JP3820628B2 - Electronic component mounting substrate and method for manufacturing the same - Google Patents

Electronic component mounting substrate and method for manufacturing the same Download PDF

Info

Publication number
JP3820628B2
JP3820628B2 JP13275296A JP13275296A JP3820628B2 JP 3820628 B2 JP3820628 B2 JP 3820628B2 JP 13275296 A JP13275296 A JP 13275296A JP 13275296 A JP13275296 A JP 13275296A JP 3820628 B2 JP3820628 B2 JP 3820628B2
Authority
JP
Japan
Prior art keywords
grounding
hole
core substrate
substrate
electronic component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13275296A
Other languages
Japanese (ja)
Other versions
JPH09293940A (en
Inventor
昌留 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP13275296A priority Critical patent/JP3820628B2/en
Publication of JPH09293940A publication Critical patent/JPH09293940A/en
Application granted granted Critical
Publication of JP3820628B2 publication Critical patent/JP3820628B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/182Printed circuits structurally associated with non-printed electric components associated with components mounted in the printed circuit board, e.g. insert mounted components [IMC]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/403Edge contacts; Windows or holes in the substrate having plural connections on the walls thereof

Landscapes

  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)
  • Structures For Mounting Electric Components On Printed Circuit Boards (AREA)

Description

【0001】
【技術分野】
本発明は,電子部品搭載用基板及びその製造方法に関し,特に,コア基板の上下面に設けた接地用ボンディングパッドとコア基板の下面に設けた接地用回路パターンとの間の電気導通手段に関する。
【0002】
【従来技術】
電子部品搭載用基板は,電子部品を搭載して,該電子部品に対して電流の導出入する基板である。かかる電子部品搭載用基板としては,従来,図18に示すごとく,コア基板95に電子部品98を搭載するための搭載用穴950と,コア基板95の上下面の電気導通を行う接地用スルーホール956,957とを有するものがある。
【0003】
コア基板95の上面には,図18,図19に示すごとく,接地用,信号用,電源用回路パターン915,92,93を設けている。搭載用穴950の周囲には,接地用,信号用の回路パターン92,93と接続する接地用,信号用ボンディングパッド921,931が設けられている。信号用,電源用ボンディングパッド911,921,931には,ボンディングワイヤー981が接合される。
また,コア基板95の上面には,搭載用穴950の周囲を囲むように,接地用の環状パッド912が設けられている。環状パッド912は,接地用パッド911と接続している。
【0004】
一方,コア基板95の下面には,図18,図20に示すごとく,その下面の全体にわたって,接地用回路パターン913が設けられている。
また,図18に示すごとく,コア基板95の下面には,接着層99を介して,放熱板96が接着している。
搭載用穴950を覆う放熱板96の上面には,接着層992により電子部品98が接合されている。
【0005】
回路パターン915,92,93のパッド部916,920,930には,半田ボール97が接合されている。この電子部品搭載用基板9は,一般にボールグリッドアレイと呼ばれ,マザーボードとの間を半田ボール7により接合する方式をとる。
【0006】
上記電子部品搭載用基板9は,コア基板95の下面全体に接地用回路パターン913を設けているため,接地用回路パターンのインダクタンスを下げることができ,その結果,ノイズの低減,伝搬遅延の短縮に効果がある。そのため,かかる電子部品搭載用基板9は,高速用のパッケージとして利用されている。
【0007】
【解決しようとする課題】
しかしながら,上記従来の電子部品搭載用基板においては,図18,図19に示すごとく,電子部品98と接地用パッド911との間,電子部品98と信号用パッド921との間,電子部品98と電源用パッド931との間が離れている。そのため,これらを接続するボンディングワイヤー981が長くなり,インダクタンスの低下を妨げる。
【0008】
また,接地用スルーホール956を形成するため,接地用スルーホール956と搭載用穴950との間に,接地用スルーホール956の周辺を囲むに十分な広さのコア基板95が必要である。そのため,搭載用穴950の大きさが制限され,電子部品を搭載する搭載面積が小さくなる。このことは,電子部品の高機能化,大型化に不利となる。
【0009】
本発明はかかる従来の問題点に鑑み,インダクタンスが低く,かつ,電子部品を搭載するに十分な搭載エリアを確保できる,電子部品搭載用基板及びその製造方法を提供しようとするものである。
【0010】
【課題の解決手段】
請求項1に記載の発明は,電子部品を搭載するための搭載用穴を設けたコア基板を有する電子部品搭載用基板であって,
上記搭載用穴の周囲に設けられ,上記コア基板の外縁部から上記搭載用穴の外周方向へ延在する矩形の信号用ボンディングパッドと,
上記搭載用穴の周囲に設けられ,上記コア基板の外縁部から上記搭載用穴の外周方向へ延在する矩形の電源用ボンディングパッドと,
上記コア基板の下面の全体を被覆するベタ層状の接地用回路パターンと,
上記コア基板の上面に設けられ,上記信号用ボンディングパッド及び電源用ボンディングパッドの間に延在する矩形の接地用ボンディングパッドと,
上記搭載用穴の壁面に配置され,上記接地用ボンディングパッド及び接地用回路パターンの間を導通させる接地用側面スルーホールと,
上記接地用側面スルーホールの内部に充填されている絶縁性樹脂と,
を備えることを特徴とする電子部品搭載用基板である。
【0011】
本発明において最も注目すべきことは,搭載用穴の壁面に接地用の側面スルーホールを設けたことである。
【0012】
次に,本発明の作用効果について説明する。
本発明の電子部品搭載用基板においては,搭載用穴の壁面に接地用の側面スルーホールを設けている。この側面スルーホールは,搭載用穴に面して設けられているため,従来のようにスルーホールと搭載用穴との間を隔てるコア基板はない。そのため,搭載用穴の間際に,接地用,信号用,及び電源用のボンディングパッドを設けることができる。それ故,これらのボンディングパッドと電子部品との間の距離が短くなり,両者を接続するボンディングワイヤーの長さが短くなる。故に,インダクタンスを低く抑制できる。
【0013】
また,従来のようにスルーホールと搭載用穴との間を隔てるコア基板がないため,従来よりも搭載用穴の大きさを広くすることができ,電子部品を搭載する搭載面積を大きくとることができる。従って,従来よりも大型の電子部品を搭載できる。
また,接地用の側面スルーホールの内部は樹脂が充填されているため,側面スルホールの形成のため加工(ルーター又は打抜き)時にスルホール内の導体を保護できる等の効果を期待できる。
【0014】
また,上記コア基板の下面に設けた接地用回路パターンは,コア基板の下面の全体を被覆するベタ層である。これにより,接地用回路パターンのインダクタンスを一層低く抑制できる。
【0015】
次に,上記コア基板の上面又は下面には,上層基板又は下層基板の少なくとも一方が接着されていることが好ましい。これにより,接地用の回路パターンと,信号用又は電源用の回路パターンとの上下方向における絶縁間隔に自由度ができ,基板としての電気特性を調整できる等の効果を発揮できる。
上記コア基板としては,絶縁性の基板を用いる。このコア基板としては,例えば,樹脂基板がある。
【0016】
次に,上記電子部品搭載用基板を製造する方法としては,例えば,コア基板における搭載用穴形成位置に,筒状の接地用スルーホールを穿設し,
次いで,上記接地用スルーホールの内部を含めて上記コア基板の表面全体に,金属めっき膜を被覆し,
次いで,上記接地用スルーホールの内部に樹脂を充填し,
次いで,上記金属めっき膜から,上記コア基板の上面に接地用ボンディングパッドを,またコア基板の下面に接地用回路パターンを形成して,上記接地用ボンディングパッドと上記接地用回路パターンとの間を上記接地用スルーホールにより導通させると共に,信号用又は電源用のボンディングパッド及び回路パターンを形成し,
次いで,上記樹脂を充填した筒状の接地用スルーホールが分断されるように,該接地用スルーホールに沿って,搭載用穴形成部分を穿設することにより,搭載用穴を形成すると共に,壁面に樹脂を充填してなる接地用の側面スルーホールを形成することを特徴とする電子部品搭載用基板の製造方法がある。
【0017】
この製造方法においては,接地用スルーホールの内壁を金属めっき膜により被覆し,その内部に樹脂を充填し,その後,樹脂を充填した筒状の接地用スル−ホ−ルが分断されるように,該接地用スル−ホ−ルに沿って搭載用穴形成部分を穿設している。このとき,搭載用穴の壁面には,その壁面と同一平面上に,樹脂を充填した半円状の接地用の側面スルーホールが形成される。
【0018】
次に,上記金属めっき膜から上記ボンディングパッド及び回路パターンを形成した後,コア基板の上面又は下面の少なくとも一方に,上層基板又は下層基板のいずれか一方を接着層を介して接着することが好ましい。これにより,高密度実装化に対応した多層構造の電子部品搭載用基板を製造できる。
【0019】
次に,上記接地用スルーホールの内部に樹脂を充填するに当たっては,上記接着層としてプリプレグ樹脂接着材を用い,該プリプレグ樹脂接着材の中の樹脂を上記接地用スルーホールの内部に浸入させることが好ましい。これにより,接地用スルーホールの内部に樹脂を容易に充填することができる。また,接地用スルーホールの内部への樹脂の充填と同時に,コア基板と下層基板との接着を行うことができ,製造工程を簡略化できる。
上記プリプレグ樹脂接着材は,樹脂が半硬化状態にあり,加熱により硬化する性質を有する。
【0020】
【発明の実施の形態】
実施形態例1
本発明の実施形態例にかかる電子部品搭載用基板について,図1〜図10を用いて説明する。
本例の電子部品搭載用基板1は,図1に示すごとく,電子部品8を搭載するための搭載用穴50を設けたコア基板5と,搭載用穴50を覆うように,コア基板5の下面に接着した放熱板6とを有する。
コア基板5の下面には,接地用回路パターン13が設けられている。接地用回路パターン13は,図3に示すごとく,コア基板5の下面の全体を被覆するベタ層である。
【0021】
図1,図4に示すごとく,搭載用穴50の壁面には,接地用回路パターン13と接続する半円状の接地用側面スルーホール51が設けられている。この側面スルーホール51は,その内壁が金属めっき膜4により被覆されており,その内部は樹脂591により充填されている。
【0022】
図2,図4に示すごとく,コア基板5の上面には,搭載用穴50の周辺に,接地用ボンディングパッド11,信号用ボンディングパッド21,電源用ボンディングパッド31が設けられている。これらには,図1に示すごとく,電子部品8と接続するボンディングワイヤー81が接合されている。
【0023】
また,接地用ボンディングパッド11は,接地用の側面スルーホール51を介して,コア基板5の下面に設けた接地用回路パターン13と接続している。接地用回路パターン13は,コア基板5の周辺に設けた筒状の接地用スルーホール52を介して,コア基板5の上面に設けた接地用パターン15と接続している。
また,信号用ボンディングパッド21は信号用回路パターン22と,また電源用ボンディングパッド31は電源用回路パターン32と接続している。
【0024】
接地用,信号用,電源用回路パターン15,22,32は,そのパッド部151,221,321に,それぞれ半田ボール7を接合している。この半田ボール7は,電子部品搭載用基板1と相手部材との電気導通を図るための接合部材である。
【0025】
コア基板5の下面には,図1に示すごとく,搭載用穴50の下方開口部を覆うように,接着層599により放熱板6が接着されている。搭載用穴50の底部を形成する放熱板6の上面には,接着層598により電子部品8が接着されている。
【0026】
次に,上記電子部品搭載用基板の製造方法について説明する。
まず,その概要を説明する。コア基板5における搭載用穴形成位置511に接地用スルーホール510を形成し(図5,図6),その内部を含めてコア基板5の表面全体に金属めっき膜4を被覆する(図7)。接地用スルーホール510の内部に樹脂591を充填する(図8)。金属めっき膜から,接地用,信号用,電源用回路パターン13,15,22,32を形成する(図9)。樹脂591を充填した筒状の接地用スル−ホ−ル510が分断されるように,該接地用スル−ホ−ル510に沿って,搭載用穴形成部分を穿設することにより,搭載用穴51を形成すると共にその壁面に樹脂591を充填してなる接地用の側面スルーホール51を形成する(図10)。
【0027】
次に,これを詳細に説明する。
まず,コア基板としてガラスエポキシ樹脂基板を準備する。次いで,図5,図6に示すごとく,コア基板5における搭載用穴形成位置511に,ドリルを用いて,接地用スルーホール510を穿設する。また,コア基板5の周縁付近にも,ドリルを用いて,接地用スルーホール52を穿設する。
【0028】
次いで,図7に示すごとく,接地用スルーホール510,52の内部も含めて,コア基板5の表面全体に金属めっき膜4を施す。
次いで,図8に示すごとく,接地用スルーホール510,52の内部に,ディスペンサー又は印刷法により,ペースト状の熱硬化型の樹脂591,592を充填し,加熱して硬化させる。
【0029】
次いで,図9,図2に示すごとく,露光,現像,エッチング等の常法により,上記金属めっき膜から,コア基板5の上面には,接地用,信号用,電源用のボンディングパッド11,21,31,及び接地用,信号用,電源用回路パターン15,22,32を形成する。また,コア基板5の上面に,接地用スルーホール510,52のランド12,14を形成する。一方,コア基板5の下面には,その全体を覆う接地用回路パターン13を形成する。
次に,パッド部及び放熱板接着部を除くコア基板5の表面を,ソルダーレジスト膜により被覆する(図示略)。
【0030】
次に,打ち抜き型又はルーター加工を用いて,樹脂591を充填した筒状の接地用スル−ホ−ル510が分断されるように,該接地用スル−ホ−ル510に沿って,搭載用穴形成部分512を穿設する。これにより,図10,図4に示すごとく,コア基板5に搭載用穴50を形成すると共に,その壁面には,樹脂591を充填してなる半円状の接地用側面スルーホール51を形成する。
【0031】
次いで,図1に示すごとく,コア基板5の下面に,接着層598を用いて,金属製の放熱板6を接着する。
次いで,接地用,信号用,電源用回路パターン15,22,32におけるパッド部151,221,321に半田ボール7を載置し,加熱することにより,その一部を溶融させ,両者を接合する。
これにより,図1〜図4に示す電子部品搭載用基板1が得られる。
【0032】
次に,本例の作用効果について説明する。
本例の電子部品搭載用基板1においては,図1,図4に示すごとく,搭載用穴50の壁面500に接地用の側面スルーホール51を設けている。この側面スルーホール51は,搭載用穴50に面して設けられているため,従来のように接地用スルーホールと搭載用穴との間を隔てるコア基板はない。
【0033】
そのため,搭載用穴50の間際に,接地用,信号用,及び電源用の各種ボンディングパッド11,21,31を設けることができる。それ故,これらのボンディングパッド11,21,31と電子部品8との間の距離が短くなり,両者を接続するボンディングワイヤー81の長さが短くなる。故に,インダクタンスを低く抑制できる。
【0034】
また,従来のように接地用スルーホールと搭載用穴との間を隔てるコア基板がないため,従来よりも搭載用穴50の大きさを広くすることができ,電子部品8を搭載する搭載面積を大きくとることができる。
また,接地用の側面スルーホール51の内部には樹脂591が充填されているため,側面スルーホール51の内壁を被覆する金属めっき膜4を保護することができる。
【0035】
また,図2に示すごとく,コア基板5の上面における搭載用穴50の周辺には,接地用ボンディングパッド11が設けられているため,電子部品8と接地用の側面スルーホール51との間を短距離で接続することができる。
また,図3に示すごとく,接地用回路パターン13は,コア基板5の下面の全体を被覆するベタ層であるため,接地用回路パターン13のインダクタンスを一層低く抑制できる。
【0036】
実施形態例2
本例の電子部品搭載用基板は,図11に示すごとく,コア基板5の下面に下層基板57を接着して多層基板54を用いている点が,上記実施形態例1と相違する。
下層基板57には,コア基板5の搭載用穴50と同一形状の搭載用穴570が開口している。また,コア基板5及び下層基板57を貫通する接地用スルーホール52が設けられている。
下層基板57の下面には,接着層599により放熱板6が接着されている。
本例の電子部品搭載用基板10におけるその他の構成は,上記実施形態例1と同様である。
【0037】
次に,本例の電子部品搭載用基板の製造方法について説明する。
まず,図12に示すごとく,実施形態例1と同様にコア基板5に接地用スルーホール510を穿設し,接地用スルーホール510を含むコア基板5の全表面に金属めっき膜4を施す。次いで,コア基板5の下面を被覆する金属めっき膜より,接地用回路パターン13を形成する。
【0038】
次いで,このコア基板5の下面に,接着層59としてのプリプレグ接着層を介して,下層基板57を積層する。下層基板としては,ガラスエポキシ基板等の樹脂基板を用いる。次いで,これらをプレス機を用いて,加熱,圧着して,一体化する。これにより,図13に示すごとく,コア基板5と下層基板57とからなる多層基板54が形成される。この際,プリプレグ樹脂接着材の中の樹脂591が接地用スルーホール510の内部に浸入する。
【0039】
次いで,打ち抜き型又はルーター加工を用いて,搭載用穴形成部分512を打ち抜く。これにより,コア基板5及び下層基板57に,搭載用穴50,570を形成する。また,コア基板5における搭載用穴50の壁面に,樹脂591を充填した半円状の接地用の側面スルーホール51を形成する。
また,多層基板54の周辺部を貫通する接地用スルーホール52を穿設する。
【0040】
次いで,図15に示すごとく,搭載用穴50,570の上下開口部をマスク49により被覆した状態で,多層基板54の表面に,金属めっき膜41を施す。
次いで,図16に示すごとく,実施形態例1における図2と同様に,コア基板5の上面に,接地用,信号用,電源用のボンディングパッド11,121,31,及び接地用,信号用,電源用の回路パターン15,22,32を形成する。また,コア基板5の上面に,接地用側面スルーホール51のランド12,接地用スルーホール52のランド14を形成する。次いで,マスクを取り去る。
次に,パッド部及び放熱板接着部を除くコア基板5の表面を,ソルダーレジスト膜により被覆する(図示略)。
【0041】
次に,図11に示すごとく,多層基板54の下面に,接着層599を用いて,搭載用穴570の下方開口部を覆うように放熱板6を接着する。また,接地用,信号用,電源用回路パターンのパッド部に半田ボール7を接合する。
これにより,図1〜図3に示す電子部品搭載用基板10が得られる。
【0042】
本例においては,コア基板5の下面に下層基板57を積層,接着した,多層基板54を用いている。そのため,実施形態例1に比較して,高密度実装が可能である。
また,接地用スルーホール510の内部に樹脂591を充填するに当たっては,接着層59としてプリプレグ樹脂接着材を用い,プリプレグ樹脂接着材の中の樹脂591を接地用スルーホール510の内部に浸入させている。そのため,接地用スルーホール510の内部への樹脂591の充填と同時に,コア基板5と下層基板57との接着を行なうことができ,製造工程を簡略化できる。
その他,本例においても実施形態例1と同様の効果を得ることができる。
【0043】
実施形態例3
本例の電子部品搭載用基板においては,図17に示すごとく,コア基板5の上面に第1,第2上層基板55,56を積層している点が,実施形態例2と相違する。
即ち,本例の電子部品搭載用基板100は,コア基板5の上面には第1,第2上層基板55,56を,またその下面には下層基板57を積層した4層構造からなる多層基板549を用いている。
本例の電子部品搭載用基板100におけるその他の構成は,上記実施形態例2と同様である。
【0044】
本例の電子部品搭載用基板を製造するにあたっては,コア基板5と下層基板57とからなる多層基板54を,実施形態例2における図13と同様に準備する。コア基板5の上面における金属めっき膜より,各種ボンディングパッド,回路パターン,ランドを形成する。
【0045】
次いで,多層基板54の上面に,接着層596,第2上層基板56,接着層595,及び第1上層基板55を,順に積層し,これらを加熱,圧着し,4層構造の多層基板549を得る。接着層595,596としては,プリプレグ接着層を用いる。第1,第2上層基板55,56には,予め,搭載用穴550,560が穿設されている。第1,第2上層基板としては,ガラスエポキシ基板等の樹脂基板を用いる。
【0046】
次いで,実施形態例2と同様に,多層基板549を貫通する接地用スルーホール52を穿設し,その内壁に金属めっき膜41を被覆し,多層基板549の上面,下面に,各種ボンディングパッド,回路パターン,ランドを形成する。
これにより,本例の電子部品搭載用基板100を得る。
【0047】
本例の電子部品搭載用基板100においては,コア基板5,下層基板57,第1,第2上層基板55,56からなる4層構造の多層基板549を用いている。そのため,上記実施形態例1,2に比べて,より一層高密度実装が可能となる。
その他,本例においても実施形態例2と同様の効果を得ることができる。
【0048】
【発明の効果】
本発明によれば,インダクタンスが低く,かつ,電子部品を搭載するに十分な搭載エリアを確保できる,電子部品搭載用基板及びその製造方法を提供することができる。
【図面の簡単な説明】
【図1】実施形態例1における,電子部品搭載用基板の断面図。
【図2】実施形態例1における,電子部品搭載用基板の平面図。
【図3】実施形態例1における,コア基板の裏面図。
【図4】実施形態例1における,搭載用穴付近を示す,電子部品搭載用基板の斜視図。
【図5】実施形態例1における,接地用スルーホールの穿設位置を示す,コア基板の平面図。
【図6】実施形態例1の電子部品搭載用基板の製造方法における,接地用スルーホールが穿設されたコア基板の断面図。
【図7】図6に続く,金属めっき膜を施したコア基板の断面図。
【図8】図7に続く,接地用スルーホールの内部に樹脂を充填したコア基板の断面図。
【図9】図8に続く,ボンディングパッド,回路パターン,ランドを形成したコア基板の断面図。
【図10】図9に続く,搭載用穴を形成したコア基板の断面図。
【図11】実施形態例2における,電子部品搭載用基板の断面図。
【図12】実施形態例2の電子部品搭載用基板の製造方法における,コア基板と下層基板との断面図。
【図13】図12に続く,コア基板の下面に放熱板を接着してなる多層基板の断面図。
【図14】図13に続く,搭載用穴を形成した多層基板の断面図。
【図15】図14に続く,金属めっき膜を施す方法を示す,多層基板の断面図。
【図16】図15に続く,ボンディングパッド,回路パターン,ランドを形成したコア基板の断面図。
【図17】実施形態例3における,電子部品搭載用基板の断面図。
【図18】従来例における,電子部品搭載用基板の断面図。
【図19】従来例における,電子部品搭載用基板の平面図。
【図20】従来例における,コア基板の裏面図。
【符号の説明】
1,10,100...電子部品搭載用基板,
11...接地用ボンディングパッド,
12,14...ランド,
13,15...接地用回路パターン,
151,221,321...パッド部,
21...信号用ボンディングパッド,
22...信号用回路パターン,
31...電源用ボンディングパッド,
32...電源用回路パターン,
4.41...金属めっき膜,
5...コア基板,
50,540,570,580...搭載用穴,
51...接地用の側面スルーホール,
510,52...接地用スルーホール,
54,549...多層基板,
55...第1上層基板,
56...第2上層基板,
57...下層基板,
59,595,596,598,599...接着層,
500...壁面,
591,592...樹脂,
6...放熱板,
7...半田ボール,
8...電子部品,
[0001]
【Technical field】
The present invention relates to an electronic component mounting board and a method of manufacturing the same, and more particularly to an electrical conduction means between a grounding bonding pad provided on the upper and lower surfaces of a core substrate and a grounding circuit pattern provided on the lower surface of the core substrate.
[0002]
[Prior art]
The electronic component mounting board is a board on which an electronic component is mounted and current is led to and from the electronic component. Conventionally, as shown in FIG. 18, the electronic component mounting board includes a mounting hole 950 for mounting the electronic component 98 on the core substrate 95 and a grounding through hole for conducting electrical connection between the upper and lower surfaces of the core substrate 95. Some have 956,957.
[0003]
As shown in FIGS. 18 and 19, circuit patterns 915, 92, and 93 for grounding, signal, and power are provided on the upper surface of the core substrate 95. Around the mounting hole 950, grounding and signal bonding pads 921, 931 connected to the grounding and signal circuit patterns 92, 93 are provided. Bonding wires 981 are bonded to the signal and power bonding pads 911, 921, and 931.
An annular pad 912 for grounding is provided on the upper surface of the core substrate 95 so as to surround the periphery of the mounting hole 950. The annular pad 912 is connected to the ground pad 911.
[0004]
On the other hand, a grounding circuit pattern 913 is provided on the entire bottom surface of the core substrate 95 as shown in FIGS.
Further, as shown in FIG. 18, a heat radiating plate 96 is bonded to the lower surface of the core substrate 95 through an adhesive layer 99.
An electronic component 98 is bonded to the upper surface of the heat radiating plate 96 covering the mounting hole 950 by an adhesive layer 992.
[0005]
Solder balls 97 are bonded to the pad portions 916, 920, 930 of the circuit patterns 915, 92, 93. This electronic component mounting board 9 is generally called a ball grid array and employs a system in which it is joined to the mother board by solder balls 7.
[0006]
The electronic component mounting board 9 is provided with the grounding circuit pattern 913 on the entire lower surface of the core board 95, so that the inductance of the grounding circuit pattern can be lowered. As a result, noise is reduced and propagation delay is shortened. Is effective. For this reason, the electronic component mounting board 9 is used as a high-speed package.
[0007]
[Problems to be solved]
However, in the conventional electronic component mounting substrate, as shown in FIGS. 18 and 19, the electronic component 98 and the ground pad 911, the electronic component 98 and the signal pad 921, and the electronic component 98 and The power supply pad 931 is separated. For this reason, the bonding wire 981 connecting them becomes long, which prevents a decrease in inductance.
[0008]
Further, in order to form the grounding through hole 956, a core substrate 95 having a sufficient width to surround the grounding through hole 956 is required between the grounding through hole 956 and the mounting hole 950. Therefore, the size of the mounting hole 950 is limited, and the mounting area for mounting electronic components is reduced. This is disadvantageous for increasing the functionality and size of electronic components.
[0009]
In view of the conventional problems, the present invention is intended to provide an electronic component mounting board and a method for manufacturing the same, which have a low inductance and can secure a mounting area sufficient for mounting the electronic component.
[0010]
[Means for solving problems]
The invention according to claim 1 is an electronic component mounting substrate having a core substrate provided with a mounting hole for mounting an electronic component,
A rectangular signal bonding pad provided around the mounting hole and extending from the outer edge of the core substrate toward the outer periphery of the mounting hole;
A rectangular power supply bonding pad provided around the mounting hole and extending from the outer edge of the core substrate toward the outer periphery of the mounting hole;
A solid layered grounding circuit pattern covering the entire lower surface of the core substrate;
A rectangular grounding bonding pad provided on the upper surface of the core substrate and extending between the signal bonding pad and the power supply bonding pad;
A grounding side through-hole disposed on the wall surface of the mounting hole and conducting between the grounding bonding pad and the grounding circuit pattern;
An insulating resin filled in the grounding side through hole;
An electronic component mounting board, characterized in that it comprises a.
[0011]
The most notable aspect of the present invention is that a grounding side through hole is provided on the wall surface of the mounting hole.
[0012]
Next, the function and effect of the present invention will be described.
In the electronic component mounting board of the present invention, the side surface through hole for grounding is provided on the wall surface of the mounting hole. Since the side surface through hole is provided facing the mounting hole, there is no core substrate that separates the through hole from the mounting hole as in the prior art. Therefore, bonding pads for grounding, signals, and power can be provided just before the mounting holes. Therefore, the distance between these bonding pads and the electronic component is shortened, and the length of the bonding wire connecting them is shortened. Therefore, the inductance can be suppressed low.
[0013]
In addition, since there is no core substrate that separates the through hole from the mounting hole as in the prior art, the size of the mounting hole can be made wider than before, and the mounting area for mounting electronic components can be increased. Can do. Therefore, it is possible to mount a larger electronic component than before.
In addition, since the inside of the side through-hole for grounding is filled with resin, it can be expected to protect the conductor in the through-hole during processing (router or punching) for forming the side through-hole.
[0014]
The ground circuit pattern provided on the lower surface of the core substrate, Ru solid layer der covering the entire lower surface of the core substrate. As a result, the inductance of the ground circuit pattern can be further reduced.
[0015]
Then, on the upper surface or lower surface of the upper SL core substrate, it is preferable that at least one of the upper substrate or the lower layer substrate are bonded. As a result, there is a degree of freedom in the vertical insulation interval between the grounding circuit pattern and the signal or power supply circuit pattern, and effects such as adjustment of electrical characteristics as a substrate can be exhibited.
An insulating substrate is used as the core substrate. An example of the core substrate is a resin substrate.
[0016]
Next, a method for manufacturing the electronic component carrier, for example, the mounting hole forming positions in core substrate, bored a cylindrical through hole for grounding,
Next, the entire surface of the core substrate including the inside of the grounding through hole is coated with a metal plating film,
Next, the inside of the grounding through hole is filled with resin,
Next, a grounding bonding pad is formed on the upper surface of the core substrate and a grounding circuit pattern is formed on the lower surface of the core substrate from the metal plating film, and the space between the grounding bonding pad and the grounding circuit pattern is formed. Conducting through the grounding through hole and forming a signal or power bonding pad and circuit pattern,
Next, a mounting hole is formed by drilling a mounting hole forming portion along the grounding through hole so that the cylindrical grounding through hole filled with the resin is divided. There is a method for manufacturing a substrate for mounting electronic components, characterized in that a side surface through-hole for grounding formed by filling a wall surface with resin is formed.
[0017]
In this manufacturing method, the inner wall of the grounding through hole is covered with a metal plating film, filled with resin, and then the cylindrical grounding through hole filled with resin is divided. , A mounting hole forming portion is formed along the grounding through hole. At this time, a semicircular side surface through-hole for grounding filled with resin is formed on the wall surface of the mounting hole on the same plane as the wall surface.
[0018]
Then, from the top Symbol metal plating film to form the bonding pads and the circuit pattern, on at least one of the upper or lower surface of the core substrate, it is adhered via an adhesive layer to one of the upper substrate or the lower layer substrate preferable. As a result, it is possible to manufacture an electronic component mounting board having a multilayer structure corresponding to high-density mounting.
[0019]
Next, when the resin is filled inside the upper SL through holes for grounding, the prepreg resin adhesive used as the adhesive layer, thereby entering the resin in the prepreg resin adhesive in the through-hole above the ground It is preferable. Thereby, the resin can be easily filled in the through hole for grounding. In addition, the core substrate and the lower layer substrate can be bonded simultaneously with the filling of the resin into the grounding through hole, and the manufacturing process can be simplified.
The prepreg resin adhesive has a property that the resin is in a semi-cured state and is cured by heating.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1
An electronic component mounting board according to an embodiment of the present invention will be described with reference to FIGS.
As shown in FIG. 1, the electronic component mounting substrate 1 of the present example includes a core substrate 5 provided with mounting holes 50 for mounting the electronic components 8, and a core substrate 5 so as to cover the mounting holes 50. And a heat sink 6 bonded to the lower surface.
A grounding circuit pattern 13 is provided on the lower surface of the core substrate 5. As shown in FIG. 3, the ground circuit pattern 13 is a solid layer that covers the entire lower surface of the core substrate 5.
[0021]
As shown in FIGS. 1 and 4, the wall surface of the mounting hole 50 is provided with a semicircular grounding side through-hole 51 connected to the grounding circuit pattern 13. The side wall of the side through hole 51 is covered with the metal plating film 4, and the inside is filled with the resin 591.
[0022]
As shown in FIGS. 2 and 4, a ground bonding pad 11, a signal bonding pad 21, and a power supply bonding pad 31 are provided on the upper surface of the core substrate 5 around the mounting hole 50. As shown in FIG. 1, a bonding wire 81 connected to the electronic component 8 is bonded to these.
[0023]
The grounding bonding pad 11 is connected to the grounding circuit pattern 13 provided on the lower surface of the core substrate 5 through the grounding side through-hole 51. The grounding circuit pattern 13 is connected to the grounding pattern 15 provided on the upper surface of the core substrate 5 through a cylindrical grounding through hole 52 provided around the core substrate 5.
The signal bonding pad 21 is connected to the signal circuit pattern 22, and the power supply bonding pad 31 is connected to the power supply circuit pattern 32.
[0024]
The ground, signal, and power supply circuit patterns 15, 22, and 32 have solder balls 7 bonded to the pad portions 151, 221, and 321, respectively. The solder ball 7 is a joining member for achieving electrical conduction between the electronic component mounting board 1 and the mating member.
[0025]
As shown in FIG. 1, the heat sink 6 is bonded to the lower surface of the core substrate 5 with an adhesive layer 599 so as to cover the lower opening of the mounting hole 50. The electronic component 8 is bonded to the upper surface of the heat sink 6 that forms the bottom of the mounting hole 50 with an adhesive layer 598.
[0026]
Next, a method for manufacturing the electronic component mounting board will be described.
First, the outline is explained. A grounding through hole 510 is formed at a mounting hole forming position 511 in the core substrate 5 (FIGS. 5 and 6), and the entire surface of the core substrate 5 including the inside thereof is covered with the metal plating film 4 (FIG. 7). . Resin 591 is filled in the grounding through hole 510 (FIG. 8). Circuit patterns 13, 15, 22, and 32 for grounding, signal, and power supply are formed from the metal plating film (FIG. 9). A mounting hole forming portion is drilled along the grounding hole 510 so that the cylindrical grounding hole 510 filled with the resin 591 is divided. The hole 51 is formed, and the side surface through-hole 51 for grounding formed by filling the wall surface with the resin 591 is formed (FIG. 10).
[0027]
Next, this will be described in detail.
First, a glass epoxy resin substrate is prepared as a core substrate. Next, as shown in FIGS. 5 and 6, a grounding through hole 510 is drilled at a mounting hole forming position 511 in the core substrate 5 using a drill. A grounding through hole 52 is also drilled near the periphery of the core substrate 5 using a drill.
[0028]
Next, as shown in FIG. 7, the metal plating film 4 is applied to the entire surface of the core substrate 5 including the insides of the grounding through holes 510 and 52.
Next, as shown in FIG. 8, paste-like thermosetting resins 591 and 592 are filled into the grounding through-holes 510 and 52 by a dispenser or a printing method and cured by heating.
[0029]
Next, as shown in FIGS. 9 and 2, bonding pads 11 and 21 for grounding, signals and power supply are formed on the upper surface of the core substrate 5 from the metal plating film by a conventional method such as exposure, development and etching. 31 and grounding, signal, and power supply circuit patterns 15, 22, 32 are formed. Further, the lands 12 and 14 of the grounding through holes 510 and 52 are formed on the upper surface of the core substrate 5. On the other hand, a grounding circuit pattern 13 is formed on the lower surface of the core substrate 5 to cover the whole.
Next, the surface of the core substrate 5 excluding the pad portion and the heat radiating plate bonding portion is covered with a solder resist film (not shown).
[0030]
Next, using a punching die or a router process, the cylindrical grounding hole 510 filled with the resin 591 is divided along the grounding through hole 510 for mounting. A hole forming portion 512 is formed. As a result, as shown in FIGS. 10 and 4, the mounting hole 50 is formed in the core substrate 5, and the semicircular grounding side through-hole 51 filled with the resin 591 is formed on the wall surface. .
[0031]
Next, as shown in FIG. 1, a metal heat sink 6 is bonded to the lower surface of the core substrate 5 using an adhesive layer 598.
Next, the solder balls 7 are placed on the pad portions 151, 221, and 321 in the grounding, signal, and power supply circuit patterns 15, 22, and 32, and heated to melt a part of the solder balls 7. .
Thereby, the electronic component mounting substrate 1 shown in FIGS. 1 to 4 is obtained.
[0032]
Next, the function and effect of this example will be described.
In the electronic component mounting substrate 1 of this example, as shown in FIGS. 1 and 4, a grounding side through-hole 51 is provided on the wall surface 500 of the mounting hole 50. Since the side surface through hole 51 is provided so as to face the mounting hole 50, there is no core substrate that separates the grounding through hole and the mounting hole as in the prior art.
[0033]
Therefore, various bonding pads 11, 21, 31 for grounding, signal, and power can be provided just before the mounting hole 50. Therefore, the distance between the bonding pads 11, 21, 31 and the electronic component 8 is shortened, and the length of the bonding wire 81 that connects them is shortened. Therefore, the inductance can be suppressed low.
[0034]
Further, since there is no core substrate that separates the grounding through hole and the mounting hole as in the prior art, the size of the mounting hole 50 can be made wider than in the prior art, and the mounting area on which the electronic component 8 is mounted. Can be greatly increased.
Further, since the inside of the side surface through hole 51 for grounding is filled with the resin 591, the metal plating film 4 covering the inner wall of the side surface through hole 51 can be protected.
[0035]
Further, as shown in FIG. 2, since the grounding bonding pad 11 is provided around the mounting hole 50 on the upper surface of the core substrate 5, the space between the electronic component 8 and the grounding side through-hole 51 is provided. It can be connected over a short distance.
Further, as shown in FIG. 3, since the grounding circuit pattern 13 is a solid layer covering the entire lower surface of the core substrate 5, the inductance of the grounding circuit pattern 13 can be further reduced.
[0036]
Embodiment 2
As shown in FIG. 11, the electronic component mounting substrate of this example is different from the first embodiment in that a multilayer substrate 54 is used by bonding a lower layer substrate 57 to the lower surface of the core substrate 5.
A mounting hole 570 having the same shape as the mounting hole 50 of the core substrate 5 is opened in the lower layer substrate 57. Further, a grounding through hole 52 penetrating the core substrate 5 and the lower layer substrate 57 is provided.
The heat sink 6 is bonded to the lower surface of the lower layer substrate 57 by an adhesive layer 599.
Other configurations of the electronic component mounting board 10 of this example are the same as those of the first embodiment.
[0037]
Next, a method for manufacturing the electronic component mounting board of this example will be described.
First, as shown in FIG. 12, similarly to the first embodiment, a grounding through hole 510 is formed in the core substrate 5, and the metal plating film 4 is applied to the entire surface of the core substrate 5 including the grounding through hole 510. Next, a ground circuit pattern 13 is formed from a metal plating film covering the lower surface of the core substrate 5.
[0038]
Next, a lower layer substrate 57 is laminated on the lower surface of the core substrate 5 via a prepreg adhesive layer as the adhesive layer 59. A resin substrate such as a glass epoxy substrate is used as the lower layer substrate. Next, these are integrated by heating and pressure bonding using a press machine. As a result, as shown in FIG. 13, a multilayer substrate 54 composed of the core substrate 5 and the lower layer substrate 57 is formed. At this time, the resin 591 in the prepreg resin adhesive enters the inside of the grounding through hole 510.
[0039]
Next, the mounting hole forming portion 512 is punched using a punching die or a router process. Thereby, mounting holes 50 and 570 are formed in the core substrate 5 and the lower layer substrate 57. In addition, a semicircular grounding side through-hole 51 filled with resin 591 is formed on the wall surface of the mounting hole 50 in the core substrate 5.
Further, a grounding through hole 52 penetrating the peripheral portion of the multilayer substrate 54 is formed.
[0040]
Next, as shown in FIG. 15, a metal plating film 41 is applied to the surface of the multilayer substrate 54 with the upper and lower openings of the mounting holes 50 and 570 covered with a mask 49.
Next, as shown in FIG. 16, as in FIG. 2 in the first embodiment, the bonding pads 11, 121, and 31 for grounding, signal, and power, and grounding, signal, Circuit patterns 15, 22, and 32 for power supply are formed. Further, the land 12 of the grounding side through hole 51 and the land 14 of the grounding through hole 52 are formed on the upper surface of the core substrate 5. The mask is then removed.
Next, the surface of the core substrate 5 excluding the pad portion and the heat radiating plate bonding portion is covered with a solder resist film (not shown).
[0041]
Next, as shown in FIG. 11, the heat radiating plate 6 is bonded to the lower surface of the multilayer substrate 54 using an adhesive layer 599 so as to cover the lower opening of the mounting hole 570. Also, solder balls 7 are joined to the pad portions of the circuit pattern for grounding, signal, and power supply.
Thereby, the electronic component mounting substrate 10 shown in FIGS. 1 to 3 is obtained.
[0042]
In this example, a multilayer substrate 54 in which a lower layer substrate 57 is laminated and bonded to the lower surface of the core substrate 5 is used. Therefore, high-density mounting is possible as compared with the first embodiment.
Further, when filling the resin 591 in the grounding through hole 510, a prepreg resin adhesive is used as the adhesive layer 59, and the resin 591 in the prepreg resin adhesive is infiltrated into the grounding through hole 510. Yes. Therefore, the core substrate 5 and the lower layer substrate 57 can be bonded simultaneously with the filling of the resin 591 into the grounding through-hole 510, and the manufacturing process can be simplified.
In addition, in this example, the same effects as those of the first embodiment can be obtained.
[0043]
Embodiment 3
The electronic component mounting substrate of this example is different from the second embodiment in that first and second upper layer substrates 55 and 56 are laminated on the upper surface of the core substrate 5 as shown in FIG.
In other words, the electronic component mounting substrate 100 of this example is a multilayer substrate having a four-layer structure in which the first and second upper layer substrates 55 and 56 are stacked on the upper surface of the core substrate 5 and the lower layer substrate 57 is stacked on the lower surface. 549 is used.
Other configurations of the electronic component mounting board 100 of this example are the same as those of the second embodiment.
[0044]
In manufacturing the electronic component mounting substrate of this example, the multilayer substrate 54 including the core substrate 5 and the lower layer substrate 57 is prepared in the same manner as FIG. 13 in the second embodiment. Various bonding pads, circuit patterns, and lands are formed from the metal plating film on the upper surface of the core substrate 5.
[0045]
Next, an adhesive layer 596, a second upper layer substrate 56, an adhesive layer 595, and a first upper layer substrate 55 are stacked in this order on the upper surface of the multilayer substrate 54, and these are heated and pressed to form a multilayer substrate 549 having a four-layer structure. obtain. As the adhesive layers 595 and 596, a prepreg adhesive layer is used. Mounting holes 550 and 560 are formed in the first and second upper layer substrates 55 and 56 in advance. As the first and second upper layer substrates, resin substrates such as glass epoxy substrates are used.
[0046]
Next, as in the second embodiment, a grounding through hole 52 penetrating the multilayer substrate 549 is drilled, and the inner wall thereof is covered with the metal plating film 41. Various bonding pads are formed on the upper and lower surfaces of the multilayer substrate 549. Form circuit patterns and lands.
Thereby, the electronic component mounting substrate 100 of this example is obtained.
[0047]
In the electronic component mounting substrate 100 of this example, a multilayer substrate 549 having a four-layer structure including a core substrate 5, a lower layer substrate 57, and first and second upper layer substrates 55 and 56 is used. For this reason, it is possible to achieve higher density mounting than in the first and second embodiments.
In addition, in this example, the same effects as those of the second embodiment can be obtained.
[0048]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the board | substrate for electronic component mounting which can ensure a mounting area sufficient for mounting an electronic component with low inductance, and its manufacturing method can be provided.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of an electronic component mounting board in Embodiment 1;
2 is a plan view of an electronic component mounting board in Embodiment 1. FIG.
FIG. 3 is a back view of the core substrate in the first embodiment.
4 is a perspective view of an electronic component mounting board showing the vicinity of a mounting hole in Embodiment 1. FIG.
FIG. 5 is a plan view of a core substrate showing a drilling position of a grounding through hole in Embodiment 1;
6 is a cross-sectional view of a core substrate in which a grounding through hole is formed in the method for manufacturing an electronic component mounting substrate according to Embodiment 1. FIG.
7 is a cross-sectional view of a core substrate on which a metal plating film is applied, following FIG. 6;
FIG. 8 is a cross-sectional view of the core substrate in which resin is filled in the grounding through hole, following FIG. 7;
FIG. 9 is a cross-sectional view of the core substrate on which bonding pads, circuit patterns, and lands are formed, following FIG. 8;
10 is a cross-sectional view of the core substrate in which mounting holes are formed, following FIG. 9;
11 is a cross-sectional view of an electronic component mounting board in Embodiment 2. FIG.
12 is a cross-sectional view of a core substrate and a lower layer substrate in the method for manufacturing an electronic component mounting substrate according to Embodiment 2. FIG.
13 is a cross-sectional view of a multilayer substrate obtained by adhering a heat sink to the lower surface of the core substrate, following FIG. 12;
14 is a cross-sectional view of the multilayer substrate in which mounting holes are formed, following FIG. 13;
15 is a cross-sectional view of a multilayer substrate showing a method for applying a metal plating film, following FIG. 14;
16 is a cross-sectional view of the core substrate on which bonding pads, circuit patterns, and lands are formed, following FIG. 15;
17 is a cross-sectional view of an electronic component mounting board in Embodiment 3. FIG.
FIG. 18 is a cross-sectional view of an electronic component mounting board in a conventional example.
FIG. 19 is a plan view of a substrate for mounting electronic components in a conventional example.
FIG. 20 is a back view of a core substrate in a conventional example.
[Explanation of symbols]
1, 10, 100. . . Electronic component mounting board,
11. . . Bonding pad for grounding,
12,14. . . land,
13,15. . . Circuit pattern for grounding,
151, 221, 321. . . Pad part,
21. . . Signal bonding pads,
22. . . Circuit pattern for signal,
31. . . Power bonding pads,
32. . . Circuit pattern for power supply,
4.41. . . Metal plating film,
5). . . Core substrate,
50, 540, 570, 580. . . Mounting holes,
51. . . Side through hole for grounding,
510, 52. . . Through hole for grounding,
54,549. . . Multilayer board,
55. . . First upper layer substrate,
56. . . A second upper layer substrate,
57. . . Lower substrate,
59, 595, 596, 598, 599. . . Adhesive layer,
500. . . Wall,
591,592. . . resin,
6). . . Heat sink,
7). . . Solder balls,
8). . . Electronic components,

Claims (1)

電子部品を搭載するための搭載用穴を設けたコア基板を有する電子部品搭載用基板であって,
上記搭載用穴の周囲に設けられ,上記コア基板の外縁部から上記搭載用穴の外周方向へ延在する矩形の信号用ボンディングパッドと,
上記搭載用穴の周囲に設けられ,上記コア基板の外縁部から上記搭載用穴の外周方向へ延在する矩形の電源用ボンディングパッドと,
上記コア基板の下面の全体を被覆するベタ層状の接地用回路パターンと,
上記コア基板の上面に設けられ,上記信号用ボンディングパッド及び電源用ボンディングパッドの間に延在する矩形の接地用ボンディングパッドと,
上記搭載用穴の壁面に配置され,上記接地用ボンディングパッド及び接地用回路パターンの間を導通させる接地用側面スルーホールと,
上記接地用側面スルーホールの内部に充填されている絶縁性樹脂と,
を備えることを特徴とする電子部品搭載用基板。
An electronic component mounting board having a core substrate with mounting holes for mounting electronic components,
A rectangular signal bonding pad provided around the mounting hole and extending from the outer edge of the core substrate toward the outer periphery of the mounting hole;
A rectangular power supply bonding pad provided around the mounting hole and extending from the outer edge of the core substrate toward the outer periphery of the mounting hole;
A solid layered grounding circuit pattern covering the entire lower surface of the core substrate;
A rectangular grounding bonding pad provided on the upper surface of the core substrate and extending between the signal bonding pad and the power supply bonding pad;
A grounding side through-hole disposed on the wall surface of the mounting hole and conducting between the grounding bonding pad and the grounding circuit pattern;
An insulating resin filled in the grounding side through hole;
Electronic component carrier, characterized in that it comprises a.
JP13275296A 1996-04-29 1996-04-29 Electronic component mounting substrate and method for manufacturing the same Expired - Fee Related JP3820628B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13275296A JP3820628B2 (en) 1996-04-29 1996-04-29 Electronic component mounting substrate and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13275296A JP3820628B2 (en) 1996-04-29 1996-04-29 Electronic component mounting substrate and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JPH09293940A JPH09293940A (en) 1997-11-11
JP3820628B2 true JP3820628B2 (en) 2006-09-13

Family

ID=15088748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13275296A Expired - Fee Related JP3820628B2 (en) 1996-04-29 1996-04-29 Electronic component mounting substrate and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP3820628B2 (en)

Also Published As

Publication number Publication date
JPH09293940A (en) 1997-11-11

Similar Documents

Publication Publication Date Title
US7002236B2 (en) Semiconductor package and method for producing the same
JP3111134B2 (en) Packaged integrated circuit and method of forming the same
US6256875B1 (en) Method for manufacturing semiconductor device
KR100395862B1 (en) Flip chip type semiconductor device and method for manufacturing the same
US8110754B2 (en) Multi-layer wiring board and method of manufacturing the same
EP0997935B1 (en) Printed wiring board
US6324067B1 (en) Printed wiring board and assembly of the same
JP2003297968A (en) Method for producing semiconductor package
TWI586233B (en) Integrated antenna package and manufacturing method thereof
JP2016063130A (en) Printed wiring board and semiconductor package
US6221694B1 (en) Method of making a circuitized substrate with an aperture
JP2000332160A (en) Cavity-down semiconductor package
JP2004179576A (en) Wiring board and its manufacturing method
US6207354B1 (en) Method of making an organic chip carrier package
KR20150065029A (en) Printed circuit board, manufacturing method thereof and semiconductor package
JP2001085804A (en) Printed wiring board and manufacturing method thereof
JP3820628B2 (en) Electronic component mounting substrate and method for manufacturing the same
KR100693168B1 (en) Manufacturing method of PCB and PCB thereby
JP2784524B2 (en) Multilayer electronic component mounting substrate and method of manufacturing the same
JP4365515B2 (en) Manufacturing method of semiconductor module
JP2000340717A (en) Electronic component mounting device
JP2001077536A (en) Printed wiring board with built-in electronic circuit board, and manufacture thereof
JP2784525B2 (en) Substrate for mounting electronic components
JPH012399A (en) semiconductor equipment
JP3591197B2 (en) Mounting structure of ball grid array package type semiconductor components

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060314

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060502

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060612

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090630

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110630

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110630

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130630

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees