JP3818927B2 - Constant current constant voltage circuit and charger using the same - Google Patents

Constant current constant voltage circuit and charger using the same Download PDF

Info

Publication number
JP3818927B2
JP3818927B2 JP2002029312A JP2002029312A JP3818927B2 JP 3818927 B2 JP3818927 B2 JP 3818927B2 JP 2002029312 A JP2002029312 A JP 2002029312A JP 2002029312 A JP2002029312 A JP 2002029312A JP 3818927 B2 JP3818927 B2 JP 3818927B2
Authority
JP
Japan
Prior art keywords
voltage
output
reference voltage
circuit
constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002029312A
Other languages
Japanese (ja)
Other versions
JP2003233427A (en
Inventor
康幸 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2002029312A priority Critical patent/JP3818927B2/en
Publication of JP2003233427A publication Critical patent/JP2003233427A/en
Application granted granted Critical
Publication of JP3818927B2 publication Critical patent/JP3818927B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Continuous-Control Power Sources That Use Transistors (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電源出力の定電流制御及び定電圧制御を行う定電流定電圧回路、及びこれを用いた充電器に関するものである。
【0002】
【従来の技術】
図4は定電流定電圧回路の一従来例を示す回路図である。本図に示す定電流定電圧回路は、出力電圧に応じた参照電圧を検出する出力電圧検出回路41と、所定の基準電圧を生成する基準電圧源42と、参照電圧と基準電圧との差電圧を増幅出力する第1オペアンプ43と、出力電流を電圧として検出するために電源供給ラインに直列接続されたセンス抵抗44と、センス抵抗44の検出電圧を増幅出力する第2オペアンプ45と、第1、第2オペアンプ43、45の両出力電圧に応じて電源出力の定電流制御及び定電圧制御を行う出力トランジスタ46と、を有して成る。なお、センス抵抗44は回路に影響を与えない微少抵抗である。
【0003】
【発明が解決しようとする課題】
確かに、上記構成から成る定電流定電圧回路であれば、出力電圧検出回路41で得られた参照電圧及びセンス抵抗44の検出電圧に応じて、出力トランジスタ46による電源出力の定電流制御及び定電圧制御を行うことが可能である。
【0004】
しかしながら、センス抵抗44の検出電圧は非常に微少値(例えば、センス抵抗44の抵抗値が0.5[Ω]で出力電流の設定値が0.5[A]である場合、その検出電圧は0.25[V])であるため、該検出電圧を第2オペアンプ45(例えば、動作電圧5[V])に直接入力する上記構成では、第2オペアンプ45を入力ダイナミックレンジの下限付近で動作させる必要があった。そのため、上記構成から成る定電流定電圧回路では、第2オペアンプ45として、入力ダイナミックレンジの下限付近でも支障なく動作する高性能オペアンプを用いねばならず、これに起因するコストアップが第1の課題となっていた。
【0005】
また、参照電圧と基準電圧との差電圧及びセンス抵抗44の検出電圧それぞれに応じて直接的に出力トランジスタ46の定電流制御及び定電圧制御を行う上記構成では、両制御の安定性向上を図るために、出力トランジスタ46への両入力経路を同一の形式としておかねばならなかった。そのため、上記構成から成る定電流定電圧回路では、センス抵抗44の検出電圧を増幅する第2オペアンプ45が必須構成要素である限り、それに合わせて、本来必要のない第1オペアンプ43を設けねばならず、これに起因するコストアップが第2の課題となっていた。
【0006】
本発明は、上記した第1、第2の課題に鑑み、従来に比べて簡易かつ安価な構成で電源出力の定電流制御及び定電圧制御を行うことが可能な定電流定電圧回路及びこれを用いた充電器を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記目的を達成するために、本発明に係る定電流定電圧回路は、出力電圧に応じた参照電圧を検出する出力電圧検出回路と、出力電流を電圧として検出するためのセンス抵抗と、該センス抵抗の検出電圧が上乗せされた基準電圧を生成する基準電圧源と、前記参照電圧と前記基準電圧の第1分圧電圧との誤差を検出する誤差検出回路と、前記基準電圧の第2分圧電圧と目標電圧との差電圧を増幅出力するオペアンプと、該オペアンプの出力に応じて前記基準電圧の第1分圧電圧を変動させる電圧変動回路と、前記誤差検出回路の出力に応じて電源出力の定電流制御及び定電圧制御を行う出力トランジスタと、を有して成る構成としている。
【0008】
なお、本発明に係る定電流定電圧回路は、出力電圧に応じた参照電圧を検出する出力電圧検出回路と、出力電流を電圧として検出するためのセンス抵抗と、該センス抵抗の検出電圧が上乗せされた基準電圧を生成する基準電圧源と、前記参照電圧と前記基準電圧との差電圧を増幅出力する第1オペアンプと、前記基準電圧の分圧電圧と目標電圧との差電圧を増幅出力する第2オペアンプと、第1、第2オペアンプの出力に応じて電源出力の定電流制御及び定電圧制御を行う出力トランジスタと、を有して成る構成にしてもよい。
【0009】
また、本発明に係る定電流定電圧回路は、出力電圧に応じた参照電圧を検出する出力電圧検出回路と、出力電流を電圧として検出するためのセンス抵抗と、所定の基準電圧を生成する基準電圧源と、前記参照電圧と前記基準電圧との誤差を検出する誤差検出回路と、前記センス抵抗の検出電圧を増幅出力するオペアンプと、該オペアンプの出力に応じて前記基準電圧を変動させる電圧変動回路と、前記誤差検出回路の出力に応じて電源出力の定電流制御及び定電圧制御を行う出力トランジスタと、を有して成る構成にしてもよい。
【0010】
一方、本発明に係る充電器は、上記構成から成る定電流定電圧回路を有して成り、二次電池の充電に際して、充電電流の定電流制御及び充電電圧の定電圧制御を行う構成としている。
【0011】
【発明の実施の形態】
以下では、電子機器用の充電器を構成する定電流定電圧回路として、本発明に係る定電流定電圧回路を採用した場合を例に挙げて詳細な説明を行う。
【0012】
図1は本発明に係る充電器の一実施形態を示す概略構成図である。本図に示すように、給電側である充電器1は、商用交流電源を所定の直流電源に変換する電源回路11と、電源出力の定電流制御及び定電圧制御を行う定電流定電圧回路12と、電子機器2との間で電気的結合を得るための給電端子13と、を有して成る。一方、受電側である電子機器2(携帯電話機や携帯オーディオ機器等)は、充電器1との間で電気的結合を得るための受電端子21と、充電動作を制御する充電制御回路22と、機器の駆動電源となる二次電池23(ニッケル水素電池やリチウム電池等)と、を有して成る。なお、本図の二次電池23は、電子機器2に対して容易に着脱可能な構成である。
【0013】
本実施形態の定電流定電圧回路12は、基準電圧Vaを生成する基準電圧源121と、充電器1の出力電圧に応じた参照電圧Vbを検出する出力電圧検出回路122と、参照電圧Vbと基準電圧Vaの分圧電圧Vcとの誤差を検出する誤差検出回路123と、誤差検出回路123の出力に応じて電源出力の定電流制御及び定電圧制御を行うために電源回路11の出力端子(高電位側)と給電端子13(高電位側)との間に直列接続された出力トランジスタ124と、充電器1の出力電流Iを電圧として検出するために電源回路11の出力端子(低電位側)と給電端子13(低電位側)との間に直列接続されたセンス抵抗Rs(抵抗値Rs)と、基準電圧Vaを分圧して得た分圧電圧Vd、Veの差電圧を増幅出力するオペアンプOP1と、抵抗R1〜R7(各抵抗値R1〜R7)と、を有して成る。なお、センス抵抗Rsは回路に影響を与えない微少抵抗である。
【0014】
基準電圧源121の出力端子は、抵抗R1、R2を介して、給電端子13(低電位側)に接続されており、抵抗R1、R2の接続ノードは、誤差検出回路123の一入力端子に接続されている。また、基準電圧源121の出力端子は、抵抗R3、R4を介して、電源回路11の出力端子(低電位側)に接続されており、抵抗R3、R4の接続ノードは、オペアンプOP1の一入力端子に接続されている。また、基準電圧源121の出力端子は、抵抗R5、R6を介して、給電端子13(低電位側)に接続されており、抵抗R5、R6の接続ノードは、オペアンプOP1の他入力端子に接続されている。なお、基準電圧源121のグランド端子は、給電端子13(低電位側)に接続されており、オペアンプOP1の出力端子は、抵抗R7を介して、誤差検出回路123の一入力端子に接続されている。
【0015】
出力電圧検出回路122の入力端子は、給電端子13(高電位側)に接続されている。また、出力電圧検出回路122のグランド端子は、給電端子13(低電位側)に接続されている。また、出力電圧検出回路122の出力端子は、誤差検出回路123の他入力端子に接続されている。
【0016】
誤差検出回路123のグランド端子は、給電端子13(低電位側)に接続されている。また、誤差検出回路123の出力端子は、出力トランジスタ124の制御端子に接続されている。なお、誤差検出回路123の内部構成及び動作については、後ほど詳細に説明を行う。
【0017】
ここで、本実施形態の定電流定電圧回路12は、出力電圧に応じた参照電圧と基準電圧との差電圧に応じて電源出力の定電圧制御を行う点で従来構成と一致するが、次の点において新規な特徴部分を有している。
【0018】
まず、本実施形態の定電流定電圧回路12における第1の特徴部分は、電源出力の定電流制御を行うに際して、センス抵抗Rsの検出電圧I・RsをオペアンプOP1に直接入力するのではなく、出力電流Iに応じて変動する基準電圧Vaの分圧電圧Vd、VeをオペアンプOP1に入力する構成としている点である。
【0019】
上記で説明したように、本実施形態の定電流定電圧回路12では、基準電圧源121のグランド端子がセンス抵抗Rsの一端(高電位側)に接続されているため、基準電圧Vaは、電源回路11の出力端子(低電位側)を基準(グランド)とした場合、次の(1)式で示すように、本来生成しようとする固定基準電圧Vにセンス抵抗Rsの検出電圧I・Rsが上乗せされた変動値となる。
【数1】

Figure 0003818927
【0020】
従って、オペアンプOP1に入力される分圧電圧Vd、Veは、それぞれ次の(2)式及び(3)式で表されることになる。
【数2】
Figure 0003818927
【0021】
上記(3)式から、出力電流Iに応じた検出電圧としてオペアンプOP1に入力される分圧電圧Veは、従来ならオペアンプOP1に直接入力されていたセンス抵抗Rsの検出電圧I・Rsを、抵抗R5、R6で決定される電圧分だけ高電位側にオフセットさせた電圧であることが分かる。
【0022】
従って、分圧電圧VeがオペアンプOP1の入力ダイナミックレンジの中心付近で変動するように抵抗R5、R6を調整すれば、オペアンプOP1として、入力ダイナミックレンジの下限付近でも支障なく動作する高性能オペアンプを用いる必要はなくなるので、充電器1のコストダウンを図ることが可能となる。図2は出力電流Iと分圧電圧Veとの関係を示す相関図であり、抵抗R5、R6の一設定例を示している。
【0023】
また、上記(2)式から、分圧電圧Veの目標値としてオペアンプOP1に入力される分圧電圧Vdも、センス抵抗Rsの検出電圧I・Rsを抵抗R3、R4で決定される電圧分だけ高電位側にオフセットさせた電圧であることが分かる。
【0024】
ここで、センス抵抗Rsの検出電圧I・Rsに対する分圧電圧Vdの変化率は分圧電圧Veのそれに比べて、抵抗R3、R4で決定される分圧比の分だけ小さく抑えられている。従って、出力電流Iの所望定電流値を上記(2)式に代入した上で、分圧電圧VdがオペアンプOP1の入力ダイナミックレンジの中心となるように抵抗R3、R4を調整すれば、出力電流Iに依存しない基準電圧源を別途新設することなく、実使用上問題ないレベルで分圧電圧Veの目標値を得ることができるので、回路規模の不必要な拡大を回避することが可能となる。
【0025】
なお、分圧電圧Veの目標値を出力電流Iに依存しない固定値としたい場合には、出力電流Iに依存しない新たな基準電圧源を別途設けて、その出力電圧を分圧電圧Veの目標値としてオペアンプOP1に入力する構成とすればよい。
【0026】
次に、本実施形態の定電流定電圧回路12における第2の特徴部分は、電源出力の定電流制御を行うに際して、オペアンプOP1の出力を直接出力トランジスタ124に与えるのではなく、該オペアンプOP1の出力に応じて、誤差検出回路123に入力される基準電圧Vcを変動させる構成としている点である。
【0027】
図3は誤差検出回路123の一実施形態を示す回路図である。本図に示すように、本実施形態の誤差検出回路123は、1組のnpn型バイポーラトランジスタQa、Qbを有して成る差動回路である。
【0028】
誤差検出回路123の一入力端子に相当するトランジスタQaのベースは、抵抗R1、R2、R7の各一端に接続されており、該ベースには、抵抗R1、R2による基準電圧Vaの分圧電圧Vcが入力されている。誤差検出回路123の他入力端子に相当するトランジスタQbのベースは、出力電圧検出回路122の出力端子に接続されており、該ベースには、出力電圧に応じた参照電圧Vbが入力されている。
【0029】
トランジスタQa、Qbのエミッタは互いに接続されており、その接続ノードは、定電流源Iaを介して、給電端子13(低電位側)に接続されている。トランジスタQa、Qbのコレクタは、それぞれ抵抗Ra、Rbを介して、電源電圧ラインに接続されている。また、トランジスタQbのコレクタは、npn型バイポーラトランジスタQcのベースにも接続されている。トランジスタQcのコレクタは、出力トランジスタ124(pnp型バイポーラトランジスタ)のベースに接続されている。また、トランジスタQcのエミッタは、給電端子13(低電位側)に接続されている。
【0030】
まず、上記構成から成る誤差検出回路123における電源出力の定電圧制御について説明する。出力電圧の上昇に応じて参照電圧Vbが高くなった場合、抵抗Rbに流れるトランジスタQbのコレクタ電流が増加するため、トランジスタQcのベース電圧は低下し、トランジスタQcのコレクタ電流(すなわち、出力トランジスタ124のベース電流)が減少する。従って、出力電圧は出力トランジスタ124によって下げられる。逆に、参照電圧Vbが低くなった場合には、上記と逆の動作によって、出力電圧が上げられる。
【0031】
次に、上記構成から成る誤差検出回路123における電源出力の定電流制御について説明する。なお、本実施形態のオペアンプOP1は、出力電流Iの増大に応じて分圧電圧Veが高くなった場合に基準電圧Vcを下げるように働く構成である。出力電流Iの増大に応じて基準電圧Vcが低くなった場合、抵抗Rbに流れるトランジスタQbのコレクタ電流が増大するため、トランジスタQcのベース電圧は低下し、トランジスタQcのコレクタ電流(すなわち、出力トランジスタ124のベース電流)が減少する。従って、出力電流Iは出力トランジスタ124によって下げられる。逆に、基準電圧Vcが高くなった場合には、上記と逆の動作によって、出力電流Iが上げられる。
【0032】
このように、電源出力の定電流制御を行うに際して、オペアンプOP1の出力を直接出力トランジスタ124に与えるのではなく、該オペアンプOP1の出力に応じて、誤差検出回路123に入力される基準電圧Vcを変動させる構成とすることにより、誤差検出回路123を簡易な差動回路等で実現することができるので、充電器1のコストダウンを図ることが可能となる。
【0033】
なお、上記の実施形態では、電子機器用の充電器を構成する定電流定電圧回路に本発明を適用した場合を例に挙げて説明を行ったが、本発明の適用対象はこれに限定されるものではなく、様々な電気機器や電源装置の定電流定電圧回路に適用が可能である。
【0034】
また、上記の実施形態では、本発明の第1特徴部分(センス抵抗の検出電圧をオペアンプに直接入力せず、出力電流に応じて変動する基準電圧の分圧電圧をオペアンプに入力する点)と、第2特徴部分(オペアンプの出力を直接出力トランジスタに与えず、該オペアンプの出力に応じて誤差検出回路に入力される基準電圧を変動させる点)を両方具備した定電流定電圧回路を例に挙げて説明を行ったが、本発明に係る定電流定電圧回路の構成はこれに限定されるものではなく、解決すべき課題に応じて、いずれか一方の特徴部分を有する構成としてもよい。
【0035】
【発明の効果】
上記で説明した通り、本発明に係る定電流定電圧回路は、出力電圧に応じた参照電圧を検出する出力電圧検出回路と、出力電流を電圧として検出するためのセンス抵抗と、センス抵抗の検出電圧が上乗せされた基準電圧を生成する基準電圧源と、参照電圧と基準電圧の第1分圧電圧との誤差を検出する誤差検出回路と、基準電圧の第2分圧電圧と目標電圧との差電圧を増幅出力するオペアンプと、オペアンプの出力に応じて基準電圧の第1分圧電圧を変動させる電圧変動回路と、誤差検出回路の出力に応じて電源出力の定電流制御及び定電圧制御を行う出力トランジスタと、を有して成る構成としている。
【0036】
このような構成とすることにより、第2分圧電圧がオペアンプの入力ダイナミックレンジの中心付近で変動するように分圧比を調整すれば、オペアンプとして入力ダイナミックレンジの下限付近でも支障なく動作する高性能オペアンプを用いる必要がなくなるとともに、誤差検出回路を簡易な差動回路等で実現することができるので、回路のコストダウンを図ることが可能となる。
【0037】
なお、本発明に係る定電流定電圧回路は、出力電圧に応じた参照電圧を検出する出力電圧検出回路と、出力電流を電圧として検出するためのセンス抵抗と、センス抵抗の検出電圧が上乗せされた基準電圧を生成する基準電圧源と、参照電圧と基準電圧との差電圧を増幅出力する第1オペアンプと、基準電圧の分圧電圧と目標電圧との差電圧を増幅出力する第2オペアンプと、第1、第2オペアンプの出力に応じて電源出力の定電流制御及び定電圧制御を行う出力トランジスタと、を有して成る構成にしてもよい。
【0038】
このような構成とすることにより、基準電圧の分圧電圧が第2オペアンプの入力ダイナミックレンジの中心付近で変動するように分圧比を調整すれば、第2オペアンプとして入力ダイナミックレンジの下限付近でも支障なく動作する高性能オペアンプを用いる必要がなくなるので、回路のコストダウンが実現できる。
【0039】
また、本発明に係る定電流定電圧回路は、出力電圧に応じた参照電圧を検出する出力電圧検出回路と、出力電流を電圧として検出するためのセンス抵抗と、所定の基準電圧を生成する基準電圧源と、前記参照電圧と前記基準電圧との誤差を検出する誤差検出回路と、前記センス抵抗の検出電圧を増幅出力するオペアンプと、該オペアンプの出力に応じて前記基準電圧を変動させる電圧変動回路と、前記誤差検出回路の出力に応じて電源出力の定電流制御及び定電圧制御を行う出力トランジスタと、を有して成る構成にしてもよい。このような構成とすることにより、誤差検出回路を簡易な差動回路等で実現することができるので、回路のコストダウンを図ることが可能となる。
【0040】
一方、本発明に係る充電器は、上記構成から成る定電流定電圧回路を有して成り、二次電池の充電に際して、充電電流の定電流制御及び充電電圧の定電圧制御を行う構成としている。このような構成とすることにより、従来に比べて簡易かつ安価な構成で充電電流の定電流制御及び充電電圧の定電圧制御を行うことが可能な充電器を提供することが可能となる。
【図面の簡単な説明】
【図1】 本発明に係る充電器の一実施形態を示す概略構成図である。
【図2】 出力電流Iと分圧電圧Veとの関係を示す相関図である。
【図3】 誤差検出回路123の一実施形態を示す回路図である。
【図4】 定電流定電圧回路の一従来例を示す回路図である。
【符号の説明】
1 充電器
11 電源回路
12 定電流定電圧回路
13 給電端子
121 基準電圧源
122 出力電圧検出回路
123 誤差検出回路
124 出力トランジスタ
R1〜R7 抵抗
Rs センス抵抗
OP1 オペアンプ
Ra、Rb 抵抗
Qa、Qb、Qc npn型バイポーラトランジスタ
Ia 定電流源
2 電子機器
21 受電端子
22 充電制御回路
23 二次電池[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a constant current constant voltage circuit that performs constant current control and constant voltage control of a power supply output, and a charger using the constant current constant voltage circuit.
[0002]
[Prior art]
FIG. 4 is a circuit diagram showing a conventional example of a constant current constant voltage circuit. The constant current constant voltage circuit shown in the figure includes an output voltage detection circuit 41 that detects a reference voltage according to an output voltage, a reference voltage source 42 that generates a predetermined reference voltage, and a difference voltage between the reference voltage and the reference voltage. A first operational amplifier 43 that amplifies and outputs, a sense resistor 44 connected in series to the power supply line to detect the output current as a voltage, a second operational amplifier 45 that amplifies and outputs the detection voltage of the sense resistor 44, and a first And an output transistor 46 for performing constant current control and constant voltage control of the power supply output in accordance with both output voltages of the second operational amplifiers 43 and 45. The sense resistor 44 is a very small resistor that does not affect the circuit.
[0003]
[Problems to be solved by the invention]
Certainly, in the case of the constant current constant voltage circuit having the above configuration, the constant current control and constant control of the power supply output by the output transistor 46 according to the reference voltage obtained by the output voltage detection circuit 41 and the detection voltage of the sense resistor 44. Voltage control can be performed.
[0004]
However, the detection voltage of the sense resistor 44 is very small (for example, when the resistance value of the sense resistor 44 is 0.5 [Ω] and the set value of the output current is 0.5 [A], the detection voltage is 0.25 [V]), the above-described configuration in which the detection voltage is directly input to the second operational amplifier 45 (for example, the operating voltage 5 [V]) operates the second operational amplifier 45 near the lower limit of the input dynamic range. It was necessary to let them. Therefore, in the constant current constant voltage circuit having the above-described configuration, a high-performance operational amplifier that operates without problems even near the lower limit of the input dynamic range must be used as the second operational amplifier 45, and the cost increase resulting from this is a first problem. It was.
[0005]
Further, in the above configuration in which the constant current control and the constant voltage control of the output transistor 46 are directly performed according to the difference voltage between the reference voltage and the reference voltage and the detection voltage of the sense resistor 44, the stability of both controls is improved. For this reason, both input paths to the output transistor 46 must be in the same form. Therefore, in the constant current constant voltage circuit having the above-described configuration, as long as the second operational amplifier 45 that amplifies the detection voltage of the sense resistor 44 is an essential component, the first operational amplifier 43 that is not originally required must be provided accordingly. However, the cost increase resulting from this was a second problem.
[0006]
In view of the first and second problems described above, the present invention provides a constant current constant voltage circuit capable of performing constant current control and constant voltage control of a power supply output with a simpler and less expensive configuration than the conventional one, and a It aims at providing the used charger.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, a constant current constant voltage circuit according to the present invention includes an output voltage detection circuit for detecting a reference voltage corresponding to an output voltage, a sense resistor for detecting an output current as a voltage, and the sense A reference voltage source for generating a reference voltage on which a detection voltage of the resistor is added; an error detection circuit for detecting an error between the reference voltage and a first divided voltage of the reference voltage; and a second divided voltage of the reference voltage An operational amplifier that amplifies and outputs a difference voltage between the voltage and the target voltage, a voltage variation circuit that varies the first divided voltage of the reference voltage according to the output of the operational amplifier, and a power supply output according to the output of the error detection circuit And an output transistor that performs constant current control and constant voltage control.
[0008]
The constant current constant voltage circuit according to the present invention includes an output voltage detection circuit for detecting a reference voltage corresponding to the output voltage, a sense resistor for detecting the output current as a voltage, and a detection voltage of the sense resistor. A reference voltage source for generating the generated reference voltage, a first operational amplifier for amplifying and outputting the difference voltage between the reference voltage and the reference voltage, and amplifying and outputting the difference voltage between the divided voltage of the reference voltage and the target voltage You may make it the structure which has a 2nd operational amplifier and the output transistor which performs constant current control and constant voltage control of a power supply output according to the output of a 1st, 2nd operational amplifier.
[0009]
The constant current constant voltage circuit according to the present invention includes an output voltage detection circuit that detects a reference voltage corresponding to the output voltage, a sense resistor that detects the output current as a voltage, and a reference that generates a predetermined reference voltage. A voltage source; an error detection circuit that detects an error between the reference voltage and the reference voltage; an operational amplifier that amplifies and outputs the detection voltage of the sense resistor; and a voltage variation that varies the reference voltage according to the output of the operational amplifier. A circuit and an output transistor that performs constant current control and constant voltage control of the power supply output in accordance with the output of the error detection circuit may be used.
[0010]
On the other hand, the charger according to the present invention includes the constant current constant voltage circuit having the above-described configuration, and performs charging current constant current control and charging voltage constant voltage control when charging the secondary battery. .
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Below, the case where the constant current constant voltage circuit which concerns on this invention is employ | adopted as a constant current constant voltage circuit which comprises the charger for electronic devices is demonstrated in detail as an example.
[0012]
FIG. 1 is a schematic configuration diagram showing an embodiment of a charger according to the present invention. As shown in the figure, a charger 1 on the power supply side includes a power supply circuit 11 that converts a commercial AC power supply into a predetermined DC power supply, and a constant current constant voltage circuit 12 that performs constant current control and constant voltage control of a power supply output. And a power supply terminal 13 for obtaining electrical coupling with the electronic device 2. On the other hand, an electronic device 2 (such as a mobile phone or a portable audio device) on the power receiving side includes a power receiving terminal 21 for obtaining electrical coupling with the charger 1, a charge control circuit 22 for controlling a charging operation, And a secondary battery 23 (nickel metal hydride battery, lithium battery, or the like) serving as a drive power source for the device. In addition, the secondary battery 23 of this figure is a structure which can be easily attached or detached with respect to the electronic device 2. FIG.
[0013]
The constant current constant voltage circuit 12 of the present embodiment includes a reference voltage source 121 that generates a reference voltage Va, an output voltage detection circuit 122 that detects a reference voltage Vb corresponding to the output voltage of the charger 1, and a reference voltage Vb. An error detection circuit 123 that detects an error of the reference voltage Va from the divided voltage Vc, and an output terminal (a power supply circuit 11 that performs constant current control and constant voltage control of the power supply output according to the output of the error detection circuit 123) An output transistor 124 connected in series between the high potential side) and the power supply terminal 13 (high potential side), and an output terminal (low potential side) for detecting the output current I of the charger 1 as a voltage. ) And a power supply terminal 13 (low potential side) Amplifying and outputting a differential voltage between the sense resistor Rs (resistance value Rs) connected in series and the divided voltages Vd and Ve obtained by dividing the reference voltage Va. Operational amplifier OP1 and resistance R1 to R7 (the resistance values R1 to R7), comprising a. The sense resistor Rs is a very small resistor that does not affect the circuit.
[0014]
The output terminal of the reference voltage source 121 is connected to the power supply terminal 13 (low potential side) via the resistors R 1 and R 2, and the connection node of the resistors R 1 and R 2 is connected to one input terminal of the error detection circuit 123. Has been. The output terminal of the reference voltage source 121 is connected to the output terminal (low potential side) of the power supply circuit 11 via resistors R3 and R4. The connection node of the resistors R3 and R4 is one input of the operational amplifier OP1. Connected to the terminal. The output terminal of the reference voltage source 121 is connected to the power supply terminal 13 (low potential side) via resistors R5 and R6, and the connection node of the resistors R5 and R6 is connected to the other input terminal of the operational amplifier OP1. Has been. The ground terminal of the reference voltage source 121 is connected to the power supply terminal 13 (low potential side), and the output terminal of the operational amplifier OP1 is connected to one input terminal of the error detection circuit 123 via the resistor R7. Yes.
[0015]
The input terminal of the output voltage detection circuit 122 is connected to the power supply terminal 13 (high potential side). The ground terminal of the output voltage detection circuit 122 is connected to the power supply terminal 13 (low potential side). The output terminal of the output voltage detection circuit 122 is connected to the other input terminal of the error detection circuit 123.
[0016]
The ground terminal of the error detection circuit 123 is connected to the power supply terminal 13 (low potential side). The output terminal of the error detection circuit 123 is connected to the control terminal of the output transistor 124. The internal configuration and operation of the error detection circuit 123 will be described in detail later.
[0017]
Here, the constant current constant voltage circuit 12 of the present embodiment matches the conventional configuration in that the constant voltage control of the power supply output is performed according to the difference voltage between the reference voltage according to the output voltage and the reference voltage. In this respect, it has a novel feature.
[0018]
First, the first characteristic part of the constant current constant voltage circuit 12 of the present embodiment is not to directly input the detection voltage I · Rs of the sense resistor Rs to the operational amplifier OP1 when performing constant current control of the power supply output. This is a configuration in which the divided voltages Vd and Ve of the reference voltage Va that varies according to the output current I are input to the operational amplifier OP1.
[0019]
As described above, in the constant current constant voltage circuit 12 of the present embodiment, the ground terminal of the reference voltage source 121 is connected to one end (high potential side) of the sense resistor Rs. When the output terminal (low potential side) of the circuit 11 is used as a reference (ground), as shown by the following equation (1), the detection voltage I · Rs of the sense resistor Rs is added to the fixed reference voltage V to be originally generated. The added fluctuation value.
[Expression 1]
Figure 0003818927
[0020]
Therefore, the divided voltages Vd and Ve input to the operational amplifier OP1 are expressed by the following equations (2) and (3), respectively.
[Expression 2]
Figure 0003818927
[0021]
From the above equation (3), the divided voltage Ve input to the operational amplifier OP1 as the detection voltage corresponding to the output current I is the resistance voltage I · Rs of the sense resistor Rs that has been input directly to the operational amplifier OP1 in the past. It can be seen that the voltages are offset to the high potential side by the voltage determined by R5 and R6.
[0022]
Therefore, if the resistors R5 and R6 are adjusted so that the divided voltage Ve fluctuates in the vicinity of the center of the input dynamic range of the operational amplifier OP1, a high performance operational amplifier that operates without trouble even near the lower limit of the input dynamic range is used as the operational amplifier OP1. Since it is no longer necessary, the cost of the charger 1 can be reduced. FIG. 2 is a correlation diagram showing the relationship between the output current I and the divided voltage Ve, and shows a setting example of the resistors R5 and R6.
[0023]
Further, from the above equation (2), the divided voltage Vd input to the operational amplifier OP1 as the target value of the divided voltage Ve is also equal to the detected voltage I · Rs of the sense resistor Rs by the voltage determined by the resistors R3 and R4. It can be seen that the voltage is offset to the high potential side.
[0024]
Here, the rate of change of the divided voltage Vd with respect to the detection voltage I · Rs of the sense resistor Rs is suppressed smaller than that of the divided voltage Ve by the voltage division ratio determined by the resistors R3 and R4. Therefore, if the resistors R3 and R4 are adjusted so that the divided voltage Vd becomes the center of the input dynamic range of the operational amplifier OP1 after substituting the desired constant current value of the output current I into the above equation (2), the output current Since a target value of the divided voltage Ve can be obtained at a level that does not cause a problem in actual use without newly providing a reference voltage source that does not depend on I, it is possible to avoid an unnecessary increase in circuit scale. .
[0025]
If the target value of the divided voltage Ve is to be a fixed value that does not depend on the output current I, a new reference voltage source that does not depend on the output current I is provided separately, and the output voltage is set as the target of the divided voltage Ve. A value may be input to the operational amplifier OP1 as a value.
[0026]
Next, the second characteristic portion of the constant current constant voltage circuit 12 of the present embodiment is that the output of the operational amplifier OP1 is not directly supplied to the output transistor 124 when performing constant current control of the power supply output. The reference voltage Vc input to the error detection circuit 123 is changed in accordance with the output.
[0027]
FIG. 3 is a circuit diagram showing an embodiment of the error detection circuit 123. As shown in the figure, the error detection circuit 123 of the present embodiment is a differential circuit including a pair of npn-type bipolar transistors Qa and Qb.
[0028]
The base of the transistor Qa corresponding to one input terminal of the error detection circuit 123 is connected to one end of each of the resistors R1, R2, and R7, and the divided voltage Vc of the reference voltage Va by the resistors R1 and R2 is connected to the base. Is entered. The base of the transistor Qb corresponding to the other input terminal of the error detection circuit 123 is connected to the output terminal of the output voltage detection circuit 122, and a reference voltage Vb corresponding to the output voltage is input to the base.
[0029]
The emitters of the transistors Qa and Qb are connected to each other, and the connection node is connected to the power supply terminal 13 (low potential side) via the constant current source Ia. The collectors of the transistors Qa and Qb are connected to the power supply voltage line via the resistors Ra and Rb, respectively. The collector of the transistor Qb is also connected to the base of the npn bipolar transistor Qc. The collector of the transistor Qc is connected to the base of the output transistor 124 (pnp type bipolar transistor). The emitter of the transistor Qc is connected to the power supply terminal 13 (low potential side).
[0030]
First, the constant voltage control of the power supply output in the error detection circuit 123 having the above configuration will be described. When the reference voltage Vb increases as the output voltage increases, the collector current of the transistor Qb flowing through the resistor Rb increases, so that the base voltage of the transistor Qc decreases and the collector current of the transistor Qc (that is, the output transistor 124). Base current) decreases. Accordingly, the output voltage is lowered by the output transistor 124. On the contrary, when the reference voltage Vb becomes low, the output voltage is raised by the operation opposite to the above.
[0031]
Next, constant current control of the power supply output in the error detection circuit 123 having the above configuration will be described. Note that the operational amplifier OP1 of the present embodiment is configured so as to lower the reference voltage Vc when the divided voltage Ve increases as the output current I increases. When the reference voltage Vc decreases as the output current I increases, the collector current of the transistor Qb flowing through the resistor Rb increases, so that the base voltage of the transistor Qc decreases and the collector current of the transistor Qc (that is, the output transistor) 124 base current) decreases. Accordingly, the output current I is lowered by the output transistor 124. On the other hand, when the reference voltage Vc becomes high, the output current I is raised by the operation opposite to the above.
[0032]
In this way, when performing constant current control of the power supply output, the output of the operational amplifier OP1 is not directly supplied to the output transistor 124, but the reference voltage Vc input to the error detection circuit 123 is set according to the output of the operational amplifier OP1. Since the error detection circuit 123 can be realized by a simple differential circuit or the like by adopting the variable configuration, the cost of the charger 1 can be reduced.
[0033]
In the above embodiment, the case where the present invention is applied to the constant current constant voltage circuit constituting the charger for the electronic device has been described as an example. However, the application target of the present invention is not limited thereto. However, the present invention can be applied to constant current and constant voltage circuits of various electric devices and power supply devices.
[0034]
In the above-described embodiment, the first feature of the present invention (the point that the detection voltage of the sense resistor is not directly input to the operational amplifier and the divided voltage of the reference voltage that varies according to the output current is input to the operational amplifier) and An example of a constant current constant voltage circuit having both of the second characteristic part (a point in which the output of the operational amplifier is not directly applied to the output transistor, and the reference voltage input to the error detection circuit is changed according to the output of the operational amplifier). Although described above, the configuration of the constant current constant voltage circuit according to the present invention is not limited to this, and may be configured to have one of the characteristic portions depending on the problem to be solved.
[0035]
【The invention's effect】
As described above, the constant current constant voltage circuit according to the present invention includes an output voltage detection circuit that detects a reference voltage corresponding to an output voltage, a sense resistor that detects the output current as a voltage, and a sense resistor detection. A reference voltage source that generates a reference voltage on which a voltage is added, an error detection circuit that detects an error between the reference voltage and the first divided voltage of the reference voltage, a second divided voltage of the reference voltage, and a target voltage An operational amplifier that amplifies and outputs the differential voltage, a voltage fluctuation circuit that varies the first divided voltage of the reference voltage according to the output of the operational amplifier, and constant current control and constant voltage control of the power supply output according to the output of the error detection circuit And an output transistor to be performed.
[0036]
With such a configuration, if the voltage division ratio is adjusted so that the second divided voltage fluctuates near the center of the input dynamic range of the operational amplifier, the operational amplifier can operate without any problems near the lower limit of the input dynamic range. There is no need to use an operational amplifier, and the error detection circuit can be realized by a simple differential circuit, etc., so that the cost of the circuit can be reduced.
[0037]
The constant current constant voltage circuit according to the present invention includes an output voltage detection circuit that detects a reference voltage corresponding to the output voltage, a sense resistor for detecting the output current as a voltage, and a detection voltage of the sense resistor. A reference voltage source for generating a reference voltage, a first operational amplifier for amplifying and outputting a difference voltage between the reference voltage and the reference voltage, a second operational amplifier for amplifying and outputting a difference voltage between the divided voltage of the reference voltage and the target voltage, The output transistor may perform a constant current control and a constant voltage control of the power supply output in accordance with the outputs of the first and second operational amplifiers.
[0038]
By adopting such a configuration, if the voltage division ratio is adjusted so that the divided voltage of the reference voltage fluctuates near the center of the input dynamic range of the second operational amplifier, there is no problem even near the lower limit of the input dynamic range as the second operational amplifier. Since there is no need to use a high-performance operational amplifier that operates without any problems, the cost of the circuit can be reduced.
[0039]
The constant current constant voltage circuit according to the present invention includes an output voltage detection circuit that detects a reference voltage corresponding to the output voltage, a sense resistor that detects the output current as a voltage, and a reference that generates a predetermined reference voltage. A voltage source; an error detection circuit that detects an error between the reference voltage and the reference voltage; an operational amplifier that amplifies and outputs the detection voltage of the sense resistor; and a voltage variation that varies the reference voltage according to the output of the operational amplifier. A circuit and an output transistor that performs constant current control and constant voltage control of the power supply output in accordance with the output of the error detection circuit may be used. With such a configuration, the error detection circuit can be realized by a simple differential circuit or the like, so that the cost of the circuit can be reduced.
[0040]
On the other hand, the charger according to the present invention includes the constant current constant voltage circuit having the above-described configuration, and performs charging current constant current control and charging voltage constant voltage control when charging the secondary battery. . By adopting such a configuration, it is possible to provide a charger capable of performing constant current control of charging current and constant voltage control of charging voltage with a simpler and less expensive configuration than conventional ones.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing an embodiment of a charger according to the present invention.
FIG. 2 is a correlation diagram showing a relationship between an output current I and a divided voltage Ve.
3 is a circuit diagram showing one embodiment of an error detection circuit 123. FIG.
FIG. 4 is a circuit diagram showing a conventional example of a constant current constant voltage circuit.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Charger 11 Power supply circuit 12 Constant current constant voltage circuit 13 Power supply terminal 121 Reference voltage source 122 Output voltage detection circuit 123 Error detection circuit 124 Output transistor R1-R7 Resistance Rs Sense resistance OP1 Operational amplifier Ra, Rb Resistance Qa, Qb, Qc npn Type bipolar transistor Ia Constant current source 2 Electronic device 21 Power receiving terminal 22 Charging control circuit 23 Secondary battery

Claims (3)

出力電圧に応じた参照電圧を検出する出力電圧検出回路と、出力電流を電圧として検出するためのセンス抵抗と、該センス抵抗の検出電圧が上乗せされた基準電圧を生成する基準電圧源と、前記参照電圧と前記基準電圧の第1分圧電圧との誤差を検出する誤差検出回路と、前記基準電圧の第2分圧電圧と目標電圧との差電圧を増幅出力するオペアンプと、該オペアンプの出力に応じて前記基準電圧の第1分圧電圧を変動させる電圧変動回路と、前記誤差検出回路の出力に応じて電源出力の定電流制御及び定電圧制御を行う出力トランジスタと、を有して成る定電流定電圧回路であって、前記基準電圧の第2分圧電圧は、前記基準電圧源の出力端と前記センス抵抗の高電位端との間で得られる分圧電圧であり、前記目標電圧は、前記基準電圧源の出力端と前記センス抵抗の低電位端との間で得られる分圧電圧であることを特徴とする定電流定電圧回路。An output voltage detection circuit for detecting a reference voltage corresponding to the output voltage; a sense resistor for detecting an output current as a voltage; a reference voltage source for generating a reference voltage on which the detection voltage of the sense resistor is added; and An error detection circuit that detects an error between a reference voltage and a first divided voltage of the reference voltage, an operational amplifier that amplifies and outputs a differential voltage between the second divided voltage of the reference voltage and a target voltage, and an output of the operational amplifier And a voltage fluctuation circuit that fluctuates the first divided voltage of the reference voltage according to the output voltage, and an output transistor that performs constant current control and constant voltage control of the power supply output according to the output of the error detection circuit. The second divided voltage of the reference voltage is a divided voltage obtained between the output terminal of the reference voltage source and the high potential terminal of the sense resistor, and the target voltage Voltage is the reference voltage source Constant current constant voltage circuit, characterized in that the output end is a divided voltage obtained between a low potential end of the sense resistor. 前記誤差検出回路は、前記基準電圧の第1分圧電圧と前記参照電圧が差動入力され、両電圧の差分に応じて前記出力トランジスタの開閉制御を行う差動回路であることを特徴とする請求項1に記載の定電流定電圧回路。The error detection circuit is a differential circuit in which a first divided voltage of the reference voltage and the reference voltage are differentially input, and open / close control of the output transistor is performed according to a difference between the two voltages. The constant current constant voltage circuit according to claim 1. 請求項1または請求項2に記載の定電流定電圧回路を有して成り、二次電池の充電に際して、充電電流の定電流制御及び充電電圧の定電圧制御を行うことを特徴とする充電器。A battery charger comprising the constant current constant voltage circuit according to claim 1, and performing charging current constant current control and charging voltage constant voltage control when charging a secondary battery. .
JP2002029312A 2002-02-06 2002-02-06 Constant current constant voltage circuit and charger using the same Expired - Fee Related JP3818927B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002029312A JP3818927B2 (en) 2002-02-06 2002-02-06 Constant current constant voltage circuit and charger using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002029312A JP3818927B2 (en) 2002-02-06 2002-02-06 Constant current constant voltage circuit and charger using the same

Publications (2)

Publication Number Publication Date
JP2003233427A JP2003233427A (en) 2003-08-22
JP3818927B2 true JP3818927B2 (en) 2006-09-06

Family

ID=27773636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002029312A Expired - Fee Related JP3818927B2 (en) 2002-02-06 2002-02-06 Constant current constant voltage circuit and charger using the same

Country Status (1)

Country Link
JP (1) JP3818927B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005033856A (en) 2003-07-07 2005-02-03 Alps Electric Co Ltd Charging equipment and its charging current detecting circuit

Also Published As

Publication number Publication date
JP2003233427A (en) 2003-08-22

Similar Documents

Publication Publication Date Title
JPH07209346A (en) Comparator with hysteresis
JPH09162652A (en) High-side-current detection amplifier
WO2003063344A1 (en) Operational amplifier having improved input offset performance
JP2001305166A (en) Current detecting circuit
JPH08237054A (en) Gain variable circuit
JP3818927B2 (en) Constant current constant voltage circuit and charger using the same
CN108957100A (en) A kind of current detection means
JPH11161352A (en) Partially temperature-corrected low-noise voltage reference
JP2000516789A (en) Differential amplifier, integrated circuit, and telephone
US20020005756A1 (en) Enhanced slew rate in amplifier circuits
JP2000277174A (en) Cell voltage detection circuit and battery voltage detection device
TW416227B (en) Level clamp circuit
JP4492003B2 (en) Current detection circuit
JP3058087B2 (en) Variable gain amplifier
CN208537614U (en) Current detection means
CN111007302A (en) Non-linear positive and negative peak detector
EP0903847A1 (en) Amplifier circuit
JP3321897B2 (en) Amplifier circuit
JP2000511029A (en) Error-corrected voltage-current converter
JP2004071864A (en) Temperature detector of semiconductor integrated circuit
JPH0233387Y2 (en)
US6307438B1 (en) Multistage operational amplifier with stability control
JPH0241926Y2 (en)
JPH052588U (en) Full wave rectifier circuit
JP3943767B2 (en) Voltage ratio detection circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040728

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060613

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120623

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120623

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130623

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees