々に減衰させるようにしても良い。この場合、遅角量ARETの減衰と噴射ディザ係数KDITの増加/減衰は、目標とする触媒温度A点,B点と触媒温度センサ40により検出した触媒温度との偏差に応じて減衰値や増加値を変化させれば良い。
【0066】
以上説明した第3の実施形態では、触媒温度を触媒温度センサ40により直接検出するようにしたが、触媒温度を反映した温度情報、例えばエンジン冷却水温、排気温度、空燃比センサ28や酸素センサ29の素子温度やヒータ温度等を検出する各種の温度センサ(水温センサ38、排気温度センサ、素子温度センサ、ヒータ温度センサ等)の出力信号に基づいて触媒温度を間接的に検出するようにしても良い。
【0067】
また、第1及び第2の両実施形態において、点火遅角制御から噴射ディザ制御への切替えタイミングと噴射ディザ制御の終了タイミングを決めるための所定時間α,βを始動時のエンジン冷却水温に応じて補正するようにしても良い。このようにすれば、始動後の経過時間に基づく触媒温度の推定を精度良く行うことができる。
【0068】
尚、上記各実施形態では、噴射ディザ制御中には、切替期間を除いて点火遅角制御を禁止するようにしたが、噴射ディザ制御中にエンジントルク変動を抑えることを狙って、噴射ディザがリッチ側に振れるときに点火時期を遅角補正するようにしても良い。
【0069】
【発明の効果】
以上の説明から明らかなように、本発明の請求項1の構成によれば、触媒早期暖機制御を、最初は点火遅角制御で行い、途中で噴射ディザ制御に切り替えて行うので、触媒の温度上昇に応じて最適な暖機方法に切り替えながら触媒を効率良く暖機することができ、触媒早期暖機制御中のエミッションやドライバビリティを向上させながら、触媒暖機時間を短くすることができる。
【0070】
また、請求項2では、点火遅角制御から噴射ディザ制御への切替えタイミングをタイマ制御で決めるようにしたので、切替えタイミングの制御を簡単に行うことができる。
【0071】
また、請求項3では、触媒温度を温度センサにより直接又は間接的に検出し、触媒温度が所定温度に達したときに、点火遅角制御から噴射ディザ制御へ切り替えるようにしたので、切替え直後の噴射ディザ制御による暖機効果が始動時の触媒温度の影響を受けずに済み、安定した暖機効果を得ることができる。
【0072】
また、請求項4では、点火遅角制御から噴射ディザ制御に切り替える際にその切替えの前後で点火遅角制御と前記噴射ディザ制御とを重複させる切替期間を設定し、この切替期間内において点火遅角量を徐々に減衰させながら噴射ディザ量を徐々に増加させるようにしたので、切替え時のエンジントルクの変動を抑えることができて、ドライバビリティを更に向上することができる。
【0073】
更に、請求項5では、触媒早期暖機制御(噴射ディザ制御)を終了する際に噴射ディザ量を徐々に減衰させるようにしたので、触媒早期暖機制御終了時のエンジントルクの変動も抑えることができて、ドライバビリティ向上に寄与することができる。
【図面の簡単な説明】
【図1】本発明の第1の実施形態を示すエンジン制御システム全体の概略構成図
【図2】第1の実施形態で用いる触媒早期暖機制御ルーチンの処理の流れを示すフローチャート
【図3】第1の実施形態で用いる燃料噴射量演算ルーチンの処理の流れを示すフローチャート
【図4】第1の実施形態で用いる点火時期演算ルーチンの処理の流れを示すフローチャート
【図5】噴射信号と各気筒の行程の順序を示すタイムチャート
【図6】第1の実施形態による触媒早期暖機制御を行った場合の挙動を説明するタイムチャート
【図7】第1の実施形態の触媒早期暖機制御による効果を説明するタイムチャート
【図8】本発明の第2の実施形態による触媒早期暖機制御を行った場合の挙動を説明するタイムチャート
【図9】第2の実施形態で用いる触媒早期暖機制御ルーチンの主要部の処理の流れを示すフローチャート
【図10】第2の実施形態で用いる燃料噴射量演算ルーチンの主要部の処理の流れを示すフローチャート
【図11】第2の実施形態で用いる点火時期演算ルーチンの主要部の処理の流れを示すフローチャート
【図12】本発明の第2の実施形態を示すエンジン制御システム全体の概略構成図
【符号の説明】
11…エンジン(内燃機関)、15…スロットルバルブ、20a〜20d…インジェクタ、24…クランク角センサ、26…排気管、27…触媒、28…空燃比センサ、29…酸素センサ、30…電子制御回路(触媒早期暖機制御手段,第1の触媒昇温手段,第1の触媒昇温手段,点火時期演算手段,燃料噴射量演算手段,暖機状態検出手段)、38…水温センサ、40…触媒温度センサ(温度センサ,暖機状態検出手段)。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an internal combustion engine control device that performs early catalyst warm-up control for quickly raising the temperature of an exhaust gas purifying catalyst to an active temperature after engine startup.
[0002]
[Prior art]
Generally, a three-way catalyst for purifying exhaust gas mounted on a vehicle detoxifies harmful components (HC, CO, NOx) in exhaust gas by oxidizing / reducing reaction under high temperature conditions. In order to effectively exhibit the exhaust gas purification capacity, it is necessary to raise the temperature of the catalyst to the activation temperature (generally 300 to 350 ° C.). Therefore, until the catalyst temperature rises to the activation temperature after the engine is started, the exhaust gas purification ability is low, the emission amount of harmful components in the exhaust gas increases, and the emission deteriorates.
[0003]
In order to solve this problem, in recent years, in order to warm up the catalyst early after the engine is started, the catalyst early warm-up control is executed when the engine cooling water temperature at the start is low. Here, as shown in, for example, Japanese Patent Application Laid-Open No. 60-88870, the catalyst early warm-up control increases the exhaust gas temperature by retarding the ignition timing of the engine and simultaneously increasing the idling speed. The catalyst temperature is raised to the activation temperature at an early stage, or as shown in Japanese Patent Laid-Open No. 4-308311, injection dither control is performed to correct the fuel injection amount in a zigzag manner. The catalyst is heated from the inside by the heat generated by the oxidation reaction.
[0004]
[Problems to be solved by the invention]
However, in the early catalyst warm-up by the ignition delay control, the engine torque decreases due to the ignition delay, and there is a disadvantage that adversely affects drivability. Moreover, in order to warm up the catalyst with the heat of exhaust gas, in order to shorten the catalyst warm-up time, it is necessary to increase the idle speed and increase the amount of exhaust gas. And has the disadvantage of worsening fuel consumption.
[0005]
On the other hand, in the early catalyst warm-up by injection dither control, the oxidation reaction of HC and CO is promoted in the catalyst, and the catalyst is warmed up by the reaction heat. Therefore, when the catalyst is cold, the HC and CO There is a drawback that the oxidation reaction is not promoted, the temperature rise of the catalyst is delayed, and the emission during the early warm-up of the catalyst is deteriorated.
[0006]
The present invention has been made in consideration of such circumstances, and therefore the object thereof is an internal combustion engine capable of shortening the catalyst warm-up time while improving the emission and drivability during the catalyst early warm-up control. It is to provide a control device.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, an internal combustion engine control apparatus according to claim 1 of the present invention provides an ignition timing based on an exhaust gas purifying catalyst disposed in an exhaust path of the internal combustion engine and an operating state of the internal combustion engine. Ignition timing computing means for computing the fuel injection amount computing means for computing the fuel injection amount based on the operating state of the internal combustion engine, warm-up state detecting means for detecting the warm-up state of the catalyst, and after engine startup Catalyst early warm-up control means for performing catalyst early warm-up control for early warming-up of the catalyst until the warm-up completion of the catalyst is detected by the warm-up state detecting means, The means includes a first catalyst temperature raising means for accelerating a temperature rise of the catalyst by delaying the ignition timing from the start of the catalyst early warm-up control; From when the catalyst is warmed up to a state where the oxidation reaction of CO and HC components can be promoted. And a second catalyst temperature raising means for further raising the temperature of the catalyst by performing injection dither control for increasing or decreasing the fuel injection amount.
[0008]
In this configuration, the catalyst early warm-up control is initially performed by ignition delay angle control, and is switched to injection dither control in the middle. In other words, when the catalyst is cold immediately after starting, oxidation reaction of HC and CO hardly occurs in the catalyst. Therefore, the catalyst is warmed up early by ignition delay control until the catalyst temperature rises to some extent, and the exhaust gas is reduced. Warm up the catalyst with heat. As a result, if the catalyst temperature rises to some extent, the oxidation reaction of HC and CO is gradually promoted in the catalyst. At that time, the catalyst early warm-up by the ignition delay control and the catalyst early by the injection dither control are performed. Switching to warm-up, the catalyst is efficiently warmed up from the inside by the heat generated by the oxidation reaction of HC and CO in the catalyst.
[0009]
In this case, the switching timing from the ignition retard control to the injection dither control may be determined by the method of claim 2 or 3 described below.
In other words, in the present invention, the catalyst early warm-up control means has a timer for measuring an elapsed time from the start of the catalyst early warm-up control, and when the time reaches a predetermined time, the first catalyst The ignition retard control by the temperature raising means is switched to the injection dither control by the second catalyst temperature raising means. In other words, the catalyst is warmed up by ignition retard control and the catalyst temperature rises with the passage of time after the start of the early catalyst warm-up control, so that the elapsed time from the start of the early catalyst warm-up control can be a certain amount of time. For example, the catalyst temperature is estimated to have risen to a temperature at which the oxidation reaction of HC and CO occurs in the catalyst. Therefore, when the time until the temperature of the catalyst is increased to a temperature at which the oxidation reaction of HC and CO is promoted is set to “predetermined time”, and the elapsed time from the start of catalyst early warm-up control reaches “predetermined time” When the ignition delay control is switched to the injection dither control, the switching timing becomes appropriate.
[0010]
According to a third aspect of the present invention, the warm-up state detection means includes a temperature sensor that detects temperature of the catalyst or temperature information reflecting the catalyst temperature, and the catalyst early warm-up control means outputs an output signal of the temperature sensor. When it is determined that the catalyst temperature has reached a predetermined temperature, the ignition delay control by the first catalyst temperature raising means is switched to the injection dither control by the second catalyst temperature raising means.
[0011]
In the switching by the timer timed time of the above-mentioned claim 2, since the catalyst temperature after the “predetermined time” elapses differs depending on the catalyst temperature at the start, the injection dither control immediately after switching from the ignition delay control to the injection dither control Although the warming-up effect due to the engine fluctuates depending on the catalyst temperature at the time of starting, in claim 3, the catalyst temperature is determined directly or indirectly, and when the catalyst temperature reaches a predetermined temperature, the ignition delay control is performed to control the injection dither. Since the control is switched to the control, the warm-up effect by the injection dither control immediately after the switch is not affected by the catalyst temperature at the start, and a stable warm-up effect is obtained.
[0012]
According to a fourth aspect of the present invention, when the catalyst early warm-up control means switches from the ignition delay control by the first catalyst temperature raising means to the injection dither control by the second catalyst temperature raising means, before and after the switching. A switching period in which the ignition delay control and the injection dither control are overlapped is set, and the injection dither amount is gradually increased while the ignition delay amount is gradually attenuated within the switching period.
[0013]
That is, if the ignition timing is suddenly returned to the advance side from a state where the ignition delay amount is increased in order to enhance the catalyst warm-up effect, the engine torque fluctuates greatly, which adversely affects drivability. Even when the injection dither amount (injection increase / decrease amount) is increased from the beginning of switching to the injection dither control, the fluctuation of the engine torque becomes large, which adversely affects drivability. In this regard, as in the fourth aspect described above, when the injection dither amount is gradually increased while the ignition retard amount is gradually attenuated at the time of switching, fluctuations in engine torque at the time of switching are suppressed, and drivability is improved.
[0014]
Further, in the present invention, the catalyst early warm-up control means gradually attenuates the injection dither amount when the catalyst early warm-up control ends. Thereby, the fluctuation | variation of the engine torque at the time of completion | finish of catalyst early warm-up control is also suppressed.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a first embodiment of the present invention will be described with reference to FIGS. First, a schematic configuration of the entire engine control system will be described with reference to FIG. An air cleaner 13 is provided at the most upstream portion of the intake pipe 12 of the engine 11 that is an internal combustion engine, and an intake air temperature sensor 14 that detects an intake air temperature Tam is provided downstream of the air cleaner 13. A throttle valve 15 and a throttle opening sensor 16 for detecting the throttle opening TH are provided on the downstream side. Further, an intake pipe pressure sensor 17 for detecting the intake pipe pressure PM is provided on the downstream side of the throttle valve 15, and a surge tank 18 is provided on the downstream side of the intake pipe pressure sensor 17. An intake manifold 19 for introducing air into each cylinder of the engine 11 is connected to the surge tank 18, and injectors 20 a to 20 d for injecting fuel are attached to the branch pipe portions of the respective cylinders of the intake manifold 19. .
[0016]
The engine 11 is provided with a spark plug 21 for each cylinder, and a high-voltage current generated by the ignition circuit 22 is supplied to each spark plug 21 via a distributor 23. This distributor 23 is provided with a crank angle sensor 24 that outputs, for example, 24 pulse signals every 720 ° C. (two rotations of the crankshaft), and the engine speed NE is detected based on the output pulse interval of the crank angle sensor 24. It is supposed to be. Further, a water temperature sensor 38 for detecting the engine cooling water temperature THW is attached to the engine 11.
[0017]
On the other hand, an exhaust pipe (exhaust passage) is connected to an exhaust port (not shown) of the engine 11 via an exhaust manifold 25, and harmful components (CO, HC) in the exhaust gas are disposed in the middle of the exhaust pipe 26. , NOx, and the like) is provided. An air-fuel ratio sensor 28 that outputs a linear air-fuel ratio signal corresponding to the air-fuel ratio of the exhaust gas is provided on the upstream side of the catalyst 27, and the air-fuel ratio in the exhaust gas is provided on the downstream side of the catalyst 27. An oxygen sensor 29 whose output is inverted depending on whether it is rich or lean is provided.
[0018]
The outputs of the various sensors described above are read into the electronic control circuit 30 via the input port 31. The electronic control circuit 30 is mainly composed of a microcomputer, and includes a CPU 32, a ROM 33, a RAM 34, a backup RAM 35, and the like. As will be described later, the fuel injection amount TAU and the ignition are determined using engine operating state parameters obtained from various sensor outputs. The timing Ig and the like are calculated, and a signal corresponding to the calculation result is output from the output port 36 to the injectors 20a to 20d and the ignition circuit 22.
[0019]
Further, the electronic control circuit 30 also functions as a catalyst early warm-up control means for prematurely warming up the catalyst 27 after engine startup by executing the program shown in FIG. The catalyst early warm-up control period) includes a first catalyst temperature raising means (ignition delay control period) that accelerates the temperature rise of the catalyst 27 by correcting the ignition timing from the start of the catalyst early warm-up control, and the catalyst. It is divided into second catalyst temperature raising means (injection dither control period) for further raising the temperature of the catalyst 27 by performing injection dither control in which the fuel injection amount is corrected in a zigzag manner in the middle of the early warm-up control period. .
[0020]
Hereinafter, the flow of processing of the early catalyst warm-up control routine shown in FIG. 2 will be described. This routine is executed at regular time intervals (for example, every 40 ms). First, at step 101, whether or not the engine coolant temperature THW read from the water temperature sensor 38 is equal to or lower than a predetermined complete warm-up temperature T2 (that is, early catalyst warm-up control). Whether or not is necessary). Here, the complete warm-up temperature T2 is a temperature at which it is determined that both the engine 11 and the catalyst 27 are completely warmed up, and for example, T2 = 60 ° C. If the engine coolant temperature THW is lower than the complete warm-up temperature T2, the routine proceeds to step 102, where it is determined whether or not the engine coolant temperature THW is equal to or higher than a predetermined warm-up control lower limit temperature T1. Here, the warm-up control lower limit temperature T1 is a lower limit temperature that does not adversely affect drivability when the catalyst early warm-up control is executed, and is, for example, T1 = 20 ° C.
[0021]
If the engine coolant temperature THW ≧ T1, the routine proceeds to step 103, where it is determined whether the engine start has been completed by determining whether the engine speed NE ≧ 500 RPM. If the start is completed, the routine proceeds to step 104 where the post-startup elapsed time counter CSTA for counting the catalyst early warm-up time after the start is incremented. In the next step 105, the post-startup elapsed time counter CSTA is set to the first start time counter CSTA. It is determined whether or not the predetermined time α has been reached. Here, the first predetermined time α is the ignition required before the catalyst 27 is warmed up to a state where the CO and HC components can be efficiently oxidized in the catalyst 27 by the warming up of the catalyst 27 by the ignition delay control after starting. This is the retard control time.
[0022]
If the elapsed time counter CSTA after starting has not reached the predetermined time α, the routine proceeds to step 106 where the first catalyst temperature raising means permission flag FLG1 is set to “1” indicating execution of ignition delay angle control, Ignition retarding control is executed / continued and this routine is terminated.
[0023]
Thereafter, when the elapsed time counter CSTA after starting reaches the first predetermined time α, it is determined that the catalyst temperature at which the catalyst warm-up by the injection dither control is effective is reached, and the process proceeds from step 105 to step 107. The first catalyst temperature raising means permission flag FLG1 is set to “0” indicating the end of the ignition retard control, and the ignition retard control is terminated. Then, in the next step 108, it is determined whether the elapsed time counter CSTA after starting has reached the second predetermined time β. Here, the second predetermined time β is an elapsed time after the start necessary for the catalyst temperature to rise to the activation temperature by the injection dither control (execution time of the catalyst early warm-up control). The processing functions as a warm-up state detection means in the claims.
[0024]
If the post-start elapsed time counter CSTA has not reached the second predetermined time β, the routine proceeds from step 108 to step 109, where the second catalyst temperature raising means permission flag FLG2 is “1” indicating execution of injection dither control. Is set to execute / continue injection dither control, and this routine ends. Thereafter, when the elapsed time counter CSTA after the start reaches the second predetermined time β, it is determined that the catalyst temperature has reached the activation temperature, the process proceeds from step 108 to step 110, and the second catalyst temperature raising means The permission flag FLG2 is set to “0” indicating the end of the injection dither control to end the injection dither control. In the subsequent step 111, the post-start elapsed time counter CSTA overflow prevention processing (CSTA ← β + 1) is performed, and this routine is executed. finish.
[0025]
On the other hand, if it is determined in step 101 described above that the engine coolant temperature THW is equal to or higher than the fully warmed-up temperature T2, it is determined that both the engine 11 and the catalyst 27 are completely warmed up, and the process proceeds to step 112. Similarly to step 111, the post-startup elapsed time counter CSTA is subjected to overflow prevention processing. In subsequent steps 114 and 115, both the first catalyst temperature raising means permission flag FLG1 and the second catalyst temperature raising means permission flag FLG2 are set to “0”. To disable the catalyst early warm-up control, and this routine ends. In short, when the engine 11 and the catalyst 27 are already warmed up, such as when the engine stop time before starting is short, the catalyst early warm-up control is unnecessary or the warm-up time can be shortened. By comparing THW with a predetermined complete warm-up temperature T2, and prohibiting early catalyst warm-up control when THW ≧ T2, emissions, drivability, and fuel consumption are improved.
[0026]
Further, when it is determined as “No” in any of the steps 102 and 103, that is, when the engine coolant temperature THW is lower than the warm-up control lower limit temperature T1 (= 20 ° C.), or when the engine speed NE <500 RPM. In some cases, the engine rotation is unstable, and if the early catalyst warm-up control is performed, drivability is adversely affected. Therefore, the process proceeds to step 113, the post-startup elapsed time counter CSTA is reset, and the following steps 114, 115 are performed. Thus, both the first catalyst temperature raising means permission flag FLG1 and the second catalyst temperature raising means permission flag FLG2 are reset to “0” to prohibit the early catalyst warm-up control, and this routine ends.
[0027]
Next, the flow of processing of the fuel injection amount calculation routine of FIG. 3 for calculating the final fuel injection amount TAU will be described. This routine is executed every 180 ° C. A (each top dead center of each cylinder) and functions as a fuel injection amount calculation means in the claims. When the processing of this routine is started, first, in steps 121 and 122, the engine speed NE and the intake pipe pressure PM are read. In the next step 123, the second catalyst temperature raising means permission flag FLG2 executes the injection dither control. It is determined whether or not it is set to “1”. If FLG2 = 1, the routine proceeds to step 124, where the dither coefficient KDIT is calculated from the map stored in the ROM 33 corresponding to the engine coolant temperature THW. In this case, the dither coefficient KDIT is set to take a larger value as the engine coolant temperature THW becomes higher in the range of 0 to 0.1. This is because the misfire region corresponding to the air-fuel ratio becomes wider when the engine coolant temperature THW is lower, so the air-fuel ratio cannot be swung to the rich side / lean side larger than the theoretical air-fuel ratio at low temperatures, but the engine coolant temperature THW is This is because the higher the air-fuel ratio, the higher the air-fuel ratio can be compared to when the temperature is low.
[0028]
Then, in the next step 125, it is determined whether or not a specific condition is satisfied. Here, the specific condition is that the fuel injection amount is set to a richer side than the stoichiometric air-fuel ratio (λ = 1) or that the fuel injection amount is not a low rotation region or low load region where combustion is not stable. is there. When this specific condition is satisfied, the routine proceeds to step 126, where dither correction amounts KNE and KPM for correcting the dither coefficient KDIT are calculated from a map corresponding to the engine speed NE and a map corresponding to the intake pipe pressure PM. These maps are stored in the ROM 33.
[0029]
When the dither correction amounts KNE and KPM are calculated in step 126 as described above, the process proceeds to step 127, where the dither check flag RFLG indicating whether the air-fuel ratio has been shifted to the rich side or the lean side is set to “1”. It is determined whether or not it has been done. When the dither check flag RFLG is set to “1”, that is, when the previous air-fuel ratio was swung to the lean side, the routine proceeds to step 128, and this time the final dither is set to set the air-fuel ratio to the rich side this time. The coefficient TDit is calculated by the following equation using the dither coefficient KDIT and the dither correction amounts KNE and KPM.
TDit = 1 + KDIT × KNE × KPM
Thereafter, in step 129, the dither confirmation flag RFLG is inverted to “0”, and the process proceeds to step 133.
[0030]
On the other hand, if the dither confirmation flag RFLG is reset to “0” in step 127, that is, if the previous air-fuel ratio has been swung to the rich side, the process proceeds to step 130, and this time the air-fuel ratio is set to the lean side. As set, the final dither coefficient TDit is calculated by the following equation using the dither coefficient KDIT and the dither correction amounts KNE and KPM.
TDit = 1-KDIT × KNE × KPM
Thereafter, in step 131, the dither confirmation flag RFLG is inverted to “1”, and the process proceeds to step 133.
[0031]
Further, when it is determined as “No” in any of Steps 123 or 125 described above, that is, when the second catalyst temperature raising means permission flag FLG2 is reset to “0” and the injection dither control is prohibited, Alternatively, if the specific condition is not satisfied, the process proceeds to step 132, the final dither correction coefficient TDit is set to “1”, and then the process proceeds to step 133.
[0032]
In step 133, the basic fuel injection amount TP corresponding to the current NE and PM is calculated from a two-dimensional map that defines the relationship between the engine speed NE and the intake pipe pressure PM and the basic fuel injection amount TP. Thereafter, in step 134, the final fuel injection amount TAU is calculated by the following equation using the basic fuel injection amount TP, the final dither coefficient TDit, the basic fuel injection amount correction coefficient FC, and the invalid injection time TV. finish.
TAU = TP × TDit × FC + TV
[0033]
Next, the process flow of the ignition timing calculation routine of FIG. 4 for calculating the final ignition timing AESA will be described. This routine is executed every 180 ° C. A (each top dead center of each cylinder), and functions as an ignition timing calculation means in the claims. When the processing of this routine is started, first, in steps 141 and 142, the engine speed NE and the intake pipe pressure PM are read, and in the subsequent step 143, the first catalyst temperature raising means permission flag FLG1 executes ignition retard control. It is determined whether or not it is set to “1”. When the first catalyst temperature raising means permission flag FLG1 is set to “1”, the routine proceeds to step 144, where the retard amount KRET is calculated from the map stored in the ROM 33 corresponding to the engine coolant temperature THW. To do. In this case, the retardation amount KRET is set in a range of 0 to 10 ° C. so as to take a larger value as the engine coolant temperature THW becomes higher.
[0034]
In the next step 145, correction amounts KRNE and KRPM for correcting the retard amount KRET are calculated from a map corresponding to the engine speed NE and a map corresponding to the intake pipe pressure PM, respectively. These maps are stored in the ROM 33. Thereafter, in step 146, the final retardation amount ARET is calculated by the following equation using the retardation amount KRET and the correction amounts KRNE and KRPM, and the process proceeds to step 147.
ARET = KRET × KRNE × KRPM
[0035]
On the other hand, when it is determined in step 143 that the first catalyst temperature raising means permission flag FLG1 is “0”, the process proceeds to step 149, the final retardation amount ARET is set to 0, the correction is prohibited, and the process proceeds to step 147. .
[0036]
In the next step 147, the basic ignition timing ABASE corresponding to the current Ne and PM is calculated from the two-dimensional map of the engine speed NE and the intake pipe pressure PM. Thereafter, in step 148, the final ignition timing AESA is calculated from the following equation using the basic ignition timing ABASE, the basic ignition timing correction amount C, and the final retardation amount ARET, and this routine is terminated.
AESE = ABASE + C-ARET
Here, the final ignition timing AESA is represented by an angle of BTDC (before top dead center).
[0037]
The fuel injection control operation described in the flowchart of FIG. 3 will be described based on the time chart of FIG. 5 (example of a four-cylinder engine). The signal A is a crank position signal generated every 180 ° C. A (every 6 pulses of the pulse signal output from the crank angle sensor 24 every 30 ° C. A), and is generated at the top dead center (TDC) of each cylinder. Signals B to E are injection pulse signals for driving injectors 20a, 20c, 20d, and 20b provided in the first, third, fourth, and second cylinders, respectively, and the fuel injection calculation routine of FIG. It is activated every time.
[0038]
For example, assuming that the fuel injection calculation routine of FIG. 3 is started at time e in FIG. 5, the final fuel injection amount TAU calculated in step 134 after several microseconds have elapsed from the time e (after the completion of the fuel injection calculation routine). Is output to the injector 20c of the third cylinder (signal B). Similarly, the final fuel injection amount TAU calculated by the fuel injection calculation routine started at time g is for the fourth cylinder. Then, the final fuel injection amount TAU is alternately shifted to the lean side and the rich side in the order of the first, third, fourth, and second cylinders.
[0039]
In this example, the injection amount is alternately swung to the rich side and the lean side for each injection, but may be swung to the rich side and the lean side for each of a plurality of injections. Further, instead of shifting the fuel injection amount to the lean side and the rich side for each predetermined injection, the fuel injection amount may be shifted to the lean side and the rich side for each predetermined time.
[0040]
In this way, the injection dither control that warms up the catalyst early by changing the fuel injection amount to rich / lean is to increase or decrease the fuel injection amount for each combustion so that the air-fuel ratio becomes richer and leaner than the stoichiometric air-fuel ratio. By shaking, rich combustion and lean combustion are repeated, carbon monoxide (CO) is generated by rich combustion, and oxygen (O 2 ). The carbon monoxide and oxygen thus generated undergo an oxidation reaction represented by the following formula by the catalytic action of the catalyst 27 to generate heat (Q).
2CO + O 2 = 2CO 2 + Q
The heat (Q) generated by this oxidation reaction raises the temperature of the exhaust gas passing through the catalyst 27 and promotes warming up of the catalyst 27.
[0041]
The flow of the catalyst early warm-up control described above will be described with reference to the time chart of FIG. As shown in FIG. 6, it is assumed that the vehicle has traveled after starting (in this case, starting at an engine cooling water temperature of 25 ° C.). The engine speed is increased by the start, and the start is completed when the engine speed reaches a predetermined speed (500 RPM).
[0042]
After the start is completed, the elapsed time counter CSTA is accumulated, and the first catalyst temperature raising means permission flag FLG1 is set to the ignition delay until the time when the catalyst temperature is estimated to reach the point A by the ignition delay control. It is set to “1” indicating control execution, and ignition retard control is performed during that time. Thereafter, when it is estimated that the time α has elapsed from the start and the catalyst 27 has been warmed up to a temperature suitable for injection dither control, the first catalyst temperature raising means permission flag FLG1 is reset to “0”. Thus, the first catalyst temperature raising means (ignition retarding control) is prohibited, the second catalyst temperature raising means permission flag FLG2 is set to “1” indicating execution of the injection dither control, and the catalyst 27 by the injection dither control is set. Switch to warm-up.
[0043]
Thereafter, the injection dither control is continued until the time β estimated that the catalyst temperature reaches the point B (activation temperature) due to warm-up by the injection dither control, and the point B where the catalyst 27 is estimated to be fully activated, that is, CSTA ≧ β. At this time, the second catalyst temperature raising means permission flag FLG2 is reset to “0”, and the second catalyst temperature raising means (injection dither control) is prohibited. Thereafter, normal fuel injection control is performed with normal ignition timing control.
[0044]
The effect of 1st Embodiment demonstrated above is demonstrated using FIG. 7 compared with a prior art. In FIG. 7, (1) indicates the catalyst early warm-up control of the above embodiment, (2) indicates conventional catalyst early warm-up control in which only the injection dither control is performed after startup, and (3) indicates catalyst early warm-up. The case where no control is performed is shown.
[0045]
In the conventional catalyst early warm-up control (2) in which only the injection dither control is performed after the start-up, the catalyst temperature rises faster than the point A than in (3) in which the catalyst early warm-up control is not performed at all. However, since the temperature of the catalyst is low from the start to the point A ', the oxidation reaction of CO and HC in the exhaust gas is not promoted in the catalyst even if the injection dither control is performed. It is discharged from the tail pipe of the pipe, and the emission deteriorates during that time.
[0046]
In this regard, according to the above-described embodiment, while the temperature of the catalyst 27 is low, the injection dither control that adversely affects the emission is not performed, and the catalyst 27 is warmed up early by the ignition delay angle control. The temperature of the catalyst 27 is quickly raised to a temperature at which HC easily undergoes an oxidation reaction (point A), and harmful gas components such as HC and NOx in the exhaust gas discharged from the exhaust pipe 26 are reduced.
[0047]
Thereafter, the injection dither control is started only when the temperature of the catalyst 27 reaches a temperature at which the oxidation reaction of CO and HC is promoted. The heat of the oxidation reaction of HC and CO in the catalyst 27 is efficiently warmed from the inside. To work. In this way, if the ignition delay control is switched to the injection dither control during the catalyst early warm-up control, the ignition delay that causes a decrease in engine torque can be suppressed to the necessary minimum time, and drivability can be improved.
[0048]
By the way, if the ignition timing is suddenly returned to the advance side from a state in which the ignition delay amount is increased in order to enhance the catalyst warm-up effect by the ignition delay control, the engine torque fluctuates greatly, which adversely affects drivability. Effect. Even when the injection dither amount (injection increase / decrease amount) is increased from the beginning of switching to the injection dither control, the fluctuation of the engine torque becomes large, which adversely affects drivability.
[0049]
As a means for solving this drawback, when switching from ignition retard control to injection dither control, a switching period is set to overlap the ignition retard control and injection dither control before and after the switching, and the ignition delay is controlled within this switching period. When the injection dither amount is gradually increased while the angular amount is gradually attenuated, fluctuations in engine torque at the time of switching are suppressed, and drivability is improved.
[0050]
Hereinafter, a second embodiment in which this is realized will be described with reference to FIGS. First, the outline of the catalyst early warm-up control of the second embodiment will be described with reference to the time chart shown in FIG. That is, the time β2, before and after the judgment time α of the elapsed time counter CSTA after starting that is considered necessary for warming up the catalyst 27 to a temperature (point A) at which CO and HC easily undergo an oxidation reaction in the catalyst 27, respectively. α2 is provided, and this α2 + β2 is used as a switching period, and by smoothly increasing the injection dither amount while gradually decreasing the ignition retardation amount within this switching period, the ignition delay control is smoothly switched to the injection dither control. , Prevent deterioration of drivability and emissions.
[0051]
In order to perform such switching, the first catalyst temperature raising means permission flag FLG1 is reset to “0” at the (α + α2) point, and the second catalyst temperature raising means permission flag FLG2 is set to the (α−β2) point. Set to “1”. Then, the ignition delay amount KRET starts to attenuate at the (α−β2) point and is changed to zero at the (α + α2) point. On the other hand, the injection dither coefficient KDIT starts to gradually increase at the (α−β2) point and is set to a normal correction value at the (α + α2) point.
[0052]
In the second embodiment, the catalyst 27 is warmed up to a temperature at which the catalyst 27 is fully activated (point B) in order to further suppress the fluctuation of the engine torque at the end of the injection dither control and further improve drivability. A time of β3 is provided immediately before the judgment time β of the elapsed time counter CSTA that is considered to be necessary for this, and the dither coefficient KDIT is gradually attenuated during this β3 and set to zero at β. To do. That is, as the deviation between the target catalyst activation temperature and the temperature estimated by the elapsed time becomes smaller, the injection dither amount is gradually attenuated to improve drivability.
[0053]
Hereinafter, the specific control flow of the second embodiment will be described with reference to the flowcharts of FIGS. FIG. 9 shows a change in the catalyst early warm-up control routine of FIG. 2 used in the first embodiment. In step 105a, it is determined whether or not the time elapsed counter CSTA after the start has exceeded (α−β2) or more. If not, the process proceeds to step 116, and the first catalyst temperature raising means permission flag FLG1 is set to “ In step 117, the second catalyst temperature raising means permission flag FLG2 is reset to “0”. As a result, when CSTA <(α−β2), only ignition retardation control is executed.
[0054]
Thereafter, when the elapsed time counter CSTA after starting reaches (α−β2), the process proceeds from step 105a to step 105b, the second catalyst temperature raising means permission flag FLG2 is set to “1”, and the injection dither control is started. To do. At this time, the first catalyst temperature raising means permission flag FLG1 remains set to “1” by the processing of step 116, and the ignition retard control is also continuously performed. Then, in the next step 105c, it is determined whether or not the elapsed time counter CSTA after starting has exceeded (α + α2) or more. If not, the routine is terminated without performing the subsequent processing. As a result, the ignition retard control and the injection dither control are performed repeatedly until the post-start time elapse counter CSTA elapses (α + α2). Thereafter, when CSTA ≧ (α + α2) is satisfied, step 105c to step Proceeding to 107, the first catalyst temperature raising means permission flag FLG1 is reset to "0" to end the ignition retard control, and thereafter only the injection dither control is executed.
[0055]
This injection dither control is performed until the time β required for the temperature of the catalyst 27 to rise to the activation temperature is reached, and when CSTA ≧ β, the process proceeds from step 108 to step 110, where the second catalyst The temperature raising means permission flag FLG2 is set to “0” indicating the end of the injection dither control to end the injection dither control, and in the following step 111, the post-start elapsed time counter CSTA overflow prevention processing (CSTA ← β + 1) is performed, This routine ends.
[0056]
On the other hand, FIG. 10 is a main part of the fuel injection amount calculation routine of the second embodiment, and the points different from FIG. 3 will be described. If the specific condition is satisfied in step 125, the process proceeds to step 125a, and it is determined whether or not the post-startup elapsed time counter CSTA has exceeded (α + α2). If CSTA <(α + α2), the routine proceeds to step 126, where dither correction amounts KNE and KPM for correcting the dither coefficient KDIT are calculated by a map corresponding to the engine speed NE and a map corresponding to the intake pipe pressure PM, respectively. .
[0057]
Thereafter, when CSTA ≧ (α + α2), the process proceeds to step 125b to determine whether CSTA <(β−β3). If CSTA <(β−β3), the process proceeds to step 125d. , The number X of fuel injection amount calculations executed during (α2 + β2) time is calculated by the following equation.
X = (α2 + β2) / T180
Here, T180 is the time required for the crankshaft to rotate 180 ° C. (the unit is the same as CSTA).
[0058]
In the next step 125d, the current injection dither coefficient KDIT is divided by the fuel injection amount calculation number X to obtain the dither coefficient increase value K2. Thereafter, in step 125f, the dither coefficient increase value K2 is added to the current injection dither coefficient KDIT, and the process proceeds to step 126. By repeating such processing, the injection dither coefficient KDIT gradually increases, and a sudden increase in value is avoided.
[0059]
Thereafter, when CSTA ≧ (β−β3), the routine proceeds from step 125b to step 125g, and β3 is divided by T180 to obtain the fuel injection amount calculation number X2 between β. The dither coefficient attenuation value K3 is obtained by dividing the injection dither coefficient KDIT by the fuel injection amount calculation number X2. Thereafter, in step 125i, the dither coefficient attenuation value K3 is subtracted from the current injection dither coefficient KDIT, and the process proceeds to step 126. By repeating such processing, the injection dither coefficient KDIT gradually decreases, and when the β time has elapsed, the injection dither coefficient KDIT becomes zero.
[0060]
On the other hand, FIG. 11 is a main part of the ignition timing calculation routine of the second embodiment, and only the differences from FIG. 4 will be described. In step 146, after calculating the final retardation amount ARET using the retardation amount KRET and the correction amounts KRNE and KRPM, the process proceeds to step 146a, and whether or not the post-start time elapsed counter CSTA has exceeded (α−β2). If it has not elapsed, the routine proceeds to step 147, where the basic ignition timing ABASE corresponding to the current Ne, PM is calculated from the two-dimensional map of the engine speed NE and the intake pipe pressure PM.
[0061]
Thereafter, when CSTA ≧ (α−β2) is established, the routine proceeds to step 146b, where the ignition timing calculation number X between (α2 + β2) is obtained and continued as described in the fuel injection amount calculation routine of FIG. In step 146c, the current retard amount ARET is divided by the ignition timing calculation number X to obtain the retard amount attenuation value K1, and every time this routine is executed, the retard amount attenuation value K1 is subtracted from the present retard amount ARET. (Step 146d). By such processing, the retardation amount ARET is gradually reduced so that the retardation amount ARET becomes zero when the elapsed time after start reaches (α + α2).
[0062]
In both the first and second embodiments described above, the elapsed time after the start is counted by the post-start time elapsed counter CSTA, and the temperature of the catalyst 27 is estimated by the elapsed time after the start and the injection is performed from the ignition delay control. Changed to dither control. However, in such switching based on the time, the catalyst temperature after the “predetermined time” elapses depends on the catalyst temperature at the time of start-up, so the injection dither control immediately after switching from the ignition retard control to the injection dither control It is inevitable that the warm-up effect due to will fluctuate depending on the catalyst temperature at the start.
[0063]
Therefore, in the third embodiment shown in FIG. 12, a catalyst temperature sensor 40 for detecting the catalyst temperature is attached to the catalyst 27, the catalyst temperature is determined from the output signal of the catalyst temperature sensor 40, and the catalyst temperature is as shown in FIG. When the point A (that is, the temperature at which the oxidation reaction of HC and CO is promoted in the catalyst 27) is reached, the ignition delay control is switched to the injection dither control, and then the catalyst temperature is the point B in FIG. The injection dither control is terminated when the temperature reaches a fully activated temperature.
[0064]
In the third embodiment, when the catalyst temperature detected by the catalyst temperature sensor 40 reaches a predetermined temperature (point A), the ignition delay control is switched to the injection dither control. The machine effect is not affected by the catalyst temperature at the start, and there is an advantage that a stable warm-up effect can be obtained. Moreover, since the injection dither control is terminated when the catalyst temperature detected by the catalyst temperature sensor 40 reaches a predetermined temperature (point B), the catalyst early warm-up is not affected by the catalyst temperature at the start. It can be done without lack.
[0065]
Also in the third embodiment, as in the second embodiment, when switching from ignition retard control to injection dither control, the switching period in which ignition retard control and injection dither control overlap before and after the switching is performed. And the injection dither amount may be gradually increased while the ignition retard amount is gradually attenuated within the switching period. Further, the injection dither amount may be gradually attenuated when the injection dither control is terminated. In this case, the retardation amount ARET is attenuated and the injection dither coefficient KDIT is increased / decreased depending on the deviation between the target catalyst temperature points A and B and the catalyst temperature detected by the catalyst temperature sensor 40. What is necessary is just to change a value.
[0066]
In the third embodiment described above, the catalyst temperature is directly detected by the catalyst temperature sensor 40. However, temperature information reflecting the catalyst temperature, for example, the engine coolant temperature, the exhaust temperature, the air-fuel ratio sensor 28, the oxygen sensor 29, and the like. The catalyst temperature may be indirectly detected based on the output signals of various temperature sensors (water temperature sensor 38, exhaust temperature sensor, element temperature sensor, heater temperature sensor, etc.) that detect the element temperature, heater temperature, etc. good.
[0067]
In both the first and second embodiments, the predetermined times α and β for determining the switching timing from the ignition retard control to the injection dither control and the end timing of the injection dither control are set according to the engine coolant temperature at the start. May be corrected. In this way, it is possible to accurately estimate the catalyst temperature based on the elapsed time after startup.
[0068]
In each of the above embodiments, the ignition delay control is prohibited during the injection dither control except during the switching period. However, the injection dither is controlled to suppress the engine torque fluctuation during the injection dither control. The ignition timing may be retarded when the rich side is swung.
[0069]
【The invention's effect】
As is clear from the above description, according to the configuration of claim 1 of the present invention, the catalyst early warm-up control is initially performed by the ignition delay control and is switched to the injection dither control in the middle. The catalyst can be warmed up efficiently while switching to the optimal warm-up method according to the temperature rise, and the catalyst warm-up time can be shortened while improving the emission and drivability during the early catalyst warm-up control. .
[0070]
According to the second aspect of the present invention, the switching timing from the ignition retard control to the injection dither control is determined by the timer control, so that the switching timing can be easily controlled.
[0071]
In the third aspect, the catalyst temperature is detected directly or indirectly by the temperature sensor, and when the catalyst temperature reaches a predetermined temperature, the ignition delay control is switched to the injection dither control. The warm-up effect by the injection dither control is not affected by the catalyst temperature at the start, and a stable warm-up effect can be obtained.
[0072]
According to the fourth aspect of the present invention, when switching from the ignition delay control to the injection dither control, a switching period for overlapping the ignition delay control and the injection dither control is set before and after the switching, and the ignition delay is controlled within this switching period. Since the injection dither amount is gradually increased while the angular amount is gradually attenuated, fluctuations in engine torque at the time of switching can be suppressed, and drivability can be further improved.
[0073]
Furthermore, in claim 5, since the injection dither amount is gradually attenuated when the catalyst early warm-up control (injection dither control) is terminated, fluctuations in engine torque at the end of the catalyst early warm-up control are also suppressed. Can contribute to improving drivability.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of an entire engine control system showing a first embodiment of the present invention.
FIG. 2 is a flowchart showing a process flow of a catalyst early warm-up control routine used in the first embodiment.
FIG. 3 is a flowchart showing a processing flow of a fuel injection amount calculation routine used in the first embodiment.
FIG. 4 is a flowchart showing a process flow of an ignition timing calculation routine used in the first embodiment.
FIG. 5 is a time chart showing the order of the injection signal and the stroke of each cylinder.
FIG. 6 is a time chart for explaining the behavior when performing catalyst early warm-up control according to the first embodiment.
FIG. 7 is a time chart for explaining the effect of the early catalyst warm-up control according to the first embodiment.
FIG. 8 is a time chart for explaining the behavior when performing catalyst early warm-up control according to the second embodiment of the present invention;
FIG. 9 is a flowchart showing a processing flow of a main part of a catalyst early warm-up control routine used in the second embodiment.
FIG. 10 is a flowchart showing a processing flow of a main part of a fuel injection amount calculation routine used in the second embodiment.
FIG. 11 is a flowchart showing a processing flow of a main part of an ignition timing calculation routine used in the second embodiment.
FIG. 12 is a schematic configuration diagram of an entire engine control system showing a second embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 11 ... Engine (internal combustion engine), 15 ... Throttle valve, 20a-20d ... Injector, 24 ... Crank angle sensor, 26 ... Exhaust pipe, 27 ... Catalyst, 28 ... Air-fuel ratio sensor, 29 ... Oxygen sensor, 30 ... Electronic control circuit (Catalyst early warm-up control means, first catalyst temperature rise means, first catalyst temperature rise means, ignition timing calculation means, fuel injection amount calculation means, warm-up state detection means), 38 ... water temperature sensor, 40 ... catalyst Temperature sensor (temperature sensor, warm-up state detection means).

Claims (5)

内燃機関の排気経路に配設された排出ガス浄化用の触媒と、前記内燃機関の運転状態に基づいて点火時期を演算する点火時期演算手段と、前記内燃機関の運転状態に基づいて燃料噴射量を演算する燃料噴射量演算手段と、前記触媒の暖機状態を検出する暖機状態検出手段と、機関始動後、前記暖機状態検出手段により前記触媒の暖機完了が検出されるまで前記触媒を早期暖機する触媒早期暖機制御を実行する触媒早期暖機制御手段とを備え、
前記触媒早期暖機制御手段は、触媒早期暖機制御開始から前記点火時期を遅角補正することで前記触媒の昇温を促進する第1の触媒昇温手段と、触媒早期暖機制御の途中で前記触媒がCO、HC成分の酸化反応を促進できる状態まで暖機された時点から前記燃料噴射量を増減補正する噴射ディザ制御を行うことで前記触媒を更に昇温させる第2の触媒昇温手段とを有することを特徴とする内燃機関制御装置。
An exhaust gas purifying catalyst disposed in an exhaust path of the internal combustion engine, ignition timing calculating means for calculating an ignition timing based on the operating state of the internal combustion engine, and a fuel injection amount based on the operating state of the internal combustion engine A fuel injection amount calculating means for calculating the catalyst, a warm-up state detecting means for detecting the warm-up state of the catalyst, and the catalyst until the warm-up completion of the catalyst is detected by the warm-up state detecting means after the engine is started. Catalyst early warm-up control means for performing catalyst early warm-up control for early warm-up,
The catalyst early warm-up control means includes a first catalyst temperature raising means for promoting the temperature rise of the catalyst by correcting the ignition timing from the start of the catalyst early warm-up control, and in the middle of the catalyst early warm-up control. Then, the second catalyst temperature rise is further performed by performing the injection dither control for correcting the increase or decrease in the fuel injection amount from the time when the catalyst is warmed up to the state where the oxidation reaction of the CO and HC components can be promoted. Means for controlling an internal combustion engine.
前記触媒早期暖機制御手段は、触媒早期暖機制御開始からの経過時間を計時するタイマを有し、その計時時間が所定時間に達したときに前記第1の触媒昇温手段による点火遅角制御から前記第2の触媒昇温手段による噴射ディザ制御に切り替えることを特徴とする請求項1に記載の内燃機関制御装置。  The catalyst early warm-up control means has a timer for measuring an elapsed time from the start of the catalyst early warm-up control, and the ignition delay by the first catalyst temperature raising means when the measured time reaches a predetermined time. 2. The internal combustion engine control device according to claim 1, wherein the control is switched to injection dither control by the second catalyst temperature raising means. 前記暖機状態検出手段は、前記触媒の温度又は触媒温度を反映した温度情報を検出する温度センサを有し、
前記触媒早期暖機制御手段は、前記温度センサの出力信号に基づいて触媒温度が所定温度に達したと判定したときに前記第1の触媒昇温手段による点火遅角制御から前記第2の触媒昇温手段による噴射ディザ制御に切り替えることを特徴とする請求項1に記載の内燃機関制御装置。
The warm-up state detecting means includes a temperature sensor that detects temperature information reflecting the temperature of the catalyst or the catalyst temperature,
The catalyst early warm-up control means determines that the second catalyst from the ignition delay angle control by the first catalyst temperature raising means when it is determined that the catalyst temperature has reached a predetermined temperature based on the output signal of the temperature sensor. 2. The internal combustion engine control device according to claim 1, wherein the control is switched to injection dither control by a temperature raising means.
前記触媒早期暖機制御手段は、前記第1の触媒昇温手段による点火遅角制御から前記第2の触媒昇温手段による噴射ディザ制御に切り替える際にその切替えの前後で前記点火遅角制御と前記噴射ディザ制御とを重複させる切替期間を設定し、この切替期間内において点火遅角量を徐々に減衰させながら噴射ディザ量を徐々に増加させることを特徴とする請求項1乃至3のいずれかに記載の内燃機関制御装置。  When the catalyst early warm-up control means switches from the ignition delay control by the first catalyst temperature raising means to the injection dither control by the second catalyst temperature raising means, the catalyst early warm-up control means 4. A switching period in which the injection dither control overlaps is set, and the injection dither amount is gradually increased while gradually decreasing the ignition retardation amount within the switching period. An internal combustion engine control device according to claim 1. 前記触媒早期暖機制御手段は、触媒早期暖機制御を終了する際に噴射ディザ量を徐々に減衰させることを特徴とする請求項1乃至4のいずれかに記載の内燃機関制御装置。  The internal combustion engine control device according to any one of claims 1 to 4, wherein the catalyst early warm-up control means gradually attenuates the injection dither amount when the catalyst early warm-up control is terminated.
JP23805695A 1995-09-18 1995-09-18 Internal combustion engine control device Expired - Lifetime JP3821241B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP23805695A JP3821241B2 (en) 1995-09-18 1995-09-18 Internal combustion engine control device
US08/706,692 US5845492A (en) 1995-09-18 1996-09-06 Internal combustion engine control with fast exhaust catalyst warm-up
US09/168,321 US5974792A (en) 1995-09-18 1998-10-08 Internal combustion engine control with fast exhaust catalyst warm-up

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23805695A JP3821241B2 (en) 1995-09-18 1995-09-18 Internal combustion engine control device

Publications (2)

Publication Number Publication Date
JPH0988564A JPH0988564A (en) 1997-03-31
JP3821241B2 true JP3821241B2 (en) 2006-09-13

Family

ID=17024514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23805695A Expired - Lifetime JP3821241B2 (en) 1995-09-18 1995-09-18 Internal combustion engine control device

Country Status (1)

Country Link
JP (1) JP3821241B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190099384A (en) * 2017-07-21 2019-08-27 도요타 지도샤(주) Control device for internal combustion engine

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19921972A1 (en) * 1999-05-12 2000-11-16 Volkswagen Ag Process for desulfurizing a nitrogen oxides storage catalyst arranged in an exhaust gas channel of an IC engine comprises using operating parameters to raise the exhaust gas temperature and guarantee the working modulus of the engine
JP4715458B2 (en) 2004-12-07 2011-07-06 株式会社デンソー Thermoelectric generator
JP4557176B2 (en) * 2006-07-13 2010-10-06 株式会社デンソー Catalyst early warm-up control device for internal combustion engine
JP2009011976A (en) 2007-07-06 2009-01-22 Denso Corp Hexagonal-cell honeycomb catalyst body, and exhaust emission control system using the same
JP4818376B2 (en) * 2009-02-12 2011-11-16 本田技研工業株式会社 Catalyst temperature controller
KR101461869B1 (en) * 2009-12-02 2014-11-21 현대자동차 주식회사 Method for preventing absorption of hydrocarbon in selective catalytic reduction catalyst and system thereof
JP6915490B2 (en) * 2017-10-03 2021-08-04 トヨタ自動車株式会社 Internal combustion engine control device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190099384A (en) * 2017-07-21 2019-08-27 도요타 지도샤(주) Control device for internal combustion engine
KR102352335B1 (en) 2017-07-21 2022-01-17 도요타 지도샤(주) Control device for internal combustion engine

Also Published As

Publication number Publication date
JPH0988564A (en) 1997-03-31

Similar Documents

Publication Publication Date Title
US6679050B1 (en) Exhaust emission control device for internal combustion engine
JP2867747B2 (en) Engine control device
JP3815006B2 (en) Control device for internal combustion engine
US7047727B2 (en) Rapid catalyst warm-up control device for internal combustion engine
US6205776B1 (en) Air-fuel ration control system for multi-cylinder internal combustion engine
JP6363742B1 (en) Catalyst deterioration judgment device
JPS60237142A (en) Controller for internal-combustion engine
JP3821241B2 (en) Internal combustion engine control device
JP4557176B2 (en) Catalyst early warm-up control device for internal combustion engine
JPH0988663A (en) Control device for internal combustion engine
JP3541523B2 (en) Engine control device
JP3552609B2 (en) Control device for spark ignition type direct injection engine
JP4254021B2 (en) Catalyst early warm-up control device for in-cylinder internal combustion engine
JP3820770B2 (en) In-cylinder direct injection spark ignition engine
JP2962127B2 (en) Control device for internal combustion engine
JP3743277B2 (en) Control device for direct-injection spark-ignition internal combustion engine
JP4506595B2 (en) Control device for internal combustion engine
JP3648864B2 (en) Lean combustion internal combustion engine
JP3770417B2 (en) Catalyst degradation detector
JP3627561B2 (en) Air-fuel ratio control apparatus for multi-cylinder internal combustion engine
JP4324297B2 (en) In-cylinder injection engine control device
JP2623791B2 (en) Air-fuel ratio control device for internal combustion engine
JP3962920B2 (en) Fuel injection control device for in-cylinder internal combustion engine
JP3036351B2 (en) Method of detecting rotation fluctuation of internal combustion engine
JP4415803B2 (en) Control device for internal combustion engine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060601

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060614

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090630

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110630

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110630

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130630

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140630

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term