JP3818627B2 - Non-halogen flame retardant cable - Google Patents

Non-halogen flame retardant cable Download PDF

Info

Publication number
JP3818627B2
JP3818627B2 JP2000243195A JP2000243195A JP3818627B2 JP 3818627 B2 JP3818627 B2 JP 3818627B2 JP 2000243195 A JP2000243195 A JP 2000243195A JP 2000243195 A JP2000243195 A JP 2000243195A JP 3818627 B2 JP3818627 B2 JP 3818627B2
Authority
JP
Japan
Prior art keywords
sheath layer
halogen flame
flame retardant
retardant cable
gas barrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000243195A
Other languages
Japanese (ja)
Other versions
JP2002056725A (en
Inventor
昭雅 緒方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP2000243195A priority Critical patent/JP3818627B2/en
Publication of JP2002056725A publication Critical patent/JP2002056725A/en
Application granted granted Critical
Publication of JP3818627B2 publication Critical patent/JP3818627B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Insulated Conductors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、火災時などに発生する高熱や火炎に対して耐火性および耐熱性を備えた難燃性を有するとともに、電気絶縁層やシースなどの被覆材から有機ガス成分が揮発するのを抑制できるノンハロゲン難燃性ケーブルに関する。
【0002】
【従来の技術】
ハロゲン含有ポリマは、燃焼時に塩化水素やフッ化水素などのハロゲン化水素を発生することで難燃性が得られる反面、それら発生ガスは金属を腐食させたり、人体に有害とされてきたので、近年、ハロゲンを含まないノンハロゲン難燃性のケーブルが主流となっている。
【0003】
【発明が解決しようとする課題】
一方、難燃性とは別の問題点として、たとえば半導体製造設備のクリーンルームのように不純物の存在を極限まで抑える必要のある場所では、そこに布設される電線・ケーブルとしては、被覆材から発生する特に有機ガス成分の揮発を抑える必要がある。
【0004】
たとえば、塩化ビニルを被覆材に用いて被覆した電線・ケーブルの場合、可塑剤の揮発成分が発生する。また、環境面を考慮したポリオレフィン系樹脂を被覆材に用いた電線・ケーブルにあっても、酸化防止剤による揮発成分の発生が懸念されるといったように、揮発成分の発生を極力抑えられるガスバリア性に優れたノンハロゲン難燃性ケーブルの開発や供給が望まれてきた。
【0005】
したがって、本発明の目的は、室温や加温条件下で揮発成分の発生を極力抑制できるノンハロゲン難燃性ケーブルを提供することにある。
【0006】
【課題を解決するための手段】
上記目的を達成するために、本発明にかかる請求項1に記載のノンハロゲン難燃ケーブルは、絶縁線心4上に内側の第1シース層5および外側の第2シース層6の内外二層からなるシース層を設け、前記第1シース層5をノンハロゲン難燃材で設けたものであって、前記第2シース層6をガスバリア性の高いポリマで構成したことを特徴とする。
【0007】
以上から、絶縁線心4上にノンハロゲン難燃材の第1シース層5を設けて耐火性と耐熱性を備えさせ、ガスバリア性の高いポリマによる第2シース層6を設けたことで、電気絶縁層やシースなどの被覆材から有機ガス成分の揮発を抑制するのに有効である。
【0008】
また、請求項2に記載のノンハロゲン難燃性ケーブルは、前記ガスバリア性の高いポリマとして、ポリアミド,エチレン・ビニルアルコール共重合体,ポリテトラフロロエチレン,ポリアクリロニトリル,ポリエチレンテレフタレートおよびポリアセタールのいずれかを用いて構成したことを特徴とする。
【0009】
以上から、ガスバリア性の高いポリマとして好ましくは比較的硬質のポリアミドか、あるいは比較的軟質のエチレン・ビニルアルコール共重合体を用いて第2シース層6を設けることにより、いずれの場合も有機ガスなどの成分の発生を抑制でき、またケーブルとして実用的に必要な適度な可撓性を備えさせることができる。
【0010】
さらに、請求項3に記載のノンハロゲン難燃性ケーブルは、前記ガスバリア性の高いポリマによる第2シース層6の厚さが10μm〜0.5mmであることを特徴とする。
【0011】
以上から、第2シース層6の厚さが10μm以下の場合は所要のガスバリア性が得られず、また0.5mm以上の場合は可撓性や難燃性などの特性面で満足するものが得られない。
【0012】
【発明の実施の形態】
以下、本発明にかかるノンハロゲン難燃性ケーブルの実施の形態について、図面を参照して詳細に説明する。
【0013】
図1に示すように、本例のノンハロゲン難燃性ケーブル(以下、単にケーブルという)1は、導体2を絶縁体3で被覆することにより絶縁線心4が形成され、この絶縁線心4上にさらに内側の第1シース層5および外側の第2シース層6の内外二層からなるシース層を設けてなっている。
【0014】
第1シース層5の樹脂材料には一般的なノンハロゲン難燃材を用いることができ、本例ではエチレン・エチルアクリレート共重合体が用いられている。また、第2シース層6の樹脂材料にはガスバリア性の高いポリマが用いられている。この第2シース層6を形成するガスバリア性の高いポリマとしては、ポリアミド,エチレン・ビニルアルコール共重合体,ポリテトラフロロエチレン,ポリアクリロニトリル,ポリエチレンテレフタレートおよびポリアセタールなどを用いることができる。
【0015】
〔実施例〕
実施例1:
導体2をポリエチレン(PE)の絶縁体3で被覆してなる絶縁線心4を図1のように形成し、その絶縁線心4を外側から第1シース層5によって被覆成形する。第1シース層5の成形材料として一般的なノンハロゲン難燃材、この場合エチレン・エチルアクリレート共重合体の重量部100と水酸化マグネシウムの重量部80との混和物を用いている。
【0016】
周知のように、水酸化マグネシウムは金属水和物として難燃性を高めるのに有効である他、ガス発生を抑制するのに効果的であるとされている。ちなみに、水酸化マグネシウムに代えて、同じく金属水和物である水酸化アルミニウムを用いることも可能である。
【0017】
かかる第1シース層5の上に、ポリアミド〔ナイロン12−ダイアミドL1901;ダイセル・ヒュルス(株)製〕の単体を、本発明でいう10μm〜0.5mmの範囲内である「0.1mm」の厚さで被覆して第2シース層6を形成し、ケーブル1を作成した。
【0018】
実施例2:
上記実施例1で形成した第1シース層5の上に、エチレン・ビニルアルコール共重合体〔エバール;クラレ社製〕の単体を、同じく本発明でいう10μm〜0.5mmの範囲内である「0.3mm」の厚さで被覆して第2シース層を形成し、ケーブル1を作成した。
【0019】
〔比較例〕
比較例1:
上記実施例1,2と同サイズ径の導体をポリエチレンの絶縁体で被覆してなる絶縁線心上に実施例1,2と同じく一般的なノンハロゲン難燃材で被覆して1層だけのシース層を形成し、ケーブルを作成した。
【0020】
比較例2:
上記比較例1と同様に導体をポリエチレンの絶縁体で被覆してなる絶縁線心上に実施例1,2と同じく一般的なノンハロゲン難燃材で被覆してそれを第1シース層とした。さらに、その第1シース層の上にポリアミドを0.6mm(*本発明でいう厚さ10μm〜0.5mmの範囲を超えている)の厚さに被覆して第2シース層を形成し、ケーブルを作成した。
【0021】
このようにして形成した実施例1,2のケーブル1および比較例1,2のケーブルのそれぞれについて、ガスクロマトグラフ分析試験を行い、機械的性質として撓み試験を行った。その結果を〔表1〕に示す。
【0022】
ガスクロマトグラフ分析試験を行う脱ガス評価試験装置についてはここで特に図示して言及しない。
【0023】
撓み試験については、実施例と比較例のそれぞれのケーブルを長さ400mmに裁断した供試品を準備し、この供試品のケーブルをスパン250mmの距離両端で両端支持して、そのスパン中央部に重量400グラムの集中荷重をかけた。その状態で実施例および比較例の各ケーブル供試品の撓み量(単位;mm)を測定した。撓み試験についてはEM−EEFでは「可撓性」が要求されており、第2シース層に硬質のポリアミドを用いた場合は特に可撓性が問題となるとの判断に基づき、上記条件下での撓み量が大きいほど可撓性が良好であると判定した。
【0024】
また、第1シース層5については第2シース層ほどに機械的性質が殆ど影響しないとの経験則から、使用したノンハロゲン難燃材の配合重量部の変化に伴う特性変化といったものに言及しなかった。
【0025】
【表1】

Figure 0003818627
〔考察〕
表1から、実施例1のように、第2シース層6にポリアミドを使用して厚さ0.1mmに被覆したケーブル1の場合、有機ガスの発生は見られず、撓み量の測定値は12mmであり、布線時の取り扱い性など実用面でも問題はない。
【0026】
また、実施例2のように、第2シース層6にエチレン・ビニルアルコール共重合体を使用して厚さ0.3mmに被覆したケーブルの場合、同じく有機ガスの発生は見られず、撓み量の測定値は15mmであった。この場合も同じく実用面での問題はない。
【0027】
このように、第2シース層6の成形材料に用いたポリアミドの場合、硬質であるために厚さを先述のように0.1mmに設定している。また、同じく第2シース層6の成形材料にエチレン・ビニルアルコール共重合体を用いた場合は、この共重合体そのものが軟質であるため、厚さを0.1〜0.4mmの範囲に限って設定しても問題はないと考え、本例では実施例2のように第2シース層6の厚さを上記範囲内の0.3mmに設定して撓み試験を行った。
【0028】
それに対して、比較例1のように、ノンハロゲン難燃材による第1シース層だけを設けたケーブルの場合、撓み量の測定値は16mmで実施例1,2の撓み量よりも大きく、可撓性は良好といえるが、有機ガスの発生が見られることが難点である。
【0029】
また、比較例2のように、ポリアミドを0.6mmの厚さで被覆して第2シース層を形成したケーブルの場合、有機ガスの発生は見られないが、撓み量の測定値も3mmと少なく、実用面で難点がある。
【0030】
以上から、本発明の要旨の1つとして述べているように、第2シース層6の厚さが10μm以下の場合は所要のガスバリア性が得られず、また0.5mm以上の場合は可撓性や難燃性などの特性面で満足するものが得られない。第2シース層の厚さを「0.6mm」に設定した比較例2にあっては、撓み量が3mm(表1参照)と他例と比べて極端に少なく、可撓性に欠けて実用面に難点ありといえるのである。
【0031】
なお、ガスバリア性の高いポリマ例として先述のように列記したが、なかでもたとえばポリエチレンテレフタレートの場合、透明性,ガスバリア性,そして機械的強度などで優れた特性をもつことが知られている。
【0032】
【発明の効果】
以上説明したように、本発明にかかる請求項1に記載のノンハロゲン難燃性ケーブルは、絶縁線心上にノンハロゲン難燃材の第1シース層を設けて耐火性と耐熱性を備えさせ、ガスバリア性の高いポリマによる第2シース層を設けたことで、電気絶縁層やシースなどの被覆材から有機ガス成分の揮発を抑制するのに有効であり、難燃性とガス不透過性に優れている。
【0033】
また、請求項2に記載のノンハロゲン難燃性ケーブルは、ガスバリア性の高いポリマとして好ましくは比較的硬質のポリアミドか、あるいは比較的軟質のエチレン・ビニルアルコール共重合体を用いて第2シース層6を設けることにより、いずれの場合も有機ガスなどの成分の発生を抑制でき、またケーブルとして実用的に必要な適度な可撓性を備えさせることができる。
【0034】
さらに、請求項3に記載のノンハロゲン難燃性ケーブルは、第2シース層6の厚さが好ましくは10μm〜0.5mmの範囲であり、10μm以下の場合は所要のガスバリア性が得られず、また0.5mm以上の場合は可撓性や難燃性などの特性面で満足するものが得られない。
【図面の簡単な説明】
【図1】本発明にかかるノンハロゲン難燃性ケーブルの実施の形態を示す断面図である。
【符号の説明】
1 ノンハロゲン難燃性ケーブル
2 導体
3 絶縁体
4 絶縁線心
5 第1シース層
6 第2シース層[0001]
BACKGROUND OF THE INVENTION
The present invention has flame retardancy with fire resistance and heat resistance against high heat and flames generated in the event of a fire and the like, and suppresses volatilization of organic gas components from a covering material such as an electrical insulating layer and a sheath. It relates to a non-halogen flame retardant cable that can be used.
[0002]
[Prior art]
Halogen-containing polymers generate flame retardants by generating hydrogen halides such as hydrogen chloride and hydrogen fluoride at the time of combustion, but these generated gases corrode metals and have been considered harmful to the human body. In recent years, halogen-free non-halogen flame retardant cables have become mainstream.
[0003]
[Problems to be solved by the invention]
On the other hand, as a problem separate from flame retardancy, for example, in places where there is a need to minimize the presence of impurities, such as in a clean room of a semiconductor manufacturing facility, the wires and cables installed there are generated from the coating material. In particular, it is necessary to suppress the volatilization of organic gas components.
[0004]
For example, in the case of electric wires and cables coated with vinyl chloride as a coating material, a volatile component of a plasticizer is generated. In addition, even in the case of wires and cables that use environmentally-friendly polyolefin-based resin as a coating material, gas barrier properties that can suppress the generation of volatile components as much as possible, such as concern about the generation of volatile components due to antioxidants The development and supply of non-halogen flame retardant cables with excellent performance have been desired.
[0005]
Accordingly, an object of the present invention is to provide a non-halogen flame retardant cable that can suppress the generation of volatile components as much as possible under room temperature or heating conditions.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the halogen-free flame retardant cable according to claim 1 according to the present invention is formed from inner and outer two layers of an inner first sheath layer 5 and an outer second sheath layer 6 on an insulating wire core 4. comprising a sheath layer provided the first sheath layer 5 be those provided by the non-halogen flame retardant, characterized in that constitute the second sheath layer 6 with high gas barrier polymer.
[0007]
As described above, the first sheath layer 5 made of a non-halogen flame retardant is provided on the insulating core 4 to provide fire resistance and heat resistance, and the second sheath layer 6 made of a polymer having a high gas barrier property is provided. It is effective for suppressing volatilization of organic gas components from coating materials such as layers and sheaths.
[0008]
The non-halogen flame retardant cable according to claim 2 uses any one of polyamide, ethylene / vinyl alcohol copolymer, polytetrafluoroethylene, polyacrylonitrile, polyethylene terephthalate, and polyacetal as the high gas barrier polymer. It is characterized by being configured .
[0009]
From the above, it is preferable to provide the second sheath layer 6 by using a relatively hard polyamide or a relatively soft ethylene / vinyl alcohol copolymer as a polymer having a high gas barrier property. Generation | occurrence | production of this component can be suppressed, and the moderate flexibility required practically as a cable can be provided.
[0010]
Furthermore, the halogen-free flame retardant cable according to claim 3 is characterized in that the thickness of the second sheath layer 6 made of the polymer having a high gas barrier property is 10 μm to 0.5 mm.
[0011]
From the above, when the thickness of the second sheath layer 6 is 10 μm or less, the required gas barrier property cannot be obtained, and when the thickness is 0.5 mm or more, it is satisfactory in terms of characteristics such as flexibility and flame retardancy. I can't get it.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of a non-halogen flame-retardant cable according to the present invention will be described in detail with reference to the drawings.
[0013]
As shown in FIG. 1, a non-halogen flame retardant cable (hereinafter simply referred to as a cable) 1 of this example has an insulated wire core 4 formed by covering a conductor 2 with an insulator 3. Further, a sheath layer composed of an inner and outer two layers of an inner first sheath layer 5 and an outer second sheath layer 6 is provided.
[0014]
As the resin material of the first sheath layer 5, a general non-halogen flame retardant can be used. In this example, an ethylene / ethyl acrylate copolymer is used. In addition, a polymer having a high gas barrier property is used for the resin material of the second sheath layer 6. Polyamide, ethylene / vinyl alcohol copolymer, polytetrafluoroethylene, polyacrylonitrile, polyethylene terephthalate, polyacetal, and the like can be used as the polymer having a high gas barrier property that forms the second sheath layer 6.
[0015]
〔Example〕
Example 1:
An insulating core 4 formed by coating the conductor 2 with an insulator 3 made of polyethylene (PE) is formed as shown in FIG. 1, and the insulating core 4 is covered and formed by a first sheath layer 5 from the outside. As a molding material for the first sheath layer 5, a general non-halogen flame retardant, in this case, an admixture of 100 parts by weight of ethylene / ethyl acrylate copolymer and 80 parts by weight of magnesium hydroxide is used.
[0016]
As is well known, magnesium hydroxide is effective as a metal hydrate for enhancing flame retardancy and is effective for suppressing gas generation. Incidentally, aluminum hydroxide, which is also a metal hydrate, can be used instead of magnesium hydroxide.
[0017]
On the first sheath layer 5, a simple substance of polyamide [nylon 12-diamid L1901; manufactured by Daicel Huls Co., Ltd.] is used in the range of 10 μm to 0.5 mm as referred to in the present invention. The second sheath layer 6 was formed by covering with a thickness, and the cable 1 was prepared.
[0018]
Example 2:
On the 1st sheath layer 5 formed in the said Example 1, the simple substance of an ethylene vinyl alcohol copolymer [EVAL; made by Kuraray Co., Ltd.] is in the range of 10 micrometers-0.5 mm said by the present invention. A cable 1 was prepared by forming a second sheath layer by coating with a thickness of 0.3 mm.
[0019]
[Comparative Example]
Comparative Example 1:
A sheath having only one layer covered with a general non-halogen flame retardant material as in Examples 1 and 2 on an insulation core formed by coating a conductor having the same size diameter as that of Examples 1 and 2 with a polyethylene insulator. Layers were formed and cables were created.
[0020]
Comparative Example 2:
As in Comparative Example 1, the insulation core formed by coating the conductor with a polyethylene insulator was coated with a general non-halogen flame retardant material as in Examples 1 and 2 to form a first sheath layer. Furthermore, the second sheath layer is formed by coating polyamide on the first sheath layer to a thickness of 0.6 mm (* exceeding the thickness range of 10 μm to 0.5 mm in the present invention), Created a cable.
[0021]
Each of the cables 1 of Examples 1 and 2 and the cables of Comparative Examples 1 and 2 formed in this manner was subjected to a gas chromatographic analysis test and a bending test as a mechanical property. The results are shown in [Table 1].
[0022]
A degassing evaluation test apparatus for performing a gas chromatographic analysis test is not particularly illustrated and referred to here.
[0023]
For the bending test, a test sample was prepared by cutting each cable of the example and the comparative example to a length of 400 mm, and the cable of this test sample was supported at both ends at a distance of a span of 250 mm, and the center of the span A concentrated load with a weight of 400 grams was applied. In this state, the amount of deflection (unit: mm) of each cable specimen of the example and the comparative example was measured. With regard to the bending test, EM-EEF requires “flexibility”. Based on the judgment that flexibility is a problem when a hard polyamide is used for the second sheath layer, The greater the amount of deflection, the better the flexibility.
[0024]
Further, from the empirical rule that the mechanical properties of the first sheath layer 5 are hardly affected as much as those of the second sheath layer, there is no mention of a change in characteristics accompanying a change in the blended weight part of the non-halogen flame retardant used. It was.
[0025]
[Table 1]
Figure 0003818627
[Discussion]
From Table 1, as in Example 1, in the case of the cable 1 in which the second sheath layer 6 is coated with polyamide to a thickness of 0.1 mm, no organic gas is generated, and the measured value of the deflection amount is It is 12 mm, and there is no problem in practical aspects such as handling at the time of wiring.
[0026]
In addition, in the case of the cable in which the second sheath layer 6 is coated with a thickness of 0.3 mm using the ethylene / vinyl alcohol copolymer as in Example 2, the generation of organic gas is not observed, and the amount of deflection is similar. The measured value was 15 mm. In this case as well, there is no practical problem.
[0027]
Thus, since the polyamide used for the molding material of the second sheath layer 6 is hard, the thickness is set to 0.1 mm as described above. Similarly, when an ethylene / vinyl alcohol copolymer is used as the molding material for the second sheath layer 6, the copolymer itself is soft, so the thickness is limited to a range of 0.1 to 0.4 mm. In this example, the bending test was performed with the thickness of the second sheath layer 6 set to 0.3 mm within the above range as in Example 2.
[0028]
On the other hand, in the case of the cable having only the first sheath layer made of a non-halogen flame retardant as in Comparative Example 1, the measured value of the deflection amount is 16 mm, which is larger than the deflection amount of Examples 1 and 2, and is flexible. Although the property is good, it is difficult to see the generation of organic gas.
[0029]
Further, in the case of the cable in which the second sheath layer is formed by coating polyamide with a thickness of 0.6 mm as in Comparative Example 2, the generation of organic gas is not observed, but the measured value of the deflection amount is also 3 mm. There are few practical problems.
[0030]
From the above, as described as one of the gist of the present invention, when the thickness of the second sheath layer 6 is 10 μm or less, the required gas barrier property cannot be obtained, and when it is 0.5 mm or more, it is flexible. In terms of properties such as heat resistance and flame retardancy cannot be obtained. In Comparative Example 2 in which the thickness of the second sheath layer is set to “0.6 mm”, the amount of deflection is 3 mm (see Table 1), which is extremely small compared to other examples, and lacks flexibility and is practical. It can be said that there are difficulties in terms.
[0031]
Although examples of polymers having high gas barrier properties are listed as described above, polyethylene terephthalate, for example, is known to have excellent properties such as transparency, gas barrier properties, and mechanical strength.
[0032]
【The invention's effect】
As described above, the non-halogen flame retardant cable according to claim 1 according to the present invention is provided with a first sheath layer of a non-halogen flame retardant material on an insulating wire core to provide fire resistance and heat resistance, thereby providing a gas barrier. The second sheath layer made of a highly polymer is effective in suppressing the volatilization of organic gas components from coating materials such as electrical insulation layers and sheaths, and is excellent in flame retardancy and gas impermeability. Yes.
[0033]
The non-halogen flame retardant cable according to claim 2 is preferably made of a relatively hard polyamide or a relatively soft ethylene / vinyl alcohol copolymer as the polymer having a high gas barrier property. In any case, generation of components such as organic gas can be suppressed, and appropriate flexibility necessary for practical use as a cable can be provided.
[0034]
Further, in the non-halogen flame retardant cable according to claim 3, the thickness of the second sheath layer 6 is preferably in the range of 10 μm to 0.5 mm, and in the case of 10 μm or less, the required gas barrier property cannot be obtained, On the other hand, when the thickness is 0.5 mm or more, a material satisfying in terms of characteristics such as flexibility and flame retardancy cannot be obtained.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an embodiment of a non-halogen flame retardant cable according to the present invention.
[Explanation of symbols]
1 Non-halogen flame retardant cable 2 Conductor 3 Insulator 4 Insulated wire core 5 First sheath layer 6 Second sheath layer

Claims (3)

絶縁線心上に内側の第1シース層および外側の第2シース層の内外二層からなるシース層を設け、前記第1シース層をノンハロゲン難燃材で設けたノンハロゲン難燃性ケーブルであって、
前記第2シース層をガスバリア性の高いポリマで構成したことを特徴とするノンハロゲン難燃性ケーブル。
A non-halogen flame retardant cable in which a sheath layer composed of an inner and outer two layers of an inner first sheath layer and an outer second sheath layer is provided on an insulated wire core, and the first sheath layer is provided with a non-halogen flame retardant material. ,
Non-halogen flame-retardant cable, characterized in that constitute the second sheath layer at a high gas barrier polymer.
前記ガスバリア性の高いポリマが、ポリアミド,エチレン・ビニルアルコール共重合体,ポリテトラフロロエチレン,ポリアクリロニトリル,ポリエチレンテレフタレートおよびポリアセタールのいずれかである請求項1に記載のノンハロゲン難燃性ケーブル。The gas barrier properties of high polymer is a polyamide, ethylene-vinyl alcohol copolymer, polytetrafluoroethylene, polyacrylonitrile, polyethylene terephthalate and non-halogen flame-retardant cable according to Motomeko 1 is either a polyacetal. 前記ガスバリア性の高いポリマによる第2シース層の厚さが10μm〜0.5mmであることを特徴とする請求項1または2に記載のノンハロゲン難燃性ケーブル。  3. The non-halogen flame-retardant cable according to claim 1, wherein the second sheath layer made of the polymer having a high gas barrier property has a thickness of 10 μm to 0.5 mm.
JP2000243195A 2000-08-10 2000-08-10 Non-halogen flame retardant cable Expired - Fee Related JP3818627B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000243195A JP3818627B2 (en) 2000-08-10 2000-08-10 Non-halogen flame retardant cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000243195A JP3818627B2 (en) 2000-08-10 2000-08-10 Non-halogen flame retardant cable

Publications (2)

Publication Number Publication Date
JP2002056725A JP2002056725A (en) 2002-02-22
JP3818627B2 true JP3818627B2 (en) 2006-09-06

Family

ID=18734092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000243195A Expired - Fee Related JP3818627B2 (en) 2000-08-10 2000-08-10 Non-halogen flame retardant cable

Country Status (1)

Country Link
JP (1) JP3818627B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4712355B2 (en) * 2004-11-17 2011-06-29 清水建設株式会社 Low outgas cable
JP6794629B2 (en) * 2016-01-08 2020-12-02 日立金属株式会社 Electric wire manufacturing method
CN112351530B (en) * 2020-11-03 2022-10-14 安邦电气股份有限公司 Explosion-proof flame-retardant electric tracing band

Also Published As

Publication number Publication date
JP2002056725A (en) 2002-02-22

Similar Documents

Publication Publication Date Title
AU2014253577B2 (en) Fire Resistant Compositions
JP6681158B2 (en) Multi-layer insulated wire and multi-layer insulated cable
CN106397947B (en) Halogen-free flame-retardant resin composition, insulated wire and cable
JP6621168B2 (en) Power transmission cable using non-halogen flame retardant resin composition
JP2006310093A (en) Non-halogen-based insulated electric wire and wire harness
JP2008277142A (en) Insulated wire, and wiring harness
JP4846991B2 (en) Sheathed wire
JP3818627B2 (en) Non-halogen flame retardant cable
TWI384495B (en) Flame retardant plenum cable
JP3812873B2 (en) Non-halogen flame retardant coated wire
JP2010157413A (en) Non-halogen flame retardant electric wire/cable
JP2009140683A (en) Fluorine-containing elastomer coated wire
EP0778589B1 (en) Communication cable for use in a plenum
JPH1074420A (en) Fire resisting wire
JP7037280B2 (en) Insulated wire
JP3907423B2 (en) Flame retardant insulated wire
JP3953694B2 (en) Insulated wire / cable
JPS6140021Y2 (en)
KR100930438B1 (en) Insulator composition for electric wire with excellent flexibility, flame retardancy and wear resistance and electric wire using the same
JP2018045885A (en) Insulated wire
JP6239712B1 (en) Insulated wire
JP2021182464A (en) Non-halogen flame-retardant heat-resistant wire and non-halogen flame-retardant heat-resistant cable
JP2020176163A (en) Power transmission cable using non-halogen flame-retardant resin composition
JP2008198573A (en) Covered wire
JP2000011765A (en) Non-halogen flame-resistant cable

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060612

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3818627

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090623

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120623

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130623

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130623

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130623

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees