JP3817868B2 - Vacuum degassing equipment for molten glass - Google Patents

Vacuum degassing equipment for molten glass Download PDF

Info

Publication number
JP3817868B2
JP3817868B2 JP30532697A JP30532697A JP3817868B2 JP 3817868 B2 JP3817868 B2 JP 3817868B2 JP 30532697 A JP30532697 A JP 30532697A JP 30532697 A JP30532697 A JP 30532697A JP 3817868 B2 JP3817868 B2 JP 3817868B2
Authority
JP
Japan
Prior art keywords
pipe
vacuum degassing
molten glass
vacuum
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30532697A
Other languages
Japanese (ja)
Other versions
JPH11139834A (en
Inventor
祐輔 竹居
駿 木島
淳史 谷垣
捷治 今牧
正隆 松脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP30532697A priority Critical patent/JP3817868B2/en
Priority to US09/164,356 priority patent/US6119484A/en
Priority to TW087116447A priority patent/TW498058B/en
Priority to KR1019980041667A priority patent/KR100682778B1/en
Priority to IDP981327A priority patent/ID20649A/en
Priority to DE69807812T priority patent/DE69807812T3/en
Priority to EP00122258A priority patent/EP1078891B1/en
Priority to EP98118842A priority patent/EP0908417B2/en
Priority to DE69823560T priority patent/DE69823560T2/en
Priority to EP04007832A priority patent/EP1439148A3/en
Publication of JPH11139834A publication Critical patent/JPH11139834A/en
Priority to US09/473,680 priority patent/US6405564B1/en
Priority to KR1020060029382A priority patent/KR100682779B1/en
Application granted granted Critical
Publication of JP3817868B2 publication Critical patent/JP3817868B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/225Refining
    • C03B5/2252Refining under reduced pressure, e.g. with vacuum refiners

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、連続的に供給される溶融ガラスから気泡を除去する、溶融ガラスの減圧脱泡装置の技術分野に属する。
【0002】
【従来の技術】
従来より、成形されたガラス製品の品質を向上させるために、溶融炉で溶融した溶融ガラスを成形装置で成形する前に溶融ガラス内に発生した気泡を除去する減圧脱泡装置が用いられている。このような従来の減圧脱泡装置を図3に示す。図3に示す減圧脱泡装置100は、溶解槽112中の溶融ガラスGを減圧脱泡処理して、次の処理槽に連続的に供給するプロセスに用いられるものであって、真空吸引されている。減圧ハウジング102内に水平に減圧脱泡槽104が収納配置され、その両端に垂直に取り付けられる上昇管106および下降管108が収納配置されている。
【0003】
上昇管106は減圧脱泡槽104に連通し、脱泡処理前の溶融ガラスGを溶解槽112から上昇させて減圧脱泡槽104に導入する。下降管108は、減圧脱泡槽104に連通し、脱泡処理後の溶融ガラスGを減圧脱泡槽104から下降させて次の処理槽(図示せず)に導出する。そして、減圧ハウジング102内において、減圧脱泡槽104、上昇管106および下降管108の周囲には、これらを断熱被覆する断熱用レンガなどの断熱材110が配設されている。なお、減圧ハウジング102は、金属製、例えばステンレス製であり、外部から真空ポンプ(図示せず)等によって真空吸引され、内部が減圧され、内設される減圧脱泡槽104内を所定の減圧、例えば1/20〜1/3気圧の減圧状態に維持する。
【0004】
従来の減圧脱泡装置100においては、高温、例えば1200〜1400℃の温度の溶融ガラスGを処理するように構成されているので、本出願人の出願に係る特開平2−221129号公報に開示しているように、減圧脱泡槽104、上昇管106および下降管108などのように溶融ガラスGと直接接触する部分は、通常白金または白金ロジウムのような白金合金などの貴金属製円管で構成されている。
ここで、これらを白金合金などの貴金属製円管で構成するのは、溶融ガラスGが高温であるばかりでなく、貴金属が溶融ガラスとの高温反応性が低く、溶融ガラスとの反応による不均質化を生じさせることがなく、高温での強度がある程度確保できるからである。
特に、減圧脱泡槽104を貴金属製円管で構成するのは、上記理由に加え、貴金属製円管自体に電流を流して自己発熱させ、円筒内の溶融ガラスGを均一に加熱し、溶融ガラスGの温度を所定の温度に保持するためである。
【0005】
ところで、減圧脱泡槽104を貴金属で構成すると、高温強度の点から円管とするのがよいが、白金などの貴金属は高価であるため、肉厚を大きくできない。よって、コストおよび強度の両方の点から円管の直径には限界があり、あまり円管の直径を大きくできず、減圧脱泡槽104で脱泡処理できる溶融ガラスGの流量にも限界があり、大流量の減圧脱泡装置を構築できないという問題があった。もちろん、円管状減圧脱泡槽104の全長を長くして流速を速くすることにより、脱泡処理量を増加させることも考えられるが、処理量に比して、また溶解槽や成形処理槽などに比べて、装置が長大化してしまうという問題もあった。このため、減圧脱泡装置100における溶融ガラスGの脱泡処理量(流量)を大きくできないという問題もあった。
【0006】
なお、溶融ガラスGは、粉体原料を溶解反応させることによって得られるので、溶解の点では、溶解槽112の温度は高い方が好ましく、また、減圧脱泡の点では溶融ガラスの粘度は低く、従って温度は高い方が好ましい。しかしながら、高温強度の点から減圧脱泡槽104などに貴金属合金を用いる必要がある一方で、貴金属は高価なものであり、コストの点から円管の厚みをあまり厚くできないため、白金などの貴金属を用いると、減圧脱泡装置100の入口での溶融ガラスGの温度は、上述した所定温度(1200〜1400℃)に制限されてしまっていた。
【0007】
【発明が解決しようとする課題】
ところで、このような問題に対し、減圧脱泡槽104、上昇管106および下降管108を貴金属合金よりも安価な耐火物レンガで構成し、貴金属合金の場合と同様に溶融ガラスを連続的に減圧脱泡処理することができれば、白金などの貴金属合金を用いる場合に比べて、コストの点から使用量を制限したり、それに伴う強度低下の点から大きさを制限したりする必要性はなくなり、装置設計の自由度が飛躍的に向上することから、大流量の減圧脱泡装置の構築が可能になるとともに、より高温での減圧脱泡処理も可能になるものと考えられる。
【0008】
しかしながら、減圧脱泡装置100のすべての構成部分を耐火物レンガで作製しようとすると、以下のような問題がある。すなわち、上昇管106や下降管108の下端部分などの管状の開放端においては、下端を支持するものが無いため、高重量の耐火物レンガを目地材の接着力のみで支持することとなってしまい、十分な強度が得られないし、その代わりに、長い円筒型の耐火物レンガを製造しようとしても、コストが非常に高くなる。このため、上昇管106や下降管108の下端部分を耐火物レンガで作製するのは現実的には困難であるという問題がある。
【0009】
また、このようにして上昇管106や下降管108の下端を耐火物レンガで作製したとしても、目地の部分で損傷や劣化が起こりやすいし、目地以外の部分であっても、溶解槽112における溶融ガラスGと大気との界面近傍の位置では、高温で、かつ、大気が存在することから、耐火物が反応性に富み、選択的に劣化しやすいという問題がある。このように目地部分や界面部分が劣化していくと、上昇管106や下降管108の下端部分が高さ方向に不均一な形状となり、割れなどの破損を生じたり、最悪の場合、上昇管106や下降管108の下端部分の一部が破断して落下してしまうおそれがあり、十分な耐久性が得られないという問題がある。さらに、破損した耐火物が溶融ガラスGに混入すれば、ガラスの組成の均一性を保持できなくなるおそれもあるという問題もある。
【0010】
本発明の目的は、前記従来技術の問題点を解決することにあり、連続的に供給される溶融ガラスから気泡を除去する、溶融ガラスの減圧脱泡装置において、高温の溶融ガラスに対して十分な耐久性を確保しつつ、コストを大幅に低減でき、ひいては装置の大容量化、減圧脱泡処理温度の高温化などを図ることができる溶融ガラスの減圧脱泡装置を提供することにある。
【0011】
【課題を解決するための手段】
前記目的を達成するために、本発明は、真空吸引される減圧ハウジングと、この減圧ハウジング内に設けられ、溶融ガラスの減圧脱泡を行う減圧脱泡槽と、この減圧脱泡槽に連通して設けられ、前記減圧脱泡前の溶融ガラスを上昇させて前記減圧脱泡槽に導入する上昇管と、前記減圧脱泡槽に連通して設けられ、前記減圧脱泡後の溶融ガラスを前記減圧脱泡槽から下降させて導出する下降管と、前記上昇管および下降管の下端にそれぞれ連通して設けられる延長管とを有し、前記上昇管、前記減圧脱泡槽および前記下降管は、少なくとも前記溶融ガラスと直接接触する部分が電鋳レンガで形成され、前記延長管は、白金または白金合金で形成されたことを特徴とする溶融ガラスの減圧脱泡装置を提供する。
【0012】
また、前記延長管は、その上端にフランジが形成され、このフランジが前記上昇管もしくは前記下降管を形成する前記電鋳レンガの目地に挿入されて挟持されることにより、前記上昇管もしくは前記下降管に固定されたものであるのが好ましい。
【0013】
【発明の実施の形態】
以下、本発明の溶融ガラスの減圧脱泡装置について、添付の図面に示される好適実施例をもとに詳細に説明する。
【0014】
図1に、本発明の溶融ガラスの減圧脱泡装置の概略断面図を示す。
図1に示すように、減圧脱泡装置10は、溶解槽20内の溶融ガラスGを減圧脱泡処理して、図示しない次の処理槽、例えば、フロートバスなどの板状の成形処理槽や瓶などの成形作業槽などに連続的に供給するプロセスに用いられるもので、基本的に、減圧ハウジング12、減圧脱泡槽14、上昇管16、下降管18および延長管26,28を有する。
減圧ハウジング12は、減圧脱泡槽14の気密性を確保するためのものであり、略門型に形成される。この減圧ハウジング12は、減圧脱泡槽14に必要とされる気密性および強度を有するものであれば、その材質、構造は特に限定されるものではないが、金属製、特にステンレス製とするのが好ましい。このような減圧ハウジング12は、外部から真空ポンプ(図示せず)等によって真空吸引され、内部が減圧され、内設される減圧脱泡槽14内を所定の減圧、例えば1/20〜1/3気圧の減圧状態に維持するように構成される。
【0015】
減圧ハウジング12の上部内には減圧脱泡槽14が設けられる。また、減圧脱泡槽14の左端部には上昇管16が連通され、減圧脱泡槽14の右端部には下降管18が連通される。なお、上昇管16および下降管18はそれぞれ減圧ハウジング12の脚部12a,12b(以下、それぞれハウジング脚部12a,12bとする)内に配設されている。
【0016】
本発明の減圧脱泡装置10においては、減圧脱泡槽14、上昇管16および下降管18がいずれも電鋳レンガ30で形成される。
すなわち、減圧脱泡装置10における溶融ガラスGと直接接触する主要部分を電鋳レンガ30で形成することにより、従来から用いられてきた白金合金製のものよりも、コストが大幅に低減し、従って自由な形状で、かつ、自由な厚さに設計することが可能となることから、減圧脱泡装置10の大容量化が実現するとともに、より高温での減圧脱泡処理も行えるようになる。また、電鋳レンガであれば、一般のレンガと比べ高温での耐久性に優れ、成分の溶出も最小限にすることができることから、溶融ガラスの均一性を保つことができる。
【0017】
従って、減圧脱泡槽14、上昇管16および下降管18の形状は少なくとも筒状であれば特に限定されず、例えば、その断面形状は円状のみならず角状であってもよい。電鋳レンガ30を用いて減圧脱泡槽14、上昇管16および下降管18を構築する方法は、特に制限的ではなく、例えば小さい直方体の電鋳レンガ30を積み上げ、その間の目地の部分を目地材で埋めて、所定長の筒状管を形成してもよいし、円筒状もしくは角筒状に鋳込み成形した筒状の電鋳レンガ30を一列に積み重ねて、その間の目地の部分を目地材で埋め、所定長の筒状管を形成してもよい。
【0018】
なお、電鋳レンガ30としては、耐火原料を電気溶融した後、所定形状に鋳込み成形したレンガであれば特に限定されず、従来公知の各種の電鋳レンガを使用すればよい。中でも、耐蝕性が高く、素地からの発泡も少ない点で、アルミナ系電鋳耐火物、ジルコニア系電鋳耐火物、AZS(Al2 3 −ZrO2 −SiO2 )系電鋳耐火物等が好適に例示され、具体的には、マースナイト(MB−G)、ZB−X950、ジルコナイト(ZB)(いずれも旭硝子(株)製)等が挙げられる。
【0019】
そして、減圧脱泡槽14の周囲には減圧脱泡槽14を被覆する断熱用のレンガ32(以下、断熱レンガ32とする)が配設され、上昇管16および下降管18の周囲にもそれぞれを被覆する断熱レンガ32が配設される。
断熱レンガ32としては、公知の種々のレンガを使用すればよく、特に限定されない。このように配設された断熱レンガ32は、その外側が減圧ハウジング12に覆われることにより減圧ハウジング12内に収容される。
【0020】
また、減圧脱泡槽14、上昇管16および下降管18の周囲には、必要に応じて、断熱レンガ32とともに、加熱ヒータを設けて加熱可能な構成としてもよいし、冷却水を通過可能にして冷却可能な構成としてもよい。
【0021】
ここで、上昇管16の下端部は、上流ピット22の開放端に嵌入され、上流ピット22内の溶融ガラスGに浸漬される必要がある。また、下降管18の下端部も同様に、下流ピット24の開放端に嵌入され、下流ピット24内の溶融ガラスG内に浸漬される必要がある。
ところで、本発明の減圧脱泡装置10は、上述したように、主要部分が電鋳レンガ28で構成されるものである。
【0022】
しかしながら、前述したように、上昇管16の下端部であって上流ピット22に嵌入させて溶融ガラスGに浸漬する部分までを電鋳レンガ30で作製しようとしても、強度やコストの点から現実的には困難であるし、仮に電鋳レンガ30で作製したとしても、目地部分や界面部分が劣化しやすく、割れなどの破損を生じるおそれがあり、十分な耐久性が得られないという問題がある。
また、下降管18の下端部であって、下流ピット24の開放端に嵌入させて溶融ガラスGに浸漬する部分を電鋳レンガ30で作製する場合においても、上記同様の問題がある。
【0023】
これに対し、本発明は、図1に示されるように、上昇管16および下降管18の下端部に白金または白金合金製の延長管26,28を設け、この延長管26,28をそれぞれ上流ピット20および下流ピット24内に嵌入し、内部の溶融ガラスGに浸漬する構成としたものである。このような構成とすることで、電鋳レンガ製の上昇管16および下降管18を直接溶融ガラスGに浸漬する必要がなくなり、上流ピット20および下流ピット24内における、溶融ガラスGに対する耐久性を大幅に向上することができ、上記問題を解決することができる。
【0024】
具体的には、図2に示されるように、上昇管16の下端部に白金または白金合金製の延長管26が連通して設けられる。なお、上昇管16側の延長管26と下降管18側の延長管28は同一に構成されているので、上昇管16側の延長管26についてのみ説明し、下降管18側の延長管28の説明は省略する。
【0025】
延長管26は、円筒形状の筒体26aと、この筒体26aの一端に形成される固定用フランジ26bと、この固定用フランジ26bから所定間隔離間して形成されるシール用フランジ26cとを有する管であり、白金または白金合金製である。筒体26aの内径は、上昇管16にスムーズに連通するように、上昇管16の内径とおよそ同等の大きさに構成すればよい。
【0026】
固定用フランジ26bは、上昇管16を構成する電鋳レンガ30,30間、すなわち目地に挿入されることにより、その上端が上昇管16に固定されうるように形成される。
なお、延長管26の上昇管16への固定は、固定用フランジ26bに限らず、種々の方法により行ってもよいが、固定用フランジ26bを用いて固定する構成とするのが好ましい。すなわち、筒体26aの上端に固定用フランジ26bを有しない場合には、筒体26aの外側と電鋳レンガ30との間に溶融ガラスGが浸入し、断熱レンガ32および断熱材38が浸食され、ハウジング脚部12aの底面近傍の熱伝導率が上昇してハウジング外壁面の温度が上がりハウジングが変形するおそれがあるが、筒体26aの上端に固定用フランジ26bを形成することにより、このような問題も解消する。これにより、ハウジング脚部12aの温度上昇、およびこれに伴う下方への歪みを防止し、ハウジング脚部12a内の電鋳レンガ30や断熱レンガ32の目地のずれや緩みに起因する溶融ガラスGの漏れ、ひいてはハウジング脚部12aの過度な温度上昇を防止することができる。
従って、このような部分的な温度上昇に起因する、装置全体の熱応力変形、および溶融ガラスGの漏れの増大による加速度的な温度上昇も防止できる。
【0027】
一方、シール用フランジ26cは、延長管26が下降管18の下端に設けられた際に、後述するシール部材34とともにハウジング脚部12aの下端を外側から閉塞して、減圧ハウジング12内の気密性を確保するためのものである。また、このシール用フランジ26cを電極として、白金または白金合金製の延長管26を自己発熱させて適正温度に保持する構成としてもよい。なお、ハウジング脚部12aの下端において気密性を確保するための機構としては、シール用フランジ26cを用いる方法に限定されず、種々の機構が使用可能である。
延長管26の上昇管16への固定は上述のように固定用フランジ26bに受け持たせるのが好ましいが、シール用フランジ26cに真空シールと延長管26の自重を担持する役目を兼用させ、固定用フランジ26bは電鋳レンガ30aに囲まれた通路内での延長管外面の煉瓦内面からの遊離を防止する役目に限ってもよく、この場合は固定用フランジ26bは延長管26の水平方向の微小な偏芯を防止する役目を担うことになるとともに、延長管外面と煉瓦内面間に溶融ガラスGが浸入することを防ぐ役目も担う。
【0028】
このような延長管26,28に用いる白金または白金合金としては、その組成は特に限定されるものではないが、白金を70wt%〜98wt%含有し、Rhを2wt%以上含有する白金合金であるのが、高温強度が特に優れる点で好ましい。
【0029】
このように構成された延長管26は、固定用フランジ26bが上昇管16の下端近傍の電鋳レンガ30の間の目地部分に挿入されて挟持されるとともに、シール用フランジ26cと減圧ハウジング12との間に、シール部材34が配設され、ハウジング脚部12a下端における気密性が確保される。なお、シール部材34としては、気密性および耐熱性を有するものであれば特に限定されず、ハウジング12の内部も高々1/20気圧に減圧すればよいので、真空装置に用いられる通常の真空シール材料の中から耐熱性のものを選択すればよい。
【0030】
ところで、上述のように延長管26は固定用フランジ26bが電鋳レンガ30の目地に挟持されるが、この際の挟持力は、電鋳レンガ30の自重により確保されることとなる。従って、固定用フランジ26b上に積載される電鋳レンガ30が少ない場合には、溶融ガラスGによる膨張および収縮に伴って目地が開いて挟持力が低下し、固定用フランジ26bを十分に挟持することができず、溶融ガラスGが漏れ出すおそれがある。
このため、延長管26の上方には、図2に示されるように、補強部材36を設け、固定用フランジ26bの電鋳レンガ30による挟持力を補強する構成としてもよい。なお、補強部材36としては、固定用フランジ26bの上方の電鋳レンガ30を下方に押圧することができるものであればよく、その材質および構造は特に限定されるものではない。例えば、固定用フランジ26b上に電鋳レンガ30が高く積載されている場合には、補強部材36を有しなくてもその自重により固定用フランジ26bを強固に挟持することができる。
【0031】
また、図2に示されるように、ハウジング脚部12a内の最下端に設けられた電鋳レンガ30aは、延長管26に面した内側部分であって、ハウジング脚部12aの底面に面した下側隅部分が円周に沿って切り欠かれて形成され、この切欠部に断熱材38が配設されるのが好ましい。すなわち、ハウジング脚部12aの底面のうち、延長管26の周囲近傍は最も加熱されやすいことから、過度に温度上昇して、歪みや変形を生じ、目地からの溶融ガラスGの断熱レンガ層32への漏れを誘発するおそれがある。このため、延長管26の近傍に断熱材38を配設することにより、このハウジング脚部12a底面の過度な温度上昇を防止し、この部分における耐久性をさらに向上させることができる。また、電鋳レンガ30aの下側部分にのみ断熱材38を配設する構成であるので、電鋳レンガ30aの上側部分において十分な強度を確保し、固定用フランジ26bを強固に挟持することができる。
なお、断熱材38としては、電鋳レンガ30よりも断熱性が高い材料であれば特に限定されない。
【0032】
このようにして、上昇管16の下端部であって上流ピット22内の溶融ガラスGに浸漬する部分や、下降管18の下端部であって下流ピット24内の溶融ガラスGに浸漬する部分を白金または白金合金で形成することにより、上昇管16の下端部および下降管18の下端部の劣化や破損を防止し、溶融ガラスGに対して十分な耐久性を確保できる。
【0033】
ところで、ハウジング脚部12aには、緩衝機構40を設け、電鋳レンガ30や断熱レンガ32の上下方向への熱膨張および収縮に応じて伸縮可能な構成とするのが好ましい。こうすることにより、上昇管16を構成する電鋳レンガ30や、その周辺の断熱レンガ32が熱膨張した場合には、緩衝機構40に上昇管16の熱膨張を吸収させることができる一方、これらのレンガが収縮した場合には、その収縮に追随させるようにハウジング脚部12aを収縮させ、収縮に起因する目地の開きを防止して溶融ガラスGの漏れを有効に防ぐことができる。従って、減圧ハウジング12の破損や、これに伴う減圧度の低下を防止し、装置の耐久性および安全性の向上が図れる。
【0034】
具体的には、図2に示すように、緩衝機構40は、筒状ベローズ42と、押し上げ手段44とを有する。筒状ベローズ42は、ハウジング脚部12aが水平方向に切断分離され、この一旦分離されたハウジング脚部12aの上側の部分(以下、上側部13aとする)と、下側の部分(以下、下側部13bとする)とを気密かつ伸縮可能に連結するための部材である。筒状ベローズ42の材質は特に限定されるものではないが、減圧ハウジング12と同様に金属製、特にステンレス製とするのが好ましい。
【0035】
押し上げ手段44は、ハウジング脚部12aの下側部13bを上方に付勢できるものであれば特に限定されず、種々の機構が採用可能である。例えば、図2に示すように、上側部13aと下側部13bとに、互いに対をなして固定される2個の連結部材46,48と、下端が下側の連結部材48に固定され、上側の連結部材46の通過孔を挿通するように設けられる棒材50と、両連結部材46,48間を連結し、下側部13bを上方に付勢する付勢部材52とから構成すればよい。なお、付勢部材52としては、特に限定されないが、コイルばねが好ましく例示される。このように構成することにより、電鋳レンガ30や断熱レンガ32の熱膨張を付勢部材52の付勢力に抗して下方に逃がすことができ、熱膨張に起因する装置の歪みや損傷を防止し、装置の安全性を高めることができる。また、電鋳レンガ30や断熱レンガ32が収縮しても、下側部13bを追随させて、目地の開きを防止することもできる。なお、このような押し上げ手段44は、一本の筒状ベローズ42に対して複数箇所設ける構成とするのが好ましい。
また、ハウジング脚部12aの下端部分は、リブ等で補強する構成としてもよい。
【0036】
このような本発明の減圧脱泡装置10で溶融ガラスGを脱泡処理して次の処理炉に連続的に供給するプロセス例を以下に示す。
まず、図示しない真空ポンプで減圧ハウジング12内および減圧脱泡槽14内を真空吸引状態に維持する。この状態で、溶解槽20で溶融されたガラスGは上流ピット22を通って延長管26および上昇管16を介して上昇して減圧脱泡槽14内に導かれ、溶融ガラスGは減圧脱泡槽14内で減圧条件下において脱泡処理される。そして、脱泡処理された溶融ガラスGは下降管18および延長管28を介して下流ピット24に導かれる。
【0037】
以上、本発明の溶融ガラスの減圧脱泡装置について詳細に説明したが、本発明は上記実施例に限定されず、本発明の要旨を逸脱しない範囲において、各種の改良および変更を行ってもよいのはもちろんである。
【0038】
【発明の効果】
以上、詳細に説明したように、本発明によれば、連続的に供給される溶融ガラスから気泡を除去する、溶融ガラスの減圧脱泡装置において、高温の溶融ガラスに対して十分な耐久性を確保しつつ、コストを大幅に低減でき、ひいては装置の大容量化、減圧脱泡処理温度の高温化などを図ることが可能である。従って、大流量の溶融ガラスの減圧脱泡処理を高効率で行う用途に極めて好適である。
【図面の簡単な説明】
【図1】本発明の減圧脱泡装置の一例を示す概略断面図である。
【図2】図1に示される減圧脱泡装置における、上昇管と延長管との連結部分を示す概略断面図である。
【図3】従来における減圧脱泡装置の一例を示す概略断面図である。
【符号の説明】
10 (溶融ガラスの)減圧脱泡装置
12 減圧ハウジング
12a,12b ハウジング脚部
13a 上側部
13b 下側部
14 減圧脱泡槽
16 上昇管
18 下降管
20 溶解槽
22 上流ピット
24 下流ット
26,28 延長管
26a 筒体
26b 固定用フランジ
26c シール用フランジ
30,30a 電鋳レンガ
32 断熱レンガ
34 シール部材
36 補強部材
38 断熱材
40 緩衝機構
42 筒状ベローズ
44 押し上げ手段
46,48 連結手段
50 棒材
52 付勢部材
100 減圧脱泡装置
102 減圧ハウジング
104 減圧脱泡槽
106 上昇管
108 下降管
110 断熱材
112 溶解槽
[0001]
BACKGROUND OF THE INVENTION
The present invention belongs to the technical field of a vacuum degassing apparatus for molten glass that removes bubbles from continuously supplied molten glass.
[0002]
[Prior art]
Conventionally, in order to improve the quality of a molded glass product, a vacuum degassing apparatus that removes bubbles generated in the molten glass before the molten glass melted in the melting furnace is molded by a molding apparatus has been used. . Such a conventional vacuum degassing apparatus is shown in FIG. The vacuum degassing apparatus 100 shown in FIG. 3 is used in a process of vacuum degassing the molten glass G in the melting tank 112 and continuously supplying the molten glass G to the next processing tank. Yes. A decompression defoaming tank 104 is accommodated and disposed horizontally in the decompression housing 102, and an ascending pipe 106 and a descending pipe 108 attached vertically to both ends thereof are accommodated.
[0003]
The ascending pipe 106 communicates with the vacuum degassing tank 104 to raise the molten glass G before the defoaming treatment from the melting tank 112 and introduce it into the vacuum degassing tank 104. The downcomer 108 communicates with the vacuum degassing tank 104, lowers the molten glass G after the defoaming process from the vacuum degassing tank 104, and guides it to the next processing tank (not shown). In the reduced pressure housing 102, a heat insulating material 110 such as a heat insulating brick is provided around the reduced pressure defoaming tank 104, the ascending pipe 106, and the descending pipe 108 to insulate them. Note that the decompression housing 102 is made of metal, for example, stainless steel, and is vacuumed from the outside by a vacuum pump (not shown) or the like, the inside is decompressed, and the inside of the decompression deaeration tank 104 is set to a predetermined decompression. For example, the pressure is maintained at a reduced pressure of 1/20 to 1/3 atm.
[0004]
Since the conventional vacuum degassing apparatus 100 is configured to process a molten glass G at a high temperature, for example, 1200 to 1400 ° C., it is disclosed in Japanese Patent Application Laid-Open No. 2-221129 relating to the application of the present applicant. As shown in the figure, the portions that are in direct contact with the molten glass G, such as the vacuum degassing vessel 104, the rising pipe 106, and the downfalling pipe 108, are usually circular tubes made of noble metal such as platinum or a platinum alloy such as platinum rhodium. It is configured.
Here, these are constituted by noble metal circular tubes such as platinum alloys because not only the molten glass G is hot, but also the noble metal has low high temperature reactivity with the molten glass and is inhomogeneous due to reaction with the molten glass. This is because the strength at a high temperature can be secured to some extent without causing any deterioration.
In particular, the vacuum defoaming tank 104 is composed of a noble metal circular tube, in addition to the above reasons, a current is passed through the noble metal circular tube itself to cause self-heating, and the molten glass G in the cylinder is heated uniformly and melted. This is to keep the temperature of the glass G at a predetermined temperature.
[0005]
By the way, when the vacuum degassing tank 104 is made of a noble metal, it is preferable to use a circular tube from the viewpoint of high temperature strength. However, since noble metals such as platinum are expensive, the thickness cannot be increased . Therefore, there is a limit to the diameter of the circular tube in terms of both cost and strength, the diameter of the circular tube cannot be increased so much, and the flow rate of the molten glass G that can be defoamed in the vacuum degassing tank 104 is also limited. There was a problem that it was not possible to construct a vacuum degassing apparatus with a large flow rate. Of course, it is conceivable to increase the defoaming amount by increasing the overall length of the tubular vacuum degassing tank 104 and increasing the flow rate, but in comparison with the processing amount, the dissolution tank, the molding processing tank, etc. Compared to the above, there is a problem that the apparatus becomes longer. For this reason, there also existed a problem that the defoaming processing amount (flow rate) of the molten glass G in the vacuum degassing apparatus 100 could not be enlarged.
[0006]
In addition, since the molten glass G is obtained by dissolving the powder raw material, the temperature of the melting tank 112 is preferably higher in terms of melting, and the viscosity of the molten glass is low in terms of vacuum degassing. Therefore, a higher temperature is preferred. However, while it is necessary to use a noble metal alloy for the vacuum degassing tank 104 or the like from the viewpoint of high temperature strength, the noble metal is expensive, and the thickness of the circular tube cannot be increased so much from the point of cost. Is used, the temperature of the molten glass G at the inlet of the vacuum degassing apparatus 100 has been limited to the above-described predetermined temperature (1200 to 1400 ° C.).
[0007]
[Problems to be solved by the invention]
By the way, with respect to such a problem, the decompression defoaming tank 104, the rising pipe 106 and the descending pipe 108 are made of a refractory brick which is cheaper than the noble metal alloy, and the molten glass is continuously decompressed as in the case of the noble metal alloy. If it can be defoamed, there is no need to limit the amount used from the point of cost or the size from the point of strength reduction, compared to the case of using a noble metal alloy such as platinum, Since the degree of freedom in device design is dramatically improved, it is considered that a vacuum degassing device having a large flow rate can be constructed and a vacuum degassing treatment at a higher temperature can be performed.
[0008]
However, if all the components of the vacuum degassing apparatus 100 are made of refractory bricks, there are the following problems. That is, in the tubular open ends such as the lower end portions of the ascending pipe 106 and the descending pipe 108, there is nothing to support the lower end, so that a heavy refractory brick is supported only by the adhesive force of the joint material. Therefore, sufficient strength cannot be obtained, and instead, even if it is attempted to manufacture a long cylindrical refractory brick, the cost becomes very high. For this reason, there is a problem that it is practically difficult to manufacture the lower ends of the ascending pipe 106 and the descending pipe 108 with refractory bricks.
[0009]
Even if the lower ends of the ascending pipe 106 and the descending pipe 108 are made of refractory bricks in this way, damage and deterioration are likely to occur at the joints, and even in parts other than the joints, At a position near the interface between the molten glass G and the atmosphere, there is a problem that the refractory is rich in reactivity and easily deteriorates because the atmosphere exists at a high temperature. When the joint portion and the interface portion deteriorate in this way, the lower end portions of the ascending pipe 106 and the descending pipe 108 become uneven in the height direction, causing breakage such as cracks, and in the worst case, the ascending pipe There is a possibility that part of the lower end portion of 106 and the downcomer pipe 108 may be broken and fall, and there is a problem that sufficient durability cannot be obtained. Furthermore, if the broken refractory is mixed into the molten glass G, there is a problem that the uniformity of the glass composition may not be maintained.
[0010]
An object of the present invention is to solve the above-mentioned problems of the prior art, and in a vacuum degassing apparatus for molten glass that removes bubbles from continuously supplied molten glass, it is sufficient for high-temperature molten glass. An object of the present invention is to provide a vacuum degassing apparatus for molten glass that can significantly reduce costs while ensuring high durability, and that can increase the capacity of the apparatus and increase the temperature of the vacuum defoaming treatment.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a vacuum housing that is evacuated, a vacuum defoaming tank that is provided in the vacuum housing and degassed molten glass, and communicates with the vacuum degassing tank. A riser pipe that raises the molten glass before the vacuum degassing and introduces it into the vacuum degassing tank; and is provided in communication with the vacuum degassing tank; A downcomer pipe that descends from the vacuum degassing tank, and an extension pipe provided in communication with the lower ends of the ascending pipe and the downcomer pipe, and the ascending pipe, the vacuum defoaming tank, and the downcomer pipe are The present invention provides a vacuum degassing apparatus for molten glass, wherein at least a portion in direct contact with the molten glass is formed of an electroformed brick, and the extension tube is formed of platinum or a platinum alloy.
[0012]
The extension pipe has a flange formed at the upper end thereof, and the flange is inserted into a joint of the electroformed brick forming the rise pipe or the down pipe, so that the rise pipe or the down pipe is inserted. It is preferably fixed to a tube.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the vacuum degassing apparatus for molten glass of the present invention will be described in detail based on preferred embodiments shown in the accompanying drawings.
[0014]
In FIG. 1, the schematic sectional drawing of the vacuum degassing apparatus of the molten glass of this invention is shown.
As shown in FIG. 1, the vacuum degassing apparatus 10 performs a vacuum degassing treatment on the molten glass G in the melting tank 20 to form a next processing tank (not shown) such as a plate-shaped molding processing tank such as a float bath, It is used in a process for continuously supplying to a molding work tank such as a bottle, and basically has a decompression housing 12, a decompression defoaming tank 14, a riser pipe 16, a downfall pipe 18, and extension pipes 26 and 28.
The decompression housing 12 is for ensuring the airtightness of the decompression defoaming tank 14, and is formed in a substantially gate shape. The material and structure of the decompression housing 12 are not particularly limited as long as the decompression housing 12 has airtightness and strength required for the decompression defoaming tank 14, but is made of metal, particularly stainless steel. Is preferred. Such a decompression housing 12 is vacuum-sucked by a vacuum pump (not shown) or the like from the outside, the interior is decompressed, and a predetermined decompression, for example 1/20 / It is configured to maintain a reduced pressure state of 3 atm.
[0015]
A vacuum degassing tank 14 is provided in the upper part of the vacuum housing 12. A rising pipe 16 communicates with the left end of the vacuum degassing tank 14, and a down pipe 18 communicates with the right end of the vacuum degassing tank 14. The ascending pipe 16 and the descending pipe 18 are respectively disposed in legs 12a and 12b of the decompression housing 12 (hereinafter referred to as housing legs 12a and 12b, respectively).
[0016]
In the vacuum degassing apparatus 10 of the present invention, the vacuum degassing tank 14, the rising pipe 16 and the descending pipe 18 are all formed of the electroformed brick 30.
That is, by forming the main part in direct contact with the molten glass G in the vacuum degassing apparatus 10 with the electroformed brick 30, the cost is significantly reduced as compared with those conventionally made of platinum alloys, and therefore Since it is possible to design in a free shape and a free thickness, it is possible to increase the capacity of the vacuum degassing apparatus 10 and to perform vacuum degassing at a higher temperature. Moreover, if it is an electrocast brick, since it is excellent in durability at high temperature compared with a general brick and the elution of a component can also be made into the minimum, the uniformity of a molten glass can be maintained.
[0017]
Accordingly, the shape of the vacuum degassing tank 14, the rising pipe 16 and the downfalling pipe 18 is not particularly limited as long as it is at least cylindrical. For example, the cross-sectional shape may be not only circular but also square. The method of constructing the vacuum degassing tank 14, the rising pipe 16 and the downfalling pipe 18 using the electroformed brick 30 is not particularly limited. For example, the small rectangular parallelepiped electrocast bricks 30 are stacked, and the joint portion between them is jointed. A cylindrical tube of a predetermined length may be formed by filling with a material, or cylindrical electroformed bricks 30 cast into a cylindrical shape or a rectangular tube shape are stacked in a line, and the joint portion between them is a joint material. The tube may be filled with a predetermined length to form a cylindrical tube.
[0018]
The electrocast brick 30 is not particularly limited as long as it is a brick that is electrically melted and then cast into a predetermined shape, and conventionally known various electrocast bricks may be used. Among them, alumina type electrocast refractories, zirconia type electrocast refractories, AZS (Al 2 O 3 —ZrO 2 —SiO 2 ) type electrocast refractories and the like are high in corrosion resistance and less foaming from the substrate. Illustrative examples include marsnite (MB-G), ZB-X950, zirconite (ZB) (all manufactured by Asahi Glass Co., Ltd.) and the like.
[0019]
A heat insulating brick 32 (hereinafter referred to as a heat insulating brick 32) covering the vacuum degassing tank 14 is disposed around the vacuum degassing tank 14, and is also provided around the ascending pipe 16 and the descending pipe 18, respectively. A heat insulating brick 32 is disposed to cover the surface.
As the heat insulating brick 32, known various bricks may be used and are not particularly limited. The heat insulating bricks 32 arranged in this way are accommodated in the decompression housing 12 by covering the outside with the decompression housing 12.
[0020]
Moreover, it is good also as a structure which can provide a heating heater with the heat insulation brick 32 around the decompression degassing tank 14, the riser pipe 16, and the downfall pipe 18 as needed, and it can let cooling water pass through. It is good also as a structure which can be cooled.
[0021]
Here, the lower end portion of the ascending pipe 16 needs to be fitted into the open end of the upstream pit 22 and immersed in the molten glass G in the upstream pit 22. Similarly, the lower end portion of the downcomer 18 needs to be fitted into the open end of the downstream pit 24 and immersed in the molten glass G in the downstream pit 24.
By the way, as described above, the vacuum degassing apparatus 10 of the present invention is configured such that the main part is the electroformed brick 28.
[0022]
However, as described above, even if the lower end portion of the rising pipe 16 and the portion that is inserted into the upstream pit 22 and is immersed in the molten glass G is to be produced with the electroformed brick 30, it is realistic from the viewpoint of strength and cost. However, even if it is produced with the electroformed brick 30, there is a problem that the joint portion and the interface portion are likely to be deteriorated, and there is a possibility that breakage such as cracking may occur, and sufficient durability cannot be obtained. .
Further, when the electroformed brick 30 is used to produce a portion that is inserted into the open end of the downstream pit 24 and is immersed in the molten glass G at the lower end of the downcomer pipe 18, there is the same problem as described above.
[0023]
On the other hand, in the present invention, as shown in FIG. 1, extension pipes 26 and 28 made of platinum or a platinum alloy are provided at the lower end portions of the ascending pipe 16 and the descending pipe 18, respectively. The pits 20 and the downstream pits 24 are inserted and immersed in the molten glass G inside. By adopting such a configuration, there is no need to immerse the riser pipe 16 and the downfall pipe 18 made of electroformed brick directly in the molten glass G, and the durability against the molten glass G in the upstream pit 20 and the downstream pit 24 is improved. This can greatly improve the above problem.
[0024]
Specifically, as shown in FIG. 2, an extension pipe 26 made of platinum or a platinum alloy is provided in communication with the lower end portion of the ascending pipe 16. Since the extension pipe 26 on the ascending pipe 16 side and the extension pipe 28 on the downfall pipe 18 side are configured identically, only the extension pipe 26 on the uprising pipe 16 side will be described, and the extension pipe 28 on the downfall pipe 18 side will be described. Description is omitted.
[0025]
The extension pipe 26 has a cylindrical cylindrical body 26a, a fixing flange 26b formed at one end of the cylindrical body 26a, and a sealing flange 26c formed at a predetermined distance from the fixing flange 26b. A tube made of platinum or a platinum alloy. What is necessary is just to comprise the internal diameter of the cylinder 26a in the magnitude | size substantially equivalent to the internal diameter of the raising pipe | tube 16 so that it may communicate with the raising pipe | tube 16 smoothly.
[0026]
The fixing flange 26 b is formed so that the upper end thereof can be fixed to the rising pipe 16 by being inserted between the electroformed bricks 30, 30 constituting the rising pipe 16, that is, a joint.
The extension pipe 26 may be fixed to the ascending pipe 16 by various methods without being limited to the fixing flange 26b, but is preferably fixed using the fixing flange 26b. That is, when the fixing flange 26b is not provided at the upper end of the cylindrical body 26a, the molten glass G enters between the outer side of the cylindrical body 26a and the electroformed brick 30, and the insulating brick 32 and the insulating material 38 are eroded. The heat conductivity in the vicinity of the bottom surface of the housing leg 12a increases and the temperature of the outer wall surface of the housing rises and the housing may be deformed. However, by forming the fixing flange 26b at the upper end of the cylindrical body 26a, The problem is solved. Thereby, the temperature rise of the housing leg part 12a and the downward distortion accompanying this are prevented, and the molten glass G caused by the misalignment or loosening of the joints of the electroformed brick 30 and the heat insulating brick 32 in the housing leg part 12a. Leakage, and thus an excessive temperature rise of the housing leg 12a can be prevented.
Therefore, it is also possible to prevent the temperature from increasing due to the partial temperature increase, and the thermal stress deformation of the entire apparatus and the increase in leakage of the molten glass G.
[0027]
On the other hand, the sealing flange 26c closes the lower end of the housing leg 12a from the outside together with a seal member 34, which will be described later, when the extension pipe 26 is provided at the lower end of the downcomer pipe 18. It is for securing. Alternatively, the extension flange 26 made of platinum or a platinum alloy may be self-heated and held at an appropriate temperature using the sealing flange 26c as an electrode. The mechanism for ensuring airtightness at the lower end of the housing leg 12a is not limited to the method using the sealing flange 26c, and various mechanisms can be used.
As described above, the extension pipe 26 is preferably fixed to the ascending pipe 16 by the fixing flange 26b. However, the sealing flange 26c is also used to carry the vacuum seal and the weight of the extension pipe 26 so as to be fixed. The flange 26b may be limited to the role of preventing the outer surface of the extension pipe from being separated from the inner surface of the brick in the passage surrounded by the electroformed brick 30a. In this case, the fixing flange 26b is provided in the horizontal direction of the extension pipe 26. In addition to playing a role of preventing minute eccentricity, it also plays a role of preventing the molten glass G from entering between the outer surface of the extension pipe and the inner surface of the brick.
[0028]
The composition of platinum or a platinum alloy used for such extension tubes 26 and 28 is not particularly limited, but is a platinum alloy containing 70 wt% to 98 wt% platinum and 2 wt% or more of Rh. Is preferable in that the high-temperature strength is particularly excellent.
[0029]
The extension pipe 26 configured as described above has the fixing flange 26b inserted and sandwiched in the joint portion between the electroformed bricks 30 near the lower end of the rising pipe 16, and the sealing flange 26c, the decompression housing 12, and the like. In between, the sealing member 34 is arrange | positioned and the airtightness in the lower end of the housing leg part 12a is ensured. The seal member 34 is not particularly limited as long as it has airtightness and heat resistance, and the inside of the housing 12 may be reduced to 1/20 atm at most, so that a normal vacuum seal used in a vacuum apparatus is used. A heat-resistant material may be selected from the materials.
[0030]
By the way, as described above, the extension pipe 26 has the fixing flange 26b sandwiched between the joints of the electroformed brick 30. The clamping force at this time is secured by the weight of the electroformed brick 30. Accordingly, when there are few electroformed bricks 30 loaded on the fixing flange 26b, the joints open with the expansion and contraction of the molten glass G, and the clamping force decreases, and the fixing flange 26b is sufficiently clamped. The molten glass G may leak out.
For this reason, as shown in FIG. 2, a reinforcing member 36 may be provided above the extension pipe 26 to reinforce the clamping force of the fixing flange 26 b by the electroformed brick 30. The reinforcing member 36 may be any member that can press the electroformed brick 30 above the fixing flange 26b downward, and the material and structure thereof are not particularly limited. For example, when the electroformed brick 30 is highly stacked on the fixing flange 26b, the fixing flange 26b can be firmly held by its own weight without the reinforcing member 36.
[0031]
Further, as shown in FIG. 2, the electroformed brick 30a provided at the lowermost end in the housing leg 12a is an inner portion facing the extension pipe 26, and is a bottom facing the bottom surface of the housing leg 12a. It is preferable that the side corner portion is formed by being cut out along the circumference, and the heat insulating material 38 is disposed in the cutout portion. That is, in the bottom surface of the housing leg portion 12a, the vicinity of the extension pipe 26 is most easily heated, so that the temperature rises excessively, causing distortion and deformation, and to the insulating brick layer 32 of the molten glass G from the joint. May cause leakage. For this reason, by disposing the heat insulating material 38 in the vicinity of the extension pipe 26, an excessive temperature rise at the bottom surface of the housing leg 12a can be prevented, and the durability at this portion can be further improved. Further, since the heat insulating material 38 is disposed only in the lower part of the electroformed brick 30a, it is possible to secure sufficient strength in the upper part of the electroformed brick 30a and firmly hold the fixing flange 26b. it can.
The heat insulating material 38 is not particularly limited as long as it has a higher heat insulating property than the electroformed brick 30.
[0032]
In this way, the lower end portion of the ascending pipe 16 that is immersed in the molten glass G in the upstream pit 22, and the lower end portion of the descending pipe 18 that is immersed in the molten glass G in the downstream pit 24 By forming with platinum or a platinum alloy, deterioration and breakage of the lower end of the riser 16 and the lower end of the downcomer 18 can be prevented, and sufficient durability for the molten glass G can be secured.
[0033]
By the way, it is preferable that the housing leg 12a is provided with a buffering mechanism 40 so that the housing leg 12a can be expanded and contracted in accordance with thermal expansion and contraction in the vertical direction of the electroformed brick 30 and the heat insulating brick 32. By doing so, when the electroformed brick 30 constituting the riser pipe 16 and the surrounding heat insulating brick 32 are thermally expanded, the buffer mechanism 40 can absorb the thermal expansion of the riser pipe 16, while When the brick is contracted, the housing leg 12a is contracted so as to follow the contraction, thereby preventing the joint from opening due to the contraction and effectively preventing the molten glass G from leaking. Therefore, it is possible to prevent damage to the decompression housing 12 and a reduction in the degree of decompression associated therewith, thereby improving the durability and safety of the apparatus.
[0034]
Specifically, as shown in FIG. 2, the buffer mechanism 40 includes a cylindrical bellows 42 and a push-up means 44. In the cylindrical bellows 42, the housing leg 12a is cut and separated in the horizontal direction, and the upper part (hereinafter referred to as the upper part 13a) and the lower part (hereinafter referred to as the lower part) of the once separated housing leg 12a. And a side portion 13b) are connected in an airtight and extendable manner. The material of the cylindrical bellows 42 is not particularly limited, but is preferably made of metal, particularly stainless steel, like the decompression housing 12.
[0035]
The push-up means 44 is not particularly limited as long as it can urge the lower portion 13b of the housing leg 12a upward, and various mechanisms can be employed. For example, as shown in FIG. 2, two connecting members 46 and 48 that are fixed to the upper side portion 13 a and the lower side portion 13 b in pairs, and a lower end is fixed to the lower connecting member 48, If it comprises a bar 50 provided so as to be inserted through the passage hole of the upper connecting member 46, and a biasing member 52 that connects both the connecting members 46 and 48 and biases the lower portion 13b upward. Good. The urging member 52 is not particularly limited, but a coil spring is preferably exemplified. By configuring in this way, the thermal expansion of the electroformed brick 30 and the heat insulating brick 32 can be released downward against the urging force of the urging member 52, and distortion and damage of the device due to the thermal expansion can be prevented. Thus, the safety of the device can be increased. Moreover, even if the electroformed brick 30 and the heat insulating brick 32 contract, the lower side portion 13b can be followed to prevent the joint from opening. Such push-up means 44 is preferably provided at a plurality of locations with respect to one cylindrical bellows 42.
Further, the lower end portion of the housing leg 12a may be reinforced with a rib or the like.
[0036]
An example of a process in which the molten glass G is defoamed with the vacuum degassing apparatus 10 of the present invention and continuously supplied to the next processing furnace will be described below.
First, the inside of the decompression housing 12 and the inside of the decompression deaeration tank 14 are maintained in a vacuum suction state by a vacuum pump (not shown). In this state, the glass G melted in the melting tank 20 rises through the upstream pit 22 through the extension pipe 26 and the rising pipe 16 and is guided into the vacuum degassing tank 14, and the molten glass G is vacuum degassed. Defoaming is performed in the tank 14 under reduced pressure conditions. The defoamed molten glass G is guided to the downstream pit 24 through the downcomer pipe 18 and the extension pipe 28.
[0037]
As mentioned above, although the vacuum degassing apparatus of the molten glass of this invention was demonstrated in detail, this invention is not limited to the said Example, You may perform various improvement and change in the range which does not deviate from the summary of this invention. Of course.
[0038]
【The invention's effect】
As described above in detail, according to the present invention, in a vacuum degassing apparatus for molten glass that removes bubbles from continuously supplied molten glass, sufficient durability against high-temperature molten glass is achieved. While securing the cost, the cost can be greatly reduced, and as a result, the capacity of the apparatus can be increased and the temperature of the vacuum degassing treatment can be increased. Therefore, it is very suitable for the use which performs the depressurization process of the molten glass of a large flow rate with high efficiency.
[Brief description of the drawings]
FIG. 1 is a schematic sectional view showing an example of a vacuum degassing apparatus of the present invention.
FIG. 2 is a schematic cross-sectional view showing a connecting portion between an ascending pipe and an extension pipe in the vacuum degassing apparatus shown in FIG.
FIG. 3 is a schematic cross-sectional view showing an example of a conventional vacuum degassing apparatus.
[Explanation of symbols]
10 Vacuum Degassing Device 12 (for Molten Glass) Vacuum Housing
12a, 12b Housing leg
13a Upper side
13b lower portion 14 the vacuum degassing vessel 16 riser 18 downcomer 20 dissolving tank 22 upstream pit 24 downstream pin Tsu preparative 26,28 extension pipe 26a cylinder 26b fixing flanges 26c sealing flanges 30, 30a electrocast brick 32 insulation Brick 34 Seal member 36 Reinforcing member 38 Heat insulating material 40 Buffer mechanism 42 Cylindrical bellows 44 Pushing means 46, 48 Connecting means 50 Bar material 52 Biasing member
100 Vacuum degassing equipment
102 decompression housing
104 vacuum degassing tank
106 Rise pipe
108 downcomer
110 Insulation
112 Dissolution tank

Claims (2)

真空吸引される減圧ハウジングと、
この減圧ハウジング内に設けられ、溶融ガラスの減圧脱泡を行う減圧脱泡槽と、
この減圧脱泡槽に連通して設けられ、前記減圧脱泡前の溶融ガラスを上昇させて前記減圧脱泡槽に導入する上昇管と、
前記減圧脱泡槽に連通して設けられ、前記減圧脱泡後の溶融ガラスを前記減圧脱泡槽から下降させて導出する下降管と、
前記上昇管および下降管の下端にそれぞれ連通して設けられる延長管とを有し、
前記上昇管、前記減圧脱泡槽および前記下降管は、少なくとも前記溶融ガラスと直接接触する部分が電鋳レンガで形成され、
前記延長管は、白金または白金合金で形成されており、円筒形状の筒体と、該筒体の一端に形成される固定用フランジと、該固定用フランジから所定間隔離間して形成されるシール用フランジとを有し、
前記延長管は、前記固定用フランジが前記上昇管もしくは下降管を形成する前記電鋳レンガの目地に挿入されて挟持されることにより、前記上昇管もしくは前記下降管に固定されており、
前記シール用フランジと前記減圧ハウジングとの間に、シール部材が配設されることを特徴とする溶融ガラスの減圧脱泡装置。
A vacuum housing that is vacuumed;
A vacuum degassing tank that is provided in the vacuum housing and performs vacuum degassing of the molten glass;
A riser pipe which is provided in communication with the vacuum degassing tank and raises the molten glass before the vacuum degassing and introduces it into the vacuum degassing tank;
A downcomer pipe which is provided in communication with the vacuum degassing tank, and descends the molten glass after the vacuum degassing from the vacuum degassing tank;
An extension pipe provided in communication with the lower ends of the ascending pipe and the descending pipe,
The ascending pipe, the vacuum degassing tank, and the downcomer pipe are formed of an electroformed brick at least at a portion that directly contacts the molten glass,
The extension tube is made of platinum or a platinum alloy, and has a cylindrical tube, a fixing flange formed at one end of the tube, and a seal formed at a predetermined distance from the fixing flange. And a flange for
The extension pipe is fixed to the ascending pipe or the descending pipe by inserting and sandwiching the fixing flange into the joint of the electroformed brick forming the ascending pipe or the descending pipe,
A vacuum degassing apparatus for molten glass, wherein a sealing member is disposed between the sealing flange and the vacuum housing .
さらに、前記固定用フランジの前記電鋳レンガによる挟持力を補強する補強部材が設けられていることを特徴とする請求項1に記載の溶融ガラスの減圧脱泡装置。  Furthermore, the reinforcement member which reinforces the clamping force by the said electrocast brick of the said fixing flange is provided, The vacuum degassing apparatus of the molten glass of Claim 1 characterized by the above-mentioned.
JP30532697A 1997-10-06 1997-11-07 Vacuum degassing equipment for molten glass Expired - Fee Related JP3817868B2 (en)

Priority Applications (12)

Application Number Priority Date Filing Date Title
JP30532697A JP3817868B2 (en) 1997-11-07 1997-11-07 Vacuum degassing equipment for molten glass
US09/164,356 US6119484A (en) 1997-10-06 1998-10-01 Vacuum degassing apparatus for molten glass
TW087116447A TW498058B (en) 1997-10-06 1998-10-02 Vacuum degassing apparatus for molten glass
KR1019980041667A KR100682778B1 (en) 1997-10-06 1998-10-02 Vacuum degassing apparatus for molten glass
IDP981327A ID20649A (en) 1997-10-06 1998-10-05 REASON FOR THE DECREASE OF GAS HAMPA FOR GLASS RELEASE
EP00122258A EP1078891B1 (en) 1997-10-06 1998-10-06 Parallel arrangement of a vacuum degassing apparatus for molten glass
DE69807812T DE69807812T3 (en) 1997-10-06 1998-10-06 Vacuum degassing apparatus for molten glass
EP98118842A EP0908417B2 (en) 1997-10-06 1998-10-06 Vacuum degassing apparatus for molten glass
DE69823560T DE69823560T2 (en) 1997-10-06 1998-10-06 Parallel arrangement of a vacuum degassing device for molten glass
EP04007832A EP1439148A3 (en) 1997-10-06 1998-10-06 Apparatus for degassing molten glass under reduced pressure
US09/473,680 US6405564B1 (en) 1997-10-06 1999-12-29 Vacuum degassing apparatus for molten glass
KR1020060029382A KR100682779B1 (en) 1997-10-06 2006-03-31 Vacuum degassing apparatus for molten glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30532697A JP3817868B2 (en) 1997-11-07 1997-11-07 Vacuum degassing equipment for molten glass

Publications (2)

Publication Number Publication Date
JPH11139834A JPH11139834A (en) 1999-05-25
JP3817868B2 true JP3817868B2 (en) 2006-09-06

Family

ID=17943772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30532697A Expired - Fee Related JP3817868B2 (en) 1997-10-06 1997-11-07 Vacuum degassing equipment for molten glass

Country Status (1)

Country Link
JP (1) JP3817868B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4120910B2 (en) * 1999-09-08 2008-07-16 日本電気硝子株式会社 Method for supplying molten glass
EP1293487A1 (en) 2001-09-14 2003-03-19 Asahi Glass Co., Ltd. Vacuum degassing apparatus for molten glass
EP1857420A4 (en) * 2005-03-08 2010-10-27 Asahi Glass Co Ltd Platinum or platinum alloy structure and glass puroduction apparatus making use of the same
EP2060545B1 (en) 2006-08-29 2013-03-20 Asahi Glass Company, Limited Vacuum degassing apparatus for molten glass
BR112012033397A2 (en) * 2010-06-30 2016-11-22 Asahi Glass Co Ltd vacuum degassing apparatus and vacuum degassing method for molten glass, and apparatus and process for producing glass products
CN103038179B (en) 2010-08-04 2015-05-06 旭硝子株式会社 Molten glass duct structure, vacuum defoaming device provided therewith, vacuum defoaming method of molten glass, and glass product manufacturing method
RU2013148540A (en) 2011-03-31 2015-05-10 Асахи Гласс Компани, Лимитед VACUUM DEGASATION DEVICE, DEVICE FOR MANUFACTURING GLASS PRODUCTS AND METHOD FOR MANUFACTURING GLASS PRODUCTS
JP6511234B2 (en) * 2014-08-29 2019-05-15 AvanStrate株式会社 Method of manufacturing glass substrate, and apparatus for manufacturing glass substrate

Also Published As

Publication number Publication date
JPH11139834A (en) 1999-05-25

Similar Documents

Publication Publication Date Title
EP0908417B1 (en) Vacuum degassing apparatus for molten glass
JP5016167B2 (en) Vacuum clarifier
US7650764B2 (en) Vacuum degassing apparatus for molten glass
US6405564B1 (en) Vacuum degassing apparatus for molten glass
JP5888325B2 (en) Vacuum degassing apparatus, glass product manufacturing apparatus, and glass product manufacturing method
JP3817868B2 (en) Vacuum degassing equipment for molten glass
CN102245519B (en) Molten glass carrier facility element and glass production system
US8689588B2 (en) Glass-melting device for producing glass fiber and method for producing glass fiber using same
JP5109086B2 (en) Molten glass conduit structure and vacuum degassing apparatus using the conduit structure
US20080120997A1 (en) Backup structure for an uprising pipe or downfalling pipe in a vacuum degassing apparatus
KR102398012B1 (en) Methods and apparatuses for regulating glass flow into glass forming apparatuses
WO2007013228A1 (en) Backup structure of hollow tube made of platinum or platinum alloy
JP3785788B2 (en) Vacuum degassing equipment for molten glass
US6321572B1 (en) Vacuum degassing apparatus for molten glass
US20030051509A1 (en) Vacuum degassing apparatus for molten glass
JP3861459B2 (en) Vacuum degassing equipment for molten glass
JP3915268B2 (en) Vacuum degassing equipment for molten glass
JP3915288B2 (en) Vacuum degassing equipment for molten glass
JP4103236B2 (en) Glass manufacturing equipment by vacuum degassing
JPH11130444A (en) Reduced pressure deforming apparatus for molten glass
JP3724156B2 (en) Parallel vacuum deaerator
JP4513248B2 (en) Vacuum degassing apparatus and vacuum degassing method
JP4674432B2 (en) Molten glass conduit structure, molten glass vacuum degassing apparatus, molten glass manufacturing method and glass article manufacturing method
JP4496843B2 (en) Degassing equipment dip tube

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060605

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090623

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120623

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120623

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130623

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130623

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140623

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees