JP2000277174A - Cell voltage detection circuit and battery voltage detection device - Google Patents

Cell voltage detection circuit and battery voltage detection device

Info

Publication number
JP2000277174A
JP2000277174A JP11079205A JP7920599A JP2000277174A JP 2000277174 A JP2000277174 A JP 2000277174A JP 11079205 A JP11079205 A JP 11079205A JP 7920599 A JP7920599 A JP 7920599A JP 2000277174 A JP2000277174 A JP 2000277174A
Authority
JP
Japan
Prior art keywords
cell
voltage
cell voltage
output
resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11079205A
Other languages
Japanese (ja)
Other versions
JP3721839B2 (en
Inventor
Akihiko Kudo
彰彦 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP07920599A priority Critical patent/JP3721839B2/en
Publication of JP2000277174A publication Critical patent/JP2000277174A/en
Application granted granted Critical
Publication of JP3721839B2 publication Critical patent/JP3721839B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Measurement Of Current Or Voltage (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To secure necessary voltage detection accuracy by providing a current conversion circuit that has an amplifier and a resistor forming a feedback loop and converts a cell voltage into a current, and an output resistor of which one end is connected to the negative terminal of a battery pack, and the other end is connected to the output of the current conversion circuit, and with which the voltage is detected as the cell voltage. SOLUTION: A feedback loop is formed so that a measurement cell voltage Vc equals a voltage between both ends of a current detection resistor R1. A source current Is flowing through the current detection resistor R1 becomes a drain current Id as it is because the gate current Ig of a P-channel FET is nearly zero. Therefore, the drain current Id flows through an output resistor R2 connected to the negative terminal of a battery pack, a voltage proportional to the cell voltage is generated across it, and the voltage is output on the basis of the negative terminal of the battery pack. In this case, provided that the resistance value of resistor R1 equals that of the resistor R2, the cell voltage is output as the voltage on the basis of the negative terminal of the battery pack.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、セル電圧検出回路
及び電池電圧検出装置に係り、特に直列に接続されたセ
ルを備えた組電池のセル電圧を検出するセル電圧検出回
路及び該セル電圧検出回路を備えた電池電圧検出装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cell voltage detecting circuit and a battery voltage detecting device, and more particularly to a cell voltage detecting circuit for detecting a cell voltage of an assembled battery having cells connected in series, and the cell voltage detecting circuit. The present invention relates to a battery voltage detection device provided with a circuit.

【0002】[0002]

【従来の技術】従来、組電池の状態監視方法としてセル
(単電池)の電圧を測定する方法が行われている。特
に、近年用いられるようになったリチウムイオン電池で
は、過充電及び過放電の保護のために、精度良くセルの
電圧を検出することが求められている。リチウムイオン
電池のセル電圧検出方法としては、一般的に差動増幅器
を用いて各セルのセル電圧を組電池のマイナス端子を基
準に変換する方法が用いられている。
2. Description of the Related Art Conventionally, as a method of monitoring the state of a battery pack, a method of measuring the voltage of a cell (cell) has been used. In particular, in a lithium-ion battery that has recently been used, it is required to accurately detect a cell voltage in order to protect against overcharge and overdischarge. As a method of detecting a cell voltage of a lithium ion battery, a method of converting a cell voltage of each cell using a differential amplifier with reference to a minus terminal of the assembled battery is generally used.

【0003】例えば、ノートパソコン等の電源として使
用されるセル3直列又は4直列の組電池のセル電圧検出
回路には、精度の高い差動増幅器とコンパレータとを内
蔵した低消費電力の専用ICが用いられている。また、
組電池の他の用途、例えば電気自動車用の電源等ではセ
ル8〜10直列程度の組電池が提案され実用化されよう
としている。この場合のセル電圧検出回路も上述したノ
ートパソコン用の組電池の場合と同様に、差動増幅器を
用いたセル電圧検出回路が使用されている。
For example, a low-power dedicated IC incorporating a high-precision differential amplifier and a comparator is used in a cell voltage detection circuit of a three-series or four-series cell battery used as a power supply for a notebook personal computer or the like. Used. Also,
For other uses of the assembled battery, such as a power supply for an electric vehicle, an assembled battery having about 8 to 10 cells in series has been proposed and is being put to practical use. In this case, a cell voltage detection circuit using a differential amplifier is also used as in the above-described battery pack for a notebook personal computer.

【0004】図6に、セル8直列のリチウムイオン電池
で組電池を構成した場合の従来のセル電圧検出回路例を
示す。このセル電圧検出回路では、セル1からセル8ま
でのリチウムイオン電池の各端子が各々分圧抵抗(図6
の分圧1〜分圧8)で分圧され、その電圧が差動増幅器
の入力に接続され、差動増幅器で分圧比分が増幅されて
各測定セルの出力電圧とされている。
FIG. 6 shows an example of a conventional cell voltage detection circuit in the case where a battery pack is composed of lithium-ion batteries in series of eight cells. In this cell voltage detection circuit, each terminal of the lithium ion batteries from cell 1 to cell 8 has a voltage dividing resistor (FIG. 6).
And the voltage is connected to the input of the differential amplifier, and the voltage division ratio is amplified by the differential amplifier to be the output voltage of each measurement cell.

【0005】従来、このようにセル電圧検出回路で分圧
を行なうのは、セル8直列ともなるとリチウムイオン電
池では最大35V程度まで電圧が上がるので、一般に使
用されている廉価な差動増幅器では耐電圧を超えてしま
うためである。
Conventionally, the voltage division by the cell voltage detection circuit is performed in such a manner that the voltage rises up to about 35 V in a lithium ion battery when the cells 8 are connected in series. This is because the voltage is exceeded.

【0006】図6に示したセル電圧検出回路で使用され
る差動増幅器(図6の差動増幅1〜差動増幅8)の従来
例を図7に示す。図7に示すように、従来の差動増幅器
は、2個の演算増幅器と複数の高精度の抵抗とで構成さ
れている。
FIG. 7 shows a conventional example of a differential amplifier (differential amplifier 1 to differential amplifier 8 in FIG. 6) used in the cell voltage detection circuit shown in FIG. As shown in FIG. 7, the conventional differential amplifier includes two operational amplifiers and a plurality of high-precision resistors.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、図6及
び図7に示した従来のセル電圧検出回路では、電圧検出
精度を確保するために高精度の抵抗が複数必要であるの
で、セル電圧検出回路のコストが高くなると共に、電圧
検出の要求精度を満足できない場合が生ずる、という問
題がある。
However, in the conventional cell voltage detection circuit shown in FIGS. 6 and 7, a plurality of high-precision resistors are required to secure the voltage detection accuracy. However, there is a problem that the cost of the device becomes high and the required accuracy of voltage detection may not be satisfied.

【0008】すなわち、図7に示したように、差動増幅
器に使用する演算増幅器のオフセット電圧をVoff、測
定セルのプラス端子の電圧をVp、測定セルのマイナス
端子の電圧をVmとすると、出力電圧Voutは次式1で表
すことができる。
That is, as shown in FIG. 7, if the offset voltage of the operational amplifier used for the differential amplifier is Voff, the voltage of the plus terminal of the measuring cell is Vp, and the voltage of the minus terminal of the measuring cell is Vm, the output is The voltage Vout can be expressed by the following equation 1.

【0009】[0009]

【数1】 (Equation 1)

【0010】このセル電圧検出回路の抵抗として下表1
に示す抵抗値を有する抵抗を使用するものとする。
The following Table 1 shows the resistance of the cell voltage detection circuit.
It is assumed that a resistor having a resistance value shown in FIG.

【0011】[0011]

【表1】 [Table 1]

【0012】表1に示した抵抗値の誤差を0.1%と
し、演算増幅器のオフセット電圧Voffを+−1.8m
Vとすると、各抵抗及びオフセット電圧Voffの最悪値
は次表2に示す値となる。
The error of the resistance value shown in Table 1 is set to 0.1%, and the offset voltage Voff of the operational amplifier is set to + -1.8 m.
Assuming V, the worst value of each resistance and offset voltage Voff is as shown in Table 2 below.

【0013】[0013]

【表2】 [Table 2]

【0014】セル電圧が4.35Vの場合に、表2で示
した最悪値をとるときの出力電圧Voutの誤差の最悪値
を計算すると、次表3に示す値となる。
When the cell voltage is 4.35 V, the worst value of the error of the output voltage Vout when the worst value shown in Table 2 is obtained is calculated as shown in Table 3 below.

【0015】[0015]

【表3】 [Table 3]

【0016】表3に示すように、非常に高精度でコスト
の高い0.1%精度の抵抗を用いても、最上位セル(セ
ル8)側では誤差が大きく最大130mV以上に達す
る。リチウムイオン電池では、実用上及び安全基準上過
充電時の電圧検出精度は±50mV未満で検出する必要
があるので、最悪値を考慮すると要求精度を満足するこ
とができなくなる、という問題点がある。
As shown in Table 3, even if a very high-precision and cost-effective 0.1% resistor is used, the error is large on the uppermost cell (cell 8) side and reaches a maximum of 130 mV or more. In a lithium ion battery, the voltage detection accuracy during overcharge must be detected at less than ± 50 mV in practical use and safety standards. Therefore, the required accuracy cannot be satisfied when the worst value is considered. .

【0017】このように高精度の抵抗を用いても要求精
度が満足できない原因は、誤差に影響する抵抗の本数が
8本と多いので、上述した最悪値を考えると誤差が大き
くなってしまう点にある。抵抗の本数を減らすために、
入力の分圧を行わずに直接差動増幅器に入力すれば精度
は改善されるが、既に述べたように差動増幅器に使用さ
れる演算増幅器の耐電圧の問題から、直接演算増幅器に
入力することはできない。
The reason why the required accuracy cannot be satisfied even when a high-precision resistor is used is that the number of resistors affecting the error is as large as eight, and the error becomes large considering the worst value described above. It is in. To reduce the number of resistors,
The accuracy can be improved by directly inputting the signal to the differential amplifier without dividing the input voltage. However, as described above, the signal is directly input to the operational amplifier due to the withstand voltage of the operational amplifier used for the differential amplifier. It is not possible.

【0018】要求精度を満足させるために、可変型の抵
抗を用いて1個ずつ抵抗値を調整することも考えられる
が、調整に必要な工数やコスト、及び振動、温度変化等
の環境の変化による安定性等を考慮すると、特に電気自
動車用組電池のセル電圧検出回路としては量産には不向
きである。
In order to satisfy the required accuracy, it is conceivable to adjust the resistance value one by one using a variable resistor. However, man-hours and costs required for the adjustment and environmental changes such as vibration and temperature change are considered. In consideration of the stability of the battery pack, it is not suitable for mass production as a cell voltage detection circuit of an assembled battery for an electric vehicle.

【0019】また、要求精度を満足させるための別の解
決方法として、絶縁アンプを用いてグランド(GND)
に絶縁したり、高耐電圧性の特殊なマルチプレクサや演
算増幅器を使用することも考えられるが、絶縁アンプや
高耐電圧性のマルチプレクサ等は高価であり、絶縁ラン
プを使用する場合は電源も別途必要で消費電力も増える
ことから消費電力及びコストの観点で問題がある。
Another solution to satisfy the required accuracy is to use an insulated amplifier to connect a ground (GND).
It is also conceivable to use a special multiplexer or operational amplifier with high withstand voltage, but the use of an insulated amplifier or multiplexer with high withstand voltage is expensive. There is a problem from the viewpoint of power consumption and cost because the power consumption is increased due to the necessity.

【0020】本発明は上記事実に鑑み、高精度の抵抗を
使用せずに必要な電圧検出精度を確保でき、消費電力が
小さくコストの低いセル電圧検出回路を提供することを
課題とする。
In view of the above, it is an object of the present invention to provide a low-cost cell voltage detection circuit which can secure required voltage detection accuracy without using a high-precision resistor, and consumes less power.

【0021】[0021]

【課題を解決するための手段】上記課題を解決するため
に、請求項1の発明は、直列に接続されたセルを備えた
組電池のセル電圧を検出するセル電圧検出回路におい
て、フィードバックループを形成した増幅器と抵抗とを
有し、前記セル電圧を電流に変換する電流変換回路と、
一端が前記組電池のマイナス端子に接続され、他端が前
記変換回路の出力に接続され、両端電圧が前記セル電圧
として検出される出力抵抗と、を備えたことを特徴とす
る。
According to a first aspect of the present invention, there is provided a cell voltage detecting circuit for detecting a cell voltage of an assembled battery having cells connected in series. Having a formed amplifier and a resistor, a current conversion circuit for converting the cell voltage to a current,
One end is connected to the minus terminal of the battery pack, the other end is connected to the output of the conversion circuit, and an output resistor whose both ends voltage is detected as the cell voltage is provided.

【0022】請求項2の発明は、請求項1に記載の電流
変換回路が、正相入力端子が測定セルのマイナス端子に
接続された演算増幅器と、ゲートが前記演算増幅器の出
力端子に接続され、ドレインが前記出力抵抗の他端に接
続されたPチャンネルFET(Pチャンネル型電界効果
トランジスタ)と、一端が前記測定セルのプラス端子に
接続され、他端が前記演算増幅器の逆相入力端子及び前
記PチャンネルFETのソースに接続された電流検出抵
抗と、を有することを特徴とする。
According to a second aspect of the present invention, in the current conversion circuit according to the first aspect, an operational amplifier having a positive-phase input terminal connected to a negative terminal of the measurement cell, and a gate connected to an output terminal of the operational amplifier. A P-channel FET (P-channel field-effect transistor) having a drain connected to the other end of the output resistor, one end connected to a plus terminal of the measurement cell, and the other end connected to an opposite-phase input terminal of the operational amplifier; And a current detection resistor connected to the source of the P-channel FET.

【0023】請求項3の発明は、請求項2に記載のPチ
ャンネルFETに代えて、PNP型トランジスタ又はダ
ーリントン接続されたPNP型トランジスタが使用され
ることを特徴とする。
According to a third aspect of the present invention, a PNP transistor or a Darlington-connected PNP transistor is used in place of the P-channel FET according to the second aspect.

【0024】請求項4の発明は、請求項1に記載の発明
において、前記組電池のマイナス端子に接続されるセル
のセル電圧が増幅率1の非反転増幅器で出力され、該セ
ルの一つ上位側のセルの電圧は増幅率1の差動増幅器で
出力される。
According to a fourth aspect of the present invention, in the first aspect of the present invention, a cell voltage of a cell connected to the negative terminal of the battery pack is output by a non-inverting amplifier having an amplification factor of one. The voltage of the upper cell is output by a differential amplifier having an amplification factor of 1.

【0025】請求項5の発明は、請求項1乃至請求項4
のいずれか1項に記載の発明において、前記演算増幅器
は該耐電圧範囲内で作動電源が供給されるように、該演
算増幅器の正電源端子及び負電源端子が各セルのセル電
圧を入力とした増幅率1の非反転増幅器の出力に接続さ
れたことを特徴とする。
The invention according to claim 5 is the invention according to claims 1 to 4.
In the invention described in any one of the above, the operational amplifier is configured such that a positive power supply terminal and a negative power supply terminal of the operational amplifier receive a cell voltage of each cell as input so that operation power is supplied within the withstand voltage range. And connected to the output of a non-inverting amplifier having an amplification factor of 1.

【0026】そして、請求項6の発明は、電池電圧検出
装置であって、請求項1乃至請求項5のいずれか1項に
記載のセル電圧検出回路を備える。
According to a sixth aspect of the present invention, there is provided a battery voltage detecting device including the cell voltage detecting circuit according to any one of the first to fifth aspects.

【0027】請求項1の発明では、フィードバックルー
プを形成した増幅器と抵抗とを有する電流変換回路によ
りセル電圧が電流に変換され、組電池のマイナス端子に
接続された出力抵抗に出力されるので、電流変換回路の
セル電圧を電流に変換するための抵抗と組電池のマイナ
ス端子に接続された出力抵抗との2本しか精度に影響す
る抵抗がない。従って、高精度の抵抗を用いずにセル電
圧検出回路の精度を確保することができる。
According to the first aspect of the present invention, the cell voltage is converted to a current by the current conversion circuit having the amplifier and the resistance forming the feedback loop and output to the output resistance connected to the minus terminal of the battery pack. There are only two resistors that affect accuracy, a resistor for converting the cell voltage of the current conversion circuit into a current and an output resistor connected to the minus terminal of the battery pack. Therefore, the accuracy of the cell voltage detection circuit can be secured without using a highly accurate resistor.

【0028】請求項2の発明では、図1に示すように、
フィードバックループが形成されてセル電圧Vcは電流
検出抵抗の両端の電圧と等しくなる。この電流検出抵抗
に流れる電流(ソース電流Is)はPチャンネルFET
のゲート電流Igがほぼ0のため、そのままドレイン電
流Idとなる。従って、組電池のマイナス端子に接続さ
れる出力抵抗にはドレイン電流Idが流れ、セル電圧に
比例した電圧が発生し組電池のマイナス端子基準で電圧
が出力される。ここで、電流検出抵抗の抵抗値=出力抵
抗の抵抗値とすれば、次式2に示すように、セル電圧が
組電池のマイナス端子を基準とする電圧で出力される。
According to the second aspect of the present invention, as shown in FIG.
A feedback loop is formed, and the cell voltage Vc becomes equal to the voltage across the current detection resistor. The current (source current Is) flowing through this current detection resistor is a P-channel FET
Since the gate current Ig is almost zero, the drain current Id is used as it is. Accordingly, the drain current Id flows through the output resistance connected to the negative terminal of the battery pack, and a voltage proportional to the cell voltage is generated, and the voltage is output based on the negative terminal of the battery pack. Here, assuming that the resistance value of the current detection resistor is equal to the resistance value of the output resistance, the cell voltage is output at a voltage based on the minus terminal of the assembled battery as shown in the following equation 2.

【0029】[0029]

【数2】 (Equation 2)

【0030】請求項3の発明では、請求項2に記載のP
チャンネルFETに代えて、直流電流増幅率hfeの大
きなPNP型トランジスタ又はダーリントン接続のPN
Pトランジスタを使用することにより、ベースに流れる
電流は極めて小さくエミッタ電流=コレクタ電流とみな
せるので、比較的高価なPチャンネルFETを用いずに
廉価なトランジスタによりセル電圧検出回路を構成する
ことができる。
According to the third aspect of the present invention, the P
Instead of a channel FET, a PNP transistor having a large DC current amplification factor h fe or a Darlington-connected PN
By using a P-transistor, the current flowing through the base is extremely small, and it can be considered that the emitter current is equal to the collector current. Therefore, the cell voltage detection circuit can be constituted by an inexpensive transistor without using a relatively expensive P-channel FET.

【0031】請求項4の発明では、請求項1乃至請求項
3に記載したセル電圧検出回路のみでは、組電池のマイ
ナス端子に接続されるセル(組電池の最下位セル)及び
その一つ上位側のセルのセル電圧が適正に出力できない
ので、最下位セルに対し通常の非反転増幅器が、その一
つ上位側のセルに対し通常の差動増幅器が用いられる。
すなわち、例えば、図1に示したセル電圧検出回路で
は、測定セルのプラス端子が演算増幅器の正電源端子
(プラス電源)と電流検出抵抗とに接続されており、電
流検出抵抗と出力抵抗とには測定セルと同電圧が発生す
るので、測定セルのプラス端子の電圧は検出するセル電
圧の最低でも2倍以上でなければならない。ところが、
最下位セルではプラス端子の電圧と検出されるセル電圧
とが同電圧であるので、正常に測定セルのセル電圧を出
力することができない。また、最下位より一つ上位側の
セルでもプラス端子の電圧は(最下位セルの電圧+測定
セルの電圧)であるので、測定セルの電圧が最下位セル
の電圧より低い場合にしか正常に出力できない。そこ
で、最下位セルの電圧に対し非反転増幅器を用い、その
一つ上位側のセルに対し差動増幅器を用いることによ
り、最下位セル及び最下位セルより一つ上位側のセルの
セル電圧を適正に検出することを可能とした。
According to the fourth aspect of the present invention, only the cell voltage detecting circuit according to any one of the first to third aspects has a cell connected to the negative terminal of the assembled battery (the lowest cell of the assembled battery) and one higher level thereof. Since the cell voltage of the cell on the side cannot be output properly, a normal non-inverting amplifier is used for the lowest cell and a normal differential amplifier is used for the cell on the next higher level.
That is, for example, in the cell voltage detection circuit shown in FIG. 1, the plus terminal of the measurement cell is connected to the positive power supply terminal (plus power supply) of the operational amplifier and the current detection resistor, and the current detection resistor and the output resistance are connected to each other. Since the same voltage is generated as that of the measuring cell, the voltage of the plus terminal of the measuring cell must be at least twice the cell voltage to be detected. However,
In the lowest cell, since the voltage of the plus terminal and the detected cell voltage are the same, the cell voltage of the measurement cell cannot be output normally. In addition, the voltage of the plus terminal is (the voltage of the lowest cell + the voltage of the measurement cell) even in the cell one level higher than the lowest, so that the normal operation is performed only when the voltage of the measurement cell is lower than the voltage of the lowest cell. Cannot output. Therefore, by using a non-inverting amplifier for the voltage of the lowest cell and using a differential amplifier for the next higher cell, the cell voltage of the lower cell and the cell one higher than the lowest cell is calculated. It is possible to detect properly.

【0032】請求項5の発明では、演算増幅器の耐電圧
範囲内で作動電源が供給されるように正電源端子及び負
電源端子が各セルのセル電圧を入力とした増幅率1の非
反転増幅器の出力に接続されるようにしたので、使用さ
れる演算増幅器の耐電圧が低くても、非反転増幅器から
の電圧を適切に選択して演算増幅器を耐電圧範囲内で作
動させることができる。
According to a fifth aspect of the present invention, a non-inverting amplifier having an amplification factor of 1 and having a positive power supply terminal and a negative power supply terminal input with a cell voltage of each cell so that operating power is supplied within a withstand voltage range of the operational amplifier. , The voltage from the non-inverting amplifier can be appropriately selected and the operational amplifier can be operated within the withstand voltage range even if the withstand voltage of the operational amplifier used is low.

【0033】そして、請求項6の発明では、請求項1乃
至請求項5のいずれか1項に記載のセル電圧検出回路を
備えたので、要求精度を満足する電池電圧検出装置を実
現することができる。
According to the sixth aspect of the present invention, since the cell voltage detecting circuit according to any one of the first to fifth aspects is provided, a battery voltage detecting device satisfying the required accuracy can be realized. it can.

【0034】[0034]

【発明の実施の形態】以下、本発明に係るセル電圧検出
回路(以下、電圧検出回路という。)をリチウムイオン
電池8直列の電気自動車用組電池のセル電圧を検出する
ための電圧検出回路に適用した実施の形態について説明
する。なお、本実施形態では請求項3に記載した発明を
除く本発明の電圧検出回路が適用されている。
BEST MODE FOR CARRYING OUT THE INVENTION A cell voltage detecting circuit (hereinafter, referred to as a voltage detecting circuit) according to the present invention is used as a voltage detecting circuit for detecting a cell voltage of an assembled battery for an electric vehicle in which lithium-ion batteries 8 are connected in series. An embodiment to which the present invention is applied will be described. In this embodiment, the voltage detection circuit of the present invention except for the invention described in claim 3 is applied.

【0035】図2に示すように、本実施形態の電圧検出
回路では、請求項4に記載したように、最下位のセル1
のセル電圧は増幅率1の非反転増幅器IC1で出力さ
れ、セル2のセル電圧は増幅率1の差動増幅器IC2B
で出力される。一方、セル3〜セル8のセル電圧検出に
は請求項1及び請求項2に記載した電圧検出回路が適用
されている。また、これらセル1〜セル8の各セルのセ
ル電圧は、組電池のマイナス端子(GND)を基準とし
て出力される(図2のセル出力1〜セル出力8)。
As shown in FIG. 2, in the voltage detection circuit according to the present embodiment, the lowest cell 1
Is output from the non-inverting amplifier IC1 having an amplification factor of 1, and the cell voltage of the cell 2 is output from a differential amplifier IC2B having an amplification factor of 1.
Is output. On the other hand, the voltage detection circuits described in claims 1 and 2 are applied to cell voltage detection of cells 3 to 8. The cell voltages of the cells 1 to 8 are output with reference to the negative terminal (GND) of the battery pack (cell output 1 to cell output 8 in FIG. 2).

【0036】本電圧回路に使用される演算増幅器は計1
5個であり、本実施形態では1パッケージに2個の演算
増幅器が入っているICを計8個使用した。従って、パ
ッケージに内蔵されている2個の演算増幅器は、それぞ
れプラス電源(正電源端子+VCC)、マイナス電源
(負電源端子−VEE)が共通である。
The operational amplifier used in this voltage circuit has a total of 1
In this embodiment, eight ICs each including two operational amplifiers in one package are used. Therefore, the two operational amplifiers included in the package have a common positive power supply (positive power supply terminal + V CC ) and a common negative power supply (negative power supply terminal -V EE ).

【0037】図2の左半分側の回路は増幅率1の非反転
増幅器としたもので、セル3に対する電圧検出回路につ
いてこの部分を詳述すれば、セル3のマイナス端子は抵
抗RIの一端に接続され、抵抗RIの他端は演算増幅器
IC3Aの正相入力端子に接続され、そこから分岐して
コンデンサCIの一端に接続され、コンデンサCIの他
端はセル3のプラス端子に接続されている。演算増幅器
IC3Aの逆相入力端子には抵抗RFの一端が接続され
ており、抵抗RFの他端は演算増幅器IC3Aの出力端
子に接続されている。また、演算増幅器IC3Aの正電
源端子及び負電源端子間にはコンデンサCCが挿入され
ている。なお、演算増幅器IC3Aの正電源端子は演算
増幅器IC4Aの出力端子に接続されており、演算増幅
器IC3Aの負電源端子は演算増幅器IC1の出力端子
に抵抗RCを介して接続されている。
The circuit on the left half side of FIG. 2 is a non-inverting amplifier having an amplification factor of 1. If this part is described in detail with respect to the voltage detection circuit for the cell 3, the minus terminal of the cell 3 is connected to one end of the resistor RI. The other end of the resistor RI is connected to the positive-phase input terminal of the operational amplifier IC3A, branched therefrom and connected to one end of the capacitor CI, and the other end of the capacitor CI is connected to the plus terminal of the cell 3. . One end of a resistor RF is connected to the opposite-phase input terminal of the operational amplifier IC3A, and the other end of the resistor RF is connected to the output terminal of the operational amplifier IC3A. A capacitor CC is inserted between the positive power supply terminal and the negative power supply terminal of the operational amplifier IC3A. The positive power supply terminal of the operational amplifier IC3A is connected to the output terminal of the operational amplifier IC4A, and the negative power supply terminal of the operational amplifier IC3A is connected to the output terminal of the operational amplifier IC1 via a resistor RC.

【0038】従って、セル3〜セル8までの各セルのマ
イナス端子は演算増幅器のプラス入力端子に接続されて
おり、各演算増幅器の出力は各セルのマイナス端子と同
電位となる。また、セル1及びセル2では各セルのプラ
ス端子が演算増幅器のプラス入力端子に接続されてお
り、各演算増幅器の出力は各セルのプラス端子と同電位
となる。この部分で抵抗RIとコンデンサCIはノイズ
を除去するRCフィルタである。
Accordingly, the minus terminals of the cells 3 to 8 are connected to the plus input terminal of the operational amplifier, and the output of each operational amplifier has the same potential as the minus terminal of each cell. In the cells 1 and 2, the plus terminal of each cell is connected to the plus input terminal of the operational amplifier, and the output of each operational amplifier has the same potential as the plus terminal of each cell. In this part, the resistor RI and the capacitor CI are RC filters for removing noise.

【0039】セル1に対する電圧検出回路について詳述
すれば、セル1のマイナス端子はGNDに接続され、そ
こから分岐してコンデンサCIの一端に接続され、コン
デンサCIの他端は増幅率1の非反転増幅器としての演
算増幅器IC1の正相入力端子及び一端がセル1のプラ
ス端子に接続された抵抗RIの他端に接続されている。
また、演算増幅器IC1の正電源端子及び負電源端子間
にはコンデンサCCが挿入されている。従って、セル1
の電圧は、演算増幅器IC1の出力からそのままセル1
のセル電圧として出力される(図2のセル1出力)。な
お、後述する表4にも示したように、演算増幅器IC1
の正電源端子は抵抗RCを介して演算増幅器IC3Aの
出力端子に接続されており、演算増幅器IC1の負電源
端子はGNDに接続されている。
The voltage detection circuit for the cell 1 will be described in detail. The minus terminal of the cell 1 is connected to GND, branched therefrom and connected to one end of a capacitor CI, and the other end of the capacitor CI is connected to a non-amplifier having a gain of 1. An inverting input terminal and one end of an operational amplifier IC1 as an inverting amplifier are connected to the other end of the resistor RI connected to the plus terminal of the cell 1.
Further, a capacitor CC is inserted between the positive power supply terminal and the negative power supply terminal of the operational amplifier IC1. Therefore, cell 1
Is output from the output of the operational amplifier IC1 to the cell 1 as it is.
(The output of cell 1 in FIG. 2). As shown in Table 4 below, the operational amplifier IC1
Is connected to the output terminal of the operational amplifier IC3A via a resistor RC, and the negative power supply terminal of the operational amplifier IC1 is connected to GND.

【0040】次に、セル2に対する電圧検出回路につい
て詳述すれば、セル2のマイナス端子にはコンデンサC
Iの一端が接続され、コンデンサCIの他端は演算増幅
器IC2Aの正相入力端子及び一端がセル2のプラス端
子に接続された抵抗RIの他端に接続されている。ま
た、演算増幅器IC2Aの正電源端子及び負電源端子間
にはコンデンサCCが挿入されており、逆相入力端子及
び出力端子間には抵抗RFが挿入されている。なお、演
算増幅器IC2Aの正電源端子は抵抗RCを介して演算
増幅器IC4Aの出力端子に接続されており、演算増幅
器IC2Aの負電源端子は演算増幅器IC1の出力端子
に接続されている。
Next, the voltage detection circuit for the cell 2 will be described in detail.
One end of I is connected, the other end of the capacitor CI is connected to the positive-phase input terminal of the operational amplifier IC2A, and the other end of the resistor RI whose one end is connected to the plus terminal of the cell 2. Further, a capacitor CC is inserted between the positive power supply terminal and the negative power supply terminal of the operational amplifier IC2A, and a resistor RF is inserted between the negative phase input terminal and the output terminal. The positive power supply terminal of the operational amplifier IC2A is connected to the output terminal of the operational amplifier IC4A via the resistor RC, and the negative power supply terminal of the operational amplifier IC2A is connected to the output terminal of the operational amplifier IC1.

【0041】また、演算増幅器IC2Aの出力端子には
抵抗R3の一端が接続され、抵抗R3の他端は増幅率1
の差動増幅器としての演算増幅器IC2Bの正相入力端
子及びGNDに一端が接続された抵抗R4の他端に接続
されている。また、演算増幅器IC2Bの逆相入力端子
には一端が演算増幅器IC2Bの出力端子に接続された
抵抗R2の他端及び抵抗R1の一端に接続されている。
抵抗R1の他端は演算増幅器IC1の逆相入力端子に一
端が接続された抵抗RFの他端に接続されている。
One end of a resistor R3 is connected to the output terminal of the operational amplifier IC2A, and the other end of the resistor R3 has an amplification factor of 1.
Is connected to the positive-phase input terminal of an operational amplifier IC2B as a differential amplifier and the other end of a resistor R4 having one end connected to GND. One end of the opposite-phase input terminal of the operational amplifier IC2B is connected to the other end of the resistor R2 connected to the output terminal of the operational amplifier IC2B and one end of the resistor R1.
The other end of the resistor R1 is connected to the other end of the resistor RF, one end of which is connected to the opposite-phase input terminal of the operational amplifier IC1.

【0042】従って、セル2の電圧は、演算増幅器IC
2Aからの出力を正相入力端子への入力とし、演算増幅
器IC1からの出力を逆相入力端子への入力とする、演
算増幅器IC2Bと抵抗R1〜R4とで形成される差動
増幅器に接続され、セル2のセル電圧はセル2出力端子
に出力される(図2のセル2出力)。
Accordingly, the voltage of the cell 2 is controlled by the operational amplifier IC
2A is connected to a differential amplifier formed by an operational amplifier IC2B and resistors R1 to R4, and the output from the operational amplifier IC1 is used as an input to a negative-phase input terminal. , The cell voltage of cell 2 is output to the cell 2 output terminal (cell 2 output of FIG. 2).

【0043】次に、セル3に対する電圧検出回路の右半
分について詳述すれば、フィードバックループを形成し
た増幅器としての演算増幅器IC3B及びPチャンネル
FETQ1の出力端子及びゲートは接続され、演算増幅
器IC3Bの逆相入力端子には一端がPチャネルFET
Q1のソースに接続されたフィードバック抵抗RFの他
端が接続されている。
Next, the right half of the voltage detection circuit for the cell 3 will be described in detail. The operational amplifier IC3B as an amplifier forming a feedback loop and the output terminal and the gate of the P-channel FET Q1 are connected to each other. One end is a P-channel FET at the phase input terminal
The other end of the feedback resistor RF connected to the source of Q1 is connected.

【0044】演算増幅器IC3Bの正相入力端子には一
端が演算増幅器IC3Aの出力端子に接続された抵抗R
Iの他端に接続されている。PチャンネルFETQ1の
ドレインには一端がGNDに接続された出力抵抗ROの
他端が接続されており、そこから分岐してセル3の出力
端子まで延出している(図2のセル3出力)。更に、P
チャンネルFETQ1のソースには電流検出抵抗RDの
一端が接続されており、電流検出抵抗RDの他端は演算
増幅器(非反転増幅器)IC4Aの出力端子に接続され
ている。
One end of the positive-phase input terminal of the operational amplifier IC3B is connected to a resistor R having one end connected to the output terminal of the operational amplifier IC3A.
I is connected to the other end. The other end of the output resistor RO, one end of which is connected to GND, is connected to the drain of the P-channel FET Q1. The output resistor RO branches off therefrom and extends to the output terminal of the cell 3 (the output of the cell 3 in FIG. 2). Further, P
One end of a current detection resistor RD is connected to the source of the channel FET Q1, and the other end of the current detection resistor RD is connected to the output terminal of an operational amplifier (non-inverting amplifier) IC4A.

【0045】ところで、セル3の電流変換回路を含む電
圧検出回路は、図1に示した電圧検出回路と基本的には
同一である。異なっているのは、演算増幅器IC3Bの
逆相入力端子が一つ上のセルの演算増幅器(非反転増幅
器)IC4Aからの出力に接続されている点と、演算増
幅器IC3Bの正相入力端子が演算増幅器(非反転増幅
器)IC3Aの出力に接続される点だけであり、何れも
演算増幅器IC3Bには図1と同一の電位が入力されて
おり、セル3の電圧が組電池のマイナス端子基準で出力
されることには変わりがない。
The voltage detection circuit including the current conversion circuit of the cell 3 is basically the same as the voltage detection circuit shown in FIG. What is different is that the negative-phase input terminal of the operational amplifier IC3B is connected to the output from the operational amplifier (non-inverting amplifier) IC4A of the upper cell, and the positive-phase input terminal of the operational amplifier IC3B is different in operation. Only the point connected to the output of the amplifier (non-inverting amplifier) IC3A. In each case, the same potential as that in FIG. 1 is input to the operational amplifier IC3B, and the voltage of the cell 3 is output based on the minus terminal of the battery pack. There is no difference in what is done.

【0046】セル4〜セル8の出力回路はセル3の出力
回路と同一構成の回路であり、各セル電圧が組電池のマ
イナス端子(GND)基準で出力される。ただし、セル
8だけが最上位のため、演算増幅器IC8A、IC8B
の正電源端子が組電池のプラス端子に接続されている。
The output circuits of the cells 4 to 8 have the same configuration as the output circuit of the cell 3, and each cell voltage is output based on the minus terminal (GND) of the battery pack. However, since only the cell 8 has the highest rank, the operational amplifiers IC8A and IC8B
Is connected to the positive terminal of the battery pack.

【0047】請求項5の発明で示したように、演算増幅
器の電源端子に印加される電圧を低くするため、各演算
増幅器の正電源端子と負電源端子とは次表4に示すよう
に接続されている。
In order to reduce the voltage applied to the power supply terminals of the operational amplifiers, the positive power supply terminal and the negative power supply terminal of each operational amplifier are connected as shown in Table 4 below. Have been.

【0048】[0048]

【表4】 [Table 4]

【0049】なお、本電圧検出回路に使用した演算増幅
器は、単電源で電源電圧が+3Vまで動作し、正相入力
端子と逆相入力端子との電圧がGNDからプラス電源電
圧−1.5Vまで動作可能で、オフセット電圧Voffは
標準2mV、最大7mV、消費電流が1.6mAの汎用
品を使用した。また、電流検出抵抗RDと出力抵抗RO
とは、それぞれ抵抗値が47kΩで精度0.25%のも
のを用いた。更に、RCフィルタの定数として抵抗RI
を47kΩ、コンデンサCIを0.47μFとした。ま
た、抵抗RC及びコンデンサCCは演算増幅器を安定に
動作させるためのデカップリング用抵抗及びコンデンサ
である。
The operational amplifier used in the present voltage detection circuit operates from a single power supply to a power supply voltage of +3 V, and the voltage of the positive-phase input terminal and the negative-phase input terminal ranges from GND to a positive power supply voltage of −1.5 V. A general-purpose product that is operable and has a standard offset voltage Voff of 2 mV, a maximum of 7 mV, and a current consumption of 1.6 mA was used. Further, the current detection resistor RD and the output resistor RO
Means that the resistance value is 47 kΩ and the accuracy is 0.25%. Further, the resistance RI is set as a constant of the RC filter.
Was set to 47 kΩ and the capacitor CI was set to 0.47 μF. The resistor RC and the capacitor CC are a decoupling resistor and a capacitor for stably operating the operational amplifier.

【0050】(特性試験)次に、本実施形態の電圧検出
回路の特性を確認するために行った誤差特性試験、消費
電流特性試験及び周波数応答特性試験について順に説明
する。
(Characteristic Test) Next, an error characteristic test, a current consumption characteristic test, and a frequency response characteristic test performed to confirm the characteristics of the voltage detection circuit of the present embodiment will be described in order.

【0051】誤差特性試験では、本電圧検出回路の環境
温度を−40°C、25°C、+80°Cとし、組電池
の電圧を15V(1.875V/セル)から37V
(4.625V/セル)まで変化させた場合の、セル電
圧と出力電圧との誤差特性を測定した。測定結果を図3
に示す。図3に示したように、環境温度及び組電池の電
圧を変化させても、セル電圧と出力電圧との最大誤差は
6mVであり、電気自動車用組電池の電圧検出回路とし
て十分な精度があることが認められた。
In the error characteristic test, the environmental temperature of the present voltage detection circuit was set to -40 ° C., 25 ° C., and + 80 ° C., and the voltage of the assembled battery was changed from 15 V (1.875 V / cell) to 37 V.
(4.625 V / cell), the error characteristics between the cell voltage and the output voltage were measured. Figure 3 shows the measurement results.
Shown in As shown in FIG. 3, even when the environmental temperature and the voltage of the battery pack are changed, the maximum error between the cell voltage and the output voltage is 6 mV, which is sufficiently accurate as a voltage detection circuit of the battery pack for electric vehicles. It was recognized that.

【0052】消費電流特性試験では、本電圧検出回路の
環境温度を−40°C、25°C、+80°Cとし、組
電池の電圧を15V(1.875V/セル)から37V
(4.625V/セル)まで変化させた場合の、本電圧
検出回路の消費電流を測定した。図4は、この測定結果
を横軸に組電池の電圧(V)、縦軸に消費電流(mA)
をとって示したものである。図4に示したように、本電
圧検出回路の消費電流は、最大でも5mA以下と十分に
小さい値であった。
In the current consumption characteristic test, the ambient temperature of the present voltage detection circuit was set to -40 ° C., 25 ° C., and + 80 ° C., and the voltage of the assembled battery was changed from 15 V (1.875 V / cell) to 37 V.
(4.625 V / cell), the current consumption of the present voltage detection circuit was measured. FIG. 4 shows the results of the measurement, in which the horizontal axis represents the voltage (V) of the assembled battery and the vertical axis represents the current consumption (mA).
This is shown. As shown in FIG. 4, the current consumption of the present voltage detection circuit was a sufficiently small value of 5 mA or less at the maximum.

【0053】周波数応答特性試験では、各セルに周波数
0.1Hzから10000Hz(10KHz)までの交
流電流を通電し、出力に現れる交流電圧成分を測定し
た。図6に周波数応答特性を示す。図6に示したよう
に、周波数1kHzにおいて−40db以上の減衰率が
得られ、ノイズに対しても本電圧検出回路は十分な特性
を有していることが確認できた。
In the frequency response characteristic test, an AC current having a frequency of 0.1 Hz to 10000 Hz (10 KHz) was applied to each cell, and an AC voltage component appearing at the output was measured. FIG. 6 shows the frequency response characteristics. As shown in FIG. 6, an attenuation rate of −40 db or more was obtained at a frequency of 1 kHz, and it was confirmed that the present voltage detection circuit has sufficient characteristics with respect to noise.

【0054】以上のように、本実施形態の電圧検出回路
では、電流検出抵抗RDと出力抵抗ROとに精度0.2
5%のものを用いたが、誤差特性試験の試験結果でも示
したように、環境温度及び組電池の電圧を変化させて
も、セル電圧と出力電圧との最大誤差は6mVであり、
電気自動車用組電池の電圧検出回路として十分な精度を
確保することができる。しかも従来技術のように可変抵
抗を使用する必要もなく、環境温度が変化しても安定性
が高く誤差が少ないので、電気自動車用組電池の電圧検
出回路として量産に適合している。
As described above, in the voltage detection circuit according to the present embodiment, the current detection resistance RD and the output resistance RO have an accuracy of 0.2.
Although 5% was used, the maximum error between the cell voltage and the output voltage was 6 mV even when the environmental temperature and the voltage of the assembled battery were changed, as shown in the test results of the error characteristic test,
Sufficient accuracy can be secured as a voltage detection circuit for an assembled battery for an electric vehicle. Moreover, since there is no need to use a variable resistor as in the prior art, and the stability is high and the error is small even when the environmental temperature changes, it is suitable for mass production as a voltage detection circuit for an assembled battery for an electric vehicle.

【0055】また、本電圧検出回路では、0.1%の高
精度抵抗ではなく精度0.25%の抵抗を用いたので、
セル電圧検出回路のコストを下げることができる。しか
も従来技術のように高耐電圧等の特殊で高価なマルチプ
レクサや演算増幅器を必要としない回路構成である。
Further, in the present voltage detection circuit, since a resistor with an accuracy of 0.25% is used instead of a resistor with a high accuracy of 0.1%,
The cost of the cell voltage detection circuit can be reduced. In addition, the circuit configuration does not require a special and expensive multiplexer or operational amplifier having a high withstand voltage as in the prior art.

【0056】更に、本電圧検出回路では、消費電流特性
試験の試験結果に示したように、最大消費電流でも5m
A以下のセル電圧検出回路を実現することができる。従
って、従来技術のように絶縁ランプを使用する場合に比
べて消費電力が極めて少ない電圧検出回路とすることが
できる。
Further, in the present voltage detecting circuit, as shown in the test result of the current consumption characteristic test, the maximum current consumption is 5 m.
A cell voltage detection circuit of A or less can be realized. Therefore, it is possible to provide a voltage detection circuit that consumes very little power compared to the case where an insulated lamp is used as in the related art.

【0057】更に、本電圧回路ではセル1のセル電圧を
検出するために非反転増幅器IC1を用い、セル2のセ
ル電圧を検出するために差動増幅器IC2Bを用いたの
で、最下位セル1及びその一つ上位側のセル2のセル電
圧を適正に検出することができる。なお、本電圧検出回
路では、理論上はセル3のセル電圧検出の場合でも最下
位セル1の電圧とセル2目の電圧の和が測定セルの電圧
よりも大きくなければ正常に出力できないことも想定さ
れるが、極端にセルバランスが悪くない限りセル3のセ
ル電圧の検出が可能である。
Further, in this voltage circuit, the non-inverting amplifier IC1 is used to detect the cell voltage of the cell 1, and the differential amplifier IC2B is used to detect the cell voltage of the cell 2. The cell voltage of the cell 2 on the one upper side can be properly detected. Note that in the present voltage detection circuit, even if the cell voltage of the cell 3 is theoretically detected, normal output cannot be performed unless the sum of the voltage of the lowest cell 1 and the voltage of the cell 2 is larger than the voltage of the measurement cell. It is assumed that the cell voltage of the cell 3 can be detected as long as the cell balance is not extremely bad.

【0058】また、本電圧検出回路では、表4に示した
ように、各演算増幅器のプラス電源とマイナス電源の端
子間には2つのセルの総和の電圧しか印加されないの
で、低耐電圧の演算増幅器を用いることが可能である。
Also, in the present voltage detection circuit, as shown in Table 4, only the sum voltage of the two cells is applied between the plus power supply and the minus power supply terminals of each operational amplifier. It is possible to use an amplifier.

【0059】更に、本電圧検出回路では、周波数応答特
性試験の試験結果に示したように、ノイズに対しても優
れた特性を有している。
Further, as shown in the test results of the frequency response characteristic test, the present voltage detection circuit has excellent characteristics with respect to noise.

【0060】なお、本実施形態では、PチャンネルFE
Tを使用した場合について説明したが、PチャンネルF
ETに代えて直流電流増幅率hfeの大きなPNP型ト
ランジスタ又はダーリントン接続されたPNP型トラン
ジスタを使用することができる。この場合には、Pチャ
ンネルFETのゲート、ソース、ドレインの各端子に代
えて、PNP型トランジスタ又はダーリントン接続され
たPNP型トランジスタのベース、コレクタ、エミッタ
の各端子を接続すればよいことは当業者にとって自明で
ある。このようにすれば、比較的高価なPチャンネルF
ETを使用する場合より廉価に電圧検出回路を作製する
ことができるので、更に電圧検出回路のコストを低減さ
せることができる。
In this embodiment, the P channel FE
T has been described, but the P channel F
Instead of ET, a PNP transistor having a large DC current amplification factor h fe or a PNP transistor connected in Darlington can be used. In this case, those skilled in the art should be able to connect the base, collector and emitter terminals of a PNP transistor or a Darlington-connected PNP transistor instead of the gate, source and drain terminals of the P-channel FET. Is self-evident. In this way, the relatively expensive P-channel F
Since the voltage detection circuit can be manufactured at a lower cost than when ET is used, the cost of the voltage detection circuit can be further reduced.

【0061】[0061]

【発明の効果】以上説明したように、請求項1に記載の
発明によれば、電流変換回路のセル電圧を電流に変換す
るための抵抗と組電池のマイナス端子に接続された出力
抵抗との2本しか精度に影響する抵抗がないので、高精
度の抵抗を用いずにセル電圧検出回路の精度を確保する
ことができる、という効果を得ることができる。
As described above, according to the first aspect of the present invention, the resistance of the current conversion circuit for converting the cell voltage into the current and the output resistance connected to the minus terminal of the battery pack are described. Since there are only two resistors that affect the accuracy, it is possible to obtain an effect that the accuracy of the cell voltage detection circuit can be secured without using a high-precision resistor.

【0062】請求項2に記載の発明によれば、Pチャン
ネルFETのゲート電流Igがほぼ0のためそのままド
レイン電流Idとなり、電流検出抵抗の抵抗値=出力抵
抗の抵抗値とすることで、セル電圧が組電池のマイナス
端子を基準とする電圧で出力されるので、請求項1と同
様、高精度の抵抗を用いずにセル電圧検出回路の精度を
確保することができる、という効果を得ることができ
る。
According to the second aspect of the present invention, since the gate current Ig of the P-channel FET is substantially zero, it becomes the drain current Id as it is, and the resistance value of the current detection resistor is equal to the resistance value of the output resistance. Since the voltage is output at a voltage with reference to the negative terminal of the battery pack, an advantage is obtained in that the accuracy of the cell voltage detection circuit can be secured without using a high-precision resistor, as in claim 1. Can be.

【0063】請求項3に記載の発明によれば、比較的高
価なPチャンネルFETを用いずに廉価なトランジスタ
によりセル電圧検出回路を構成することができるので、
コストの低いセル電圧検出回路を実現することができ
る、という効果を得ることができる。
According to the third aspect of the present invention, the cell voltage detection circuit can be constituted by inexpensive transistors without using relatively expensive P-channel FETs.
The effect that a low-cost cell voltage detection circuit can be realized can be obtained.

【0064】請求項4に記載の発明によれば、最下位セ
ルに対し非反転増幅器を用い、その一つ上位側のセルに
対し差動増幅器を用いたので、組電池の最下位セル及び
その一つ上位側のセルのセル電圧を適正に検出すること
ができる、という効果を得ることができる。
According to the fourth aspect of the present invention, since the non-inverting amplifier is used for the lowermost cell and the differential amplifier is used for the next higher cell, the lowermost cell of the assembled battery and its lower cell are used. It is possible to obtain an effect that the cell voltage of the cell on the one upper side can be properly detected.

【0065】請求項5に記載の発明によれば、演算増幅
器の耐電圧範囲内で作動電源が供給されるように正電源
端子及び負電源端子が各セルのセル電圧を入力とした増
幅率1の非反転増幅器の出力に接続されるようにしたの
で、使用される演算増幅器の耐電圧が低くても、非反転
増幅器からの電圧を適切に選択して演算増幅器を耐電圧
範囲内で作動させることができる、という効果を得るこ
とができる。
According to the fifth aspect of the present invention, the positive power supply terminal and the negative power supply terminal have an amplification factor of 1 with the cell voltage of each cell as an input so that the operating power is supplied within the withstand voltage range of the operational amplifier. Is connected to the output of the non-inverting amplifier, so that even if the withstand voltage of the operational amplifier used is low, the voltage from the non-inverting amplifier is appropriately selected to operate the operational amplifier within the withstand voltage range. Can be obtained.

【0066】そして、請求項6に記載の発明によれば、
請求項1乃至請求項5のいずれか1項に記載のセル電圧
検出回路を備えたので、要求精度を満足する電池電圧検
出装置を実現することができる、という効果を得ること
ができる。
According to the sixth aspect of the present invention,
Since the cell voltage detecting circuit according to any one of claims 1 to 5 is provided, an effect that a battery voltage detecting device satisfying required accuracy can be realized can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】請求項2に記載の発明の作用を説明するための
電流変換回路の回路図である。
FIG. 1 is a circuit diagram of a current conversion circuit for explaining the operation of the invention described in claim 2;

【図2】本発明が適用された実施形態のセル電圧検出回
路を示す回路図である。
FIG. 2 is a circuit diagram showing a cell voltage detection circuit according to an embodiment to which the present invention is applied.

【図3】本発明が適用された実施形態のセル電圧検出回
路の誤差特性を示す特性線図である。
FIG. 3 is a characteristic diagram showing an error characteristic of the cell voltage detection circuit according to the embodiment to which the present invention is applied.

【図4】本発明が適用された実施形態のセル電圧検出回
路の消費電流特性を示す特性線図である。
FIG. 4 is a characteristic diagram showing current consumption characteristics of the cell voltage detection circuit according to the embodiment to which the present invention is applied.

【図5】本発明が適用された実施形態のセル電圧検出回
路の周波数応答特性を示す特性線図である。
FIG. 5 is a characteristic diagram showing a frequency response characteristic of the cell voltage detection circuit according to the embodiment to which the present invention is applied.

【図6】従来のセル電圧検出回路の回路構成を示す構成
図である。
FIG. 6 is a configuration diagram showing a circuit configuration of a conventional cell voltage detection circuit.

【図7】図6に示したセル電圧検出回路の差動増幅器の
詳細を示す回路図である。
FIG. 7 is a circuit diagram showing details of a differential amplifier of the cell voltage detection circuit shown in FIG. 6;

【符号の説明】[Explanation of symbols]

RI、RF、RC、RD、RO、R1、R2、R3、R
4、R5、R6、R7、R8 抵抗 CI、CC コンデンサ Q1、Q2、Q3、Q4、Q5、Q6 PチャンネルF
ET IC1、IC2A、IC2B、IC3A、IC3B、I
C4A、IC4B、IC5A、IC5B、IC6A、I
C6B、IC7A、IC7B、IC8A、IC8B 演
算増幅器
RI, RF, RC, RD, RO, R1, R2, R3, R
4, R5, R6, R7, R8 Resistance CI, CC capacitor Q1, Q2, Q3, Q4, Q5, Q6 P channel F
ET IC1, IC2A, IC2B, IC3A, IC3B, I
C4A, IC4B, IC5A, IC5B, IC6A, I
C6B, IC7A, IC7B, IC8A, IC8B Operational amplifier

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 直列に接続されたセルを備えた組電池の
セル電圧を検出するセル電圧検出回路において、 フィードバックループを形成した増幅器と抵抗とを有
し、前記セル電圧を電流に変換する電流変換回路と、 一端が前記組電池のマイナス端子に接続され、他端が前
記変換回路の出力に接続され、両端電圧が前記セル電圧
として検出される出力抵抗と、を備えたことを特徴とす
るセル電圧検出回路。
1. A cell voltage detecting circuit for detecting a cell voltage of an assembled battery having cells connected in series, comprising: an amplifier having a feedback loop formed therein; and a resistor, wherein the current for converting the cell voltage into a current is provided. A converter circuit, one end of which is connected to the negative terminal of the battery pack, the other end of which is connected to the output of the converter circuit, and an output resistor whose both-ends voltage is detected as the cell voltage. Cell voltage detection circuit.
【請求項2】 前記電流変換回路は、 正相入力端子が測定セルのマイナス端子に接続された演
算増幅器と、 ゲートが前記演算増幅器の出力端子に接続され、ドレイ
ンが前記出力抵抗の他端に接続されたPチャンネルFE
Tと、 一端が前記測定セルのプラス端子に接続され、他端が前
記演算増幅器の逆相入力端子及び前記PチャンネルFE
Tのソースに接続された電流検出抵抗と、を有すること
を特徴とする請求項1に記載のセル電圧検出回路。
2. The current conversion circuit includes: an operational amplifier having a positive-phase input terminal connected to a negative terminal of a measurement cell; a gate connected to an output terminal of the operational amplifier; and a drain connected to the other end of the output resistor. Connected P channel FE
T, one end of which is connected to the positive terminal of the measuring cell, and the other end of which is connected to the opposite-phase input terminal of the operational amplifier and the P-channel FE.
The cell voltage detection circuit according to claim 1, further comprising: a current detection resistor connected to a source of T.
【請求項3】 前記PチャンネルFETに代えて、PN
P型トランジスタ又はダーリントン接続されたPNP型
トランジスタが使用されることを特徴とする請求項2に
記載のセル電圧検出回路。
3. In place of the P-channel FET, PN
3. The cell voltage detection circuit according to claim 2, wherein a P-type transistor or a Darlington-connected PNP-type transistor is used.
【請求項4】 前記組電池のマイナス端子に接続される
セルのセル電圧は増幅率1の非反転増幅器で出力され、
該セルの一つ上位側のセルのセル電圧は増幅率1の差動
増幅器で出力されることを特徴とする請求項1に記載の
セル電圧検出回路。
4. A cell voltage of a cell connected to a negative terminal of the battery pack is output by a non-inverting amplifier having an amplification factor of 1,
2. The cell voltage detection circuit according to claim 1, wherein the cell voltage of the cell on the upper side of the cell is output by a differential amplifier having an amplification factor of one.
【請求項5】 前記演算増幅器は該耐電圧範囲内で作動
電源が供給されるように、該演算増幅器の正電源端子及
び負電源端子が各セルのセル電圧を入力とした増幅率1
の非反転増幅器の出力に接続されたことを特徴とする請
求項1乃至請求項4のいずれか1項に記載のセル電圧検
出回路。
5. An operational amplifier, wherein a positive power supply terminal and a negative power supply terminal of the operational amplifier have an amplification factor of 1 with a cell voltage of each cell as an input so that operating power is supplied within the withstand voltage range.
5. The cell voltage detection circuit according to claim 1, wherein the cell voltage detection circuit is connected to an output of the non-inverting amplifier.
【請求項6】 請求項1乃至請求項5のいずれか1項に
記載のセル電圧検出回路を備えた電池電圧検出装置。
6. A battery voltage detection device comprising the cell voltage detection circuit according to claim 1.
JP07920599A 1999-03-24 1999-03-24 Cell voltage detection circuit and battery voltage detection device Expired - Fee Related JP3721839B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07920599A JP3721839B2 (en) 1999-03-24 1999-03-24 Cell voltage detection circuit and battery voltage detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07920599A JP3721839B2 (en) 1999-03-24 1999-03-24 Cell voltage detection circuit and battery voltage detection device

Publications (2)

Publication Number Publication Date
JP2000277174A true JP2000277174A (en) 2000-10-06
JP3721839B2 JP3721839B2 (en) 2005-11-30

Family

ID=13683459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07920599A Expired - Fee Related JP3721839B2 (en) 1999-03-24 1999-03-24 Cell voltage detection circuit and battery voltage detection device

Country Status (1)

Country Link
JP (1) JP3721839B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002095863A1 (en) * 2001-05-17 2002-11-28 Sanyo Electric Co., Ltd. Voltage measuring circuit of battery pack
US7282890B2 (en) 2003-08-29 2007-10-16 Yazaki Corporation Voltage detector of battery assembly
JP2009187937A (en) * 2008-02-01 2009-08-20 O2 Micro Inc Conversion system with balanced cell current
KR100946635B1 (en) * 2009-09-16 2010-03-09 제이엠씨엔지니어링 주식회사 The apparatus of battery pack to have a four terminal network charging moudle of multi channel and power supply moudle of multi channel
CN102955056A (en) * 2011-08-26 2013-03-06 华润矽威科技(上海)有限公司 Sampling circuit and sampling method for high-end battery voltage
CN105510844A (en) * 2016-01-05 2016-04-20 惠州市蓝微新源技术有限公司 Constant voltage load circuit and simulated battery using constant voltage load circuit
WO2018235562A1 (en) * 2017-06-22 2018-12-27 株式会社オートネットワーク技術研究所 Voltage detector and signal output device
CN113632289A (en) * 2020-07-22 2021-11-09 东莞新能安科技有限公司 Battery system, sampling method thereof, electronic device and readable storage medium

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4649464B2 (en) 2007-11-29 2011-03-09 本田技研工業株式会社 Battery voltage detector

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002095863A1 (en) * 2001-05-17 2002-11-28 Sanyo Electric Co., Ltd. Voltage measuring circuit of battery pack
US6919706B2 (en) 2001-05-17 2005-07-19 Sanyo Electric Co., Ltd. Voltage measuring circuit of battery pack
US7282890B2 (en) 2003-08-29 2007-10-16 Yazaki Corporation Voltage detector of battery assembly
JP2009187937A (en) * 2008-02-01 2009-08-20 O2 Micro Inc Conversion system with balanced cell current
KR100946635B1 (en) * 2009-09-16 2010-03-09 제이엠씨엔지니어링 주식회사 The apparatus of battery pack to have a four terminal network charging moudle of multi channel and power supply moudle of multi channel
CN102955056A (en) * 2011-08-26 2013-03-06 华润矽威科技(上海)有限公司 Sampling circuit and sampling method for high-end battery voltage
CN105510844A (en) * 2016-01-05 2016-04-20 惠州市蓝微新源技术有限公司 Constant voltage load circuit and simulated battery using constant voltage load circuit
CN105510844B (en) * 2016-01-05 2018-09-25 惠州市蓝微新源技术有限公司 Constant pressure load circuit and the simulated battery for using the constant pressure load circuit
WO2018235562A1 (en) * 2017-06-22 2018-12-27 株式会社オートネットワーク技術研究所 Voltage detector and signal output device
US10976356B2 (en) 2017-06-22 2021-04-13 Autonetworks Technologies, Ltd. Voltage detector and signal output device
CN113632289A (en) * 2020-07-22 2021-11-09 东莞新能安科技有限公司 Battery system, sampling method thereof, electronic device and readable storage medium
CN113632289B (en) * 2020-07-22 2022-07-12 东莞新能安科技有限公司 Battery system, sampling method thereof, electronic device and readable storage medium

Also Published As

Publication number Publication date
JP3721839B2 (en) 2005-11-30

Similar Documents

Publication Publication Date Title
CN107942251B (en) Current detection system, method and current detection device
JP4241787B2 (en) Total battery voltage detection and leak detection device
WO2007007765A1 (en) Current-voltage conversion circuit and power consumption detection circuit and electronic device using the same
US5627494A (en) High side current sense amplifier
US11402456B2 (en) High voltage current sensing circuit with adaptive calibration
JP4047558B2 (en) Battery voltage detector
JP2000277174A (en) Cell voltage detection circuit and battery voltage detection device
JP6404113B2 (en) Battery voltage measurement circuit
CN211783939U (en) Simulation front end of high-precision temperature detection chip
US9264083B2 (en) Communication circuit and semiconductor device
CN209590068U (en) Constant current source power supply system
JP2001305166A (en) Current detecting circuit
CN208334490U (en) A kind of micro-current Precision measurement circuit
JPH09318679A (en) Power voltage detecting device for electric vehicle
JP2003282158A (en) Battery voltage measuring circuit
US7202730B2 (en) Voltage to current to voltage cell voltage monitor (VIV)
CN219456305U (en) Current detection circuit and electronic equipment
CN112198368B (en) Electric automobile insulation resistance detection circuit and method
JP2002374131A (en) Automatic correction circuit of operational amplifier offset voltage
Zhang et al. A High Accuracy and Wide Input Voltage Range Current Sense Amplifier for Bidirectional High-Side and Low-Side Current-Sensing
JP2004071864A (en) Temperature detector of semiconductor integrated circuit
JPH10339680A (en) Semiconductor pressure sensor
CN113884208B (en) High-precision over-temperature detection circuit
CN216978170U (en) Temperature sensor circuit structure
JP3818927B2 (en) Constant current constant voltage circuit and charger using the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050905

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080922

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees