JP3724156B2 - Parallel vacuum deaerator - Google Patents

Parallel vacuum deaerator Download PDF

Info

Publication number
JP3724156B2
JP3724156B2 JP29393997A JP29393997A JP3724156B2 JP 3724156 B2 JP3724156 B2 JP 3724156B2 JP 29393997 A JP29393997 A JP 29393997A JP 29393997 A JP29393997 A JP 29393997A JP 3724156 B2 JP3724156 B2 JP 3724156B2
Authority
JP
Japan
Prior art keywords
vacuum degassing
tank
molten glass
vacuum
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29393997A
Other languages
Japanese (ja)
Other versions
JPH11130443A (en
Inventor
祐輔 竹居
駿 木島
淳史 谷垣
捷治 今牧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP29393997A priority Critical patent/JP3724156B2/en
Priority to US09/164,356 priority patent/US6119484A/en
Priority to KR1019980041667A priority patent/KR100682778B1/en
Priority to TW087116447A priority patent/TW498058B/en
Priority to IDP981327A priority patent/ID20649A/en
Priority to EP04007832A priority patent/EP1439148A3/en
Priority to EP00122258A priority patent/EP1078891B1/en
Priority to DE69823560T priority patent/DE69823560T2/en
Priority to EP98118842A priority patent/EP0908417B2/en
Priority to DE69807812T priority patent/DE69807812T3/en
Publication of JPH11130443A publication Critical patent/JPH11130443A/en
Priority to US09/473,680 priority patent/US6405564B1/en
Application granted granted Critical
Publication of JP3724156B2 publication Critical patent/JP3724156B2/en
Priority to KR1020060029382A priority patent/KR100682779B1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/225Refining
    • C03B5/2252Refining under reduced pressure, e.g. with vacuum refiners

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Degasification And Air Bubble Elimination (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、連続的に供給される溶融ガラスから気泡を除去する、溶融ガラスの減圧脱泡装置の技術分野に属する。
【0002】
【従来の技術】
従来より、成形されたガラス製品の品質を向上させるために、溶融炉で溶融した溶融ガラスを成形装置で成形する前に溶融ガラス内に発生した気泡を除去する減圧脱泡装置が用いられている。このような従来の減圧脱泡装置を図4に示す。図4に示す減圧脱泡装置100は、溶解槽102中の溶融ガラスGを減圧脱泡処理して、図示しない次の処理槽、例えばフロートバスなどの板材の処理槽や瓶などの作業槽に連続的に供給するプロセスに用いられるものであって、真空吸引されている減圧ハウジング104内に水平に減圧脱泡槽106ならびにこれらの両端に垂直に取り付けられる上昇管108および下降管110が収納配置されている。
【0003】
上昇管108は減圧脱泡槽106に連通し、脱泡処理前の溶融ガラスGを溶解槽102から上昇させて減圧脱泡槽106に導入する。下降管110は、減圧脱泡槽106に連通し、脱泡処理後の溶融ガラスGを減圧脱泡槽106から下降させて次の処理槽(図示せず)に導出する。そして、減圧ハウジング104内において、減圧脱泡槽106、上昇管108および下降管110の周囲には、これらを断熱被覆する断熱用レンガなどの断熱材112が配設されている。なお、減圧ハウジング104は、金属製、例えばステンレス製であり、外部から真空ポンプ(図示せず)等によって真空吸引され、内部が減圧され、内設される減圧脱泡槽106内を所定の減圧、例えば1/20〜1/3気圧の減圧状態に維持する。
【0004】
従来の減圧脱泡装置100においては、高温、例えば1200〜1400℃の温度の溶融ガラスGを処理するように構成されているので、本出願人の出願に係る特開平2−221129号公報に開示しているように、減圧脱泡槽106、上昇管108および下降管110などのように溶融ガラスGと直接接触する部分は、通常白金または白金ロジウム、白金パラジウムのような白金合金などの貴金属製円管で構成されている。本出願人は、これらを白金合金製円管を用いることによって、減圧脱泡装置を実用化している。
ここで、これらを白金合金などの貴金属製円管で構成するのは、溶融ガラスGが高温であるばかりでなく、貴金属が溶融ガラスとの高温反応性が低く、溶融ガラスとの反応による不均質化を生じさせることがなく、高温での強度がある程度確保できるからである。
特に、減圧脱泡槽106を貴金属製円管で構成するのは、上記理由に加え、貴金属製円管自体に電流を流して自己発熱させ、円筒内の溶融ガラスGを均一に加熱し、溶融ガラスGの温度を所定の温度に保持するためである。
【0005】
【発明が解決しようとする課題】
ところで、減圧脱泡槽106を貴金属で構成すると、高温強度の点から円管とするのがよいが、白金などの貴金属は高価であるため、肉厚を大きくできない。よって、コストおよび強度の両方の点から円管の直径には限界があり、あまり円管の直径を大きくできず、減圧脱泡槽106で脱泡処理できる溶融ガラスGの流量にも限界があり、大流量の減圧脱泡装置を構築できないという問題があった。もちろん、円管状減圧脱泡槽106の全長を長くして流速を速くすることにより、脱泡処理量を増加させることも考えられるが、処理量に比して、また溶解槽や成形処理槽などに比べて、装置が長大化してしまうという問題もあった。このため、減圧脱泡装置100における溶融ガラスGの脱泡処理量(流量)を大きくできないという問題もあった。
【0006】
また、このように脱泡処理量(流量)が少ない減圧脱泡装置を1機のみ使用する場合には、生産されるべき量に応じて溶融ガラスGの流量の調整を行うのに際しても、設定可能な流量の幅が狭く、従って生産量の変動に対し機動的な対応が困難であるという問題がある。
さらには、減圧脱泡槽106、上昇管108および下降管110などを構成する白金または白金合金などが破損した場合などの非常時には、その修理に数カ月を要してしまい、その間は減圧脱泡装置を使用できなくなり、ガラス製品の製造に支障を来してしまうという問題もある。
【0007】
本発明の目的は、前記従来技術の問題点を解決することにあり、連続的に供給される溶融ガラスから気泡を除去する、溶融ガラスの減圧脱泡装置において、大量の溶融ガラスを処理することができ、生産量の変動に対しても機動的な対応が可能でありながら、均質性に優れた溶融ガラスを得ることができる、並列式減圧脱泡装置を提供することにある。
【0008】
【課題を解決するための手段】
前記目的を達成するために、本発明は、溶解槽から供給される溶融ガラスの減圧脱泡を行う2本の減圧脱泡部と、この2本の減圧脱泡部から供給される溶融ガラスを合流し攪拌して下流側に供給する合流部とを具備し、前記2本の減圧脱泡部は、それぞれ、真空吸引される減圧ハウジングと、この減圧ハウジング内に設けられ、溶融ガラスの減圧脱泡を行う減圧脱泡槽と、この減圧脱泡槽に連通して設けられ、前記溶解槽から供給される減圧脱泡前の溶融ガラスを前記減圧脱泡槽に導入する導入手段と、前記減圧脱泡槽に連通して設けられ、減圧脱泡後の溶融ガラスを前記減圧脱泡槽から前記合流部に導出する導出手段とを有し、さらに、前記2本の減圧脱泡部を互いに連通する均圧管を有することを特徴とする並列式減圧脱泡装置を提供する。
【0009】
ここで、前記導入手段は、減圧脱泡前の溶融ガラスを上昇させて前記減圧脱泡槽に導入する上昇管であり、前記導出手段は、減圧脱泡後の溶融ガラスを前記減圧脱泡槽から下降させて前記合流部に導出する下降管であるのが好ましい。
また、前記合流部は、2本の前記導出手段がそれぞれ連通する2つの貯留槽と、この2つの貯留槽の両方にスロートを介して連通するように設けられる合流槽と、この合流槽の下流側に連通して設けられる攪拌装置とを有するのが好ましい。
【0010】
また、前記均圧管に、前記2本の減圧脱泡部の減圧脱泡槽の連通を遮断するためのコックが設けられるのが好ましい。
また、前記溶融ガラスは、ソーダ石灰ガラスであるのが好ましい。
さらに、前記導入手段、前記減圧脱泡槽および前記導出手段は、少なくとも前記溶融ガラスと直接接触する主要部分が電鋳耐火物で形成されるのが好ましい。
【0011】
【発明の実施の形態】
以下、本発明の並列式減圧脱泡装置について、添付の図面に示される好適実施例をもとに詳細に説明する。
【0012】
図1に、本発明の並列式減圧脱泡装置の概略断面図を示す。
図1に示すように、並列式減圧脱泡装置10(以下、減圧脱泡装置10とする)は、溶解槽20内の溶融ガラスGを減圧脱泡処理して、図示しない次の処理槽、例えばフロートバスなどの板材の成形処理槽や瓶などの成形作業槽などに連続的に供給するプロセスに用いられるもので、第1減圧脱泡部11と、第2減圧脱泡部12と、均圧管42と、合流部50とから構成される。
なお、第1減圧脱泡部11と第2減圧脱泡部12は互いに同様に構成されるので、以下、主に第1減圧脱泡部11について説明し、第2減圧脱泡部12についての説明は基本的に省略する。
【0013】
図2に、図1に示される並列式減圧脱泡装置10の第1減圧脱泡部11および合流部50の概略断面図を示す。
第1減圧脱泡部11は、減圧ハウジング11aと、減圧脱泡槽14と、上昇管16と、下降管18とを有する。
減圧ハウジング11aは、減圧脱泡槽14の気密性を確保するためのものであり、略門型に形成される。この減圧ハウジング11aは、減圧脱泡槽14に必要とされる気密性および強度を有するものであれば、その材質、構造は特に限定されるものではないが、金属製、特にステンレス製とするのが好ましい。このような減圧ハウジング11aは、外部から真空ポンプ(図示せず)等によって真空吸引され、内部が減圧され、内設される減圧脱泡槽14内を所定の減圧、例えば1/20〜1/3気圧の減圧状態に維持するように構成される。
【0014】
減圧ハウジング11aの上部内には減圧脱泡槽14が設けられる。また、減圧脱泡槽14の左端部には上昇管16が連通され、減圧脱泡槽14の右端部には下降管18が連通される。なお、上昇管16および下降管18はそれぞれ減圧ハウジング11aの脚部内に配設されているが、下降管18は、第2減圧脱泡部12の下降管19とともに、後述する合流部50に連通しうるように、傾斜して、あるいは、途中を屈折させるなどして構成される。
【0015】
本発明の減圧脱泡装置10においては、減圧脱泡槽14、上昇管16および下降管18の材質は特に限定されず、白金または白金ロジウム、白金パラジウム等の白金合金などの貴金属合金や、電鋳耐火物などが挙げられるが、中でも電鋳耐火物を用いるのが好ましい。すなわち、減圧脱泡装置10における溶融ガラスGと直接接触する主要部分を電鋳耐火物で形成することにより、従来から用いられてきた貴金属合金製のものよりも、コストが大幅に低減し、従って自由な形状で、かつ、自由な厚さに設計することが可能となることから、減圧脱泡装置10の大容量化が実現するとともに、より高温での減圧脱泡処理も行えるようになるからである。
【0016】
減圧脱泡槽14、上昇管16および下降管18の形状は少なくとも筒状であれば特に限定されず、例えば、その断面形状は円状のみならず角状であってもよい。電鋳耐火物を用いて減圧脱泡槽14、上昇管16および下降管18を構築する場合、その方法は、特に制限的ではなく、例えば小さい直方体の電鋳レンガを積み上げ、その間の目地の部分を目地材で埋めて、所定長の筒状管を形成してもよいし、円筒状もしくは角筒状に鋳込み成形した筒状の電鋳レンガを一列に積み重ねて、その間の目地の部分を目地材で埋め、所定長の筒状管を形成してもよい。
【0017】
なお、上昇管16の下端であって、上流ピット20内の溶融ガラスGに浸漬させる部分や、下降管18の下端であって後述する炉材区画壁52内の溶融ガラスGに浸漬させる部分については、特に溶融ガラスGと大気との界面が存在することから、この界面近傍においては反応性に富み、焼成レンガでは使用に堪えず、また、たとえ電鋳耐火物であっても界面部分や目地部分の劣化が進行しやすい。従って、上昇管16の下端部および下降管18の下端部は、白金または白金合金で作製するのが好ましい。
【0018】
電鋳耐火物としては、耐火原料を電気溶融した後、所定形状に鋳込み成形したものであれば特に限定されず、従来公知の各種の電鋳耐火物を使用すればよい。中でも、耐蝕性が高く、素地からの発泡も少ない点で、アルミナ系電鋳耐火物、ジルコニア系電鋳耐火物、AZS系電鋳耐火物等が好適に例示され、具体的には、マースナイト(MB−G)、ZB−X950、ジルコナイト(ZB)(いずれも旭硝子(株)製)等が挙げられる。
【0019】
そして、減圧脱泡槽14の周囲には減圧脱泡槽14を被覆する断熱用のレンガ32(以下、断熱レンガ32とする)が配設され、上昇管16および下降管18の周囲にはそれぞれを被覆する断熱レンガ32が配設される。
断熱レンガ32としては、公知の種々のレンガを使用すればよく、特に限定されない。このように配設された断熱レンガ32は、その外側が減圧ハウジング11aに覆われることにより減圧ハウジング11a内に収容される。なお、減圧ハウジング11aの外側の温度は、減圧ハウジング材料の高温クリープをさけるため、断熱レンガ32によってできるだけ減圧ハウジング11aに伝達される熱を遮断して、できるだけ低温、例えば100℃程にするのが好ましい。
【0020】
また、減圧脱泡槽14、上昇管16および下降管18の周囲には、必要に応じて、断熱レンガ32とともに、加熱ヒータを設けて加熱可能な構成としてもよいし、冷却水を通過可能にして冷却可能な構成としてもよい。
【0021】
ここで、本発明の減圧脱泡装置10は、第1減圧脱泡部11および第2減圧脱泡部12とを有する並列式であるため、これらの減圧脱泡部11,12を通過した溶融ガラスGを、合流部50により合流させる構成とすることにより、大量の溶融ガラスの減圧脱泡処理を可能とし、生産量の変動に対しても、例えば一方の減圧脱泡部のみ運転する等の、機動的な対応を可能としている。
【0022】
しかしながら、単に並列式として2機に構成するだけでは、互いの減圧脱泡部11,12間で、得られる溶融ガラスGの組成が、若干ではあるが異なってしまうおそれがある。例えば、両減圧脱泡部11,12間において減圧脱泡槽14,15内の減圧度を完全に一致させるのは技術的に困難なことから、両減圧脱泡槽間14,15で溶融ガラスGを接する気相の圧力が異なってしまい、そのため通過する溶融ガラスのガス成分(例えば、ソーダ石灰ガラスでは、SO2 ,CO2 など)の、気相における濃度(分圧)も異なってしまう。従って、双方の装置を通過する溶融ガラスが接触してきた気相成分の組成が異なる、すなわち組成の履歴が異なることから、互いに若干ではあるが含有ガス成分が異なる溶融ガラスが得られてしまい、合流により、泡を発生する原因となり得る。また母組成中のNa2 Oなどの揮発成分にも差が出る。このように異なる組成の溶融ガラスを合流して得た溶融ガラスには、組成にムラが生じやすく、十分な均質性が得られず、ガラス製品の光学的特性を低下させるおそれがあるという問題がある。
【0023】
そこで、本発明は、第1減圧脱泡部11と、第2減圧脱泡部12とを互いに連通する均圧管42を設けることにより、大量の溶融ガラスGの減圧脱泡処理を可能としながら、均質性に優れた溶融ガラスGを得ることを可能としたものである。
【0024】
具体的には、図1に示されるように、第1減圧脱泡部11の減圧ハウジング11aと、第2減圧脱泡部12の減圧ハウジング12aとの間に均圧管42が連通して設けられる。
均圧管42は、両減圧脱泡槽14,15における気相を同一圧力に保持するための管であり、例えば、図2に示されるように、減圧ハウジング11a,12aに均圧管42の端部が連通して接続されることにより、両減圧脱泡部11,12が連通される。均圧管42の接続箇所は、特に限定されるものではなく、少なくとも両減圧ハウジング11a,12aが連通するように構成すればよい。均圧管42の材質および形状は特に限定されるものではないが、ステンレス製とするのが好ましい。
【0025】
このように両減圧脱泡部11,12を連通する構成としたことで、両減圧脱泡槽14,15の気相圧力が等しくなるので、気相に含まれるガラス中のガス成分及びガラス中の揮散成分(例えば、ソーダ石灰ガラスでは、ガス成分としてはSO2 ,CO2 など、揮散成分としてはNa2 Oなど)の分圧(濃度)をも等しくすることができる。従って、両減圧脱泡部11,12を通過する溶融ガラスGに同一の組成履歴を付与することができるので、両減圧脱泡部11,12から減圧脱泡処理して得られる溶融ガラスGの組成を等しくし、合流後において泡や組成ムラの極めて少ない、均質性に優れた溶融ガラスGを得ることができる。
【0026】
なお、均圧管42の途中には、均管42を閉塞して両減圧脱泡槽14,15間の連通を遮断するためのコック44が設けられるのが好ましい。すなわち、一方の減圧脱泡部11または12がメンテナンスなどにより使用不能となった場合においても、コック44により均管42を閉塞すれば、他方の減圧脱泡部11または12は単独で引き続き使用することができ、ガラス製品の製造への支障を最小限に抑えることができる。特に、減圧脱泡槽14、上昇管16および下降管18などを構成する白金または白金合金などが破損した場合には、その修理に数カ月を要することから有効である。
【0027】
このような減圧脱泡部11,12により減圧脱泡処理が施された溶融ガラスGは、それぞれの下降管18,19を介して合流部50に到達する。
合流部50は、2本の減圧脱泡部11,12より供給された溶融ガラスGを合流し攪拌した上で、次の工程の入口、例えばスパウトに供給するためのものである。
【0028】
図2および図3に、このような合流部50の一例を示す。
同図に示される合流部50は、平面が楕円又は直方体の炉材区画壁52、スロート炉材54,54と、攪拌装置56とを有し、炉材区画壁52内には、貯留槽64,64と合流槽66が形成される。
炉材区画壁52は、2本の下降管18,19から供給される溶融ガラスGを1本の流路に合流するための筐体であり、上面には、2本の下降管18,19の下端部が互いに所定間隔離間して挿入され、側面には、合流した溶融ガラスGを炉材区画壁52外に排出するための排出口52aが形成されるが、本発明はこれに限定されず、2本の下降管18,19と下流側の攪拌装置56とを連結するものであれば特に限定されない。
【0029】
スロート炉材54,54は、後述する攪拌装置56により生じた渦流が下降管18,19の下端に及ぶのをくい止め、下降管18,19の下端の浸食を防止するための板であり、下降管18,19から流出した溶融ガラスGを下流側にのみ排出するためのスロート54a,54aがそれぞれ形成され、2本の下降管18,19に対応して炉材区画壁52内に2枚設けられる。従って、この2枚のスロート炉材54,54が、2本の下降管18,19の下流側をそれぞれ仕切ることで、炉材区画壁52内であってスロート炉材54,54の上流側がそれぞれ貯留槽64,64を形成し、炉材区画壁52内であって2枚のスロート炉材54,54に挟まれた下流側が合流槽66を形成する。すなわち、合流部50は、2つの貯留槽64,64に供給され貯留された溶融ガラスGが、スロート炉材のスロート54a,54aを介して、合流槽66で合流され、この合流した溶融ガラスGを排出口52aから攪拌装置56に供給する構成となっている。
【0030】
攪拌装置56は、炉材区画壁52内の合流槽66において合流した溶融ガラスGを攪拌して均質化を行うためのものであり、溶融ガラスの攪拌に用いられる公知の種々の攪拌装置を用いればよく、特に限定されない。なお、図示例の攪拌装置56は、キャナル58と、スターラ60と、駆動モータ62とを有する。
キャナル58は、溶融ガラスGを攪拌するための空間を確保するためのものであり、炉材区画壁52の排出口52aに連通し、かつ、スターラ60を収容しうるように設けられるが、スターラ60による攪拌が効率的に行えるように、スターラ60の位置では、スターラ60の軸方向(例えば下方)に形成し、その上流側および下流側では、水平方向に形成する構成、すなわち矩形状に構成するのが好ましい。
【0031】
スターラ60は、溶融ガラスGの攪拌を行うものであり、上端が駆動モータ62に回転自在に支持される回転軸60aと、この回転軸60aの下端部に配設される回転羽根60bとから構成される。従って、駆動モータ62を駆動することにより、回転軸60aを介して回転羽根60bが回転し、キャナル58内に導かれた溶融ガラスGを、強制的に攪拌して均質化する。なお、スターラ60の材質、構造は特に限定されないが、白金製もしくは白金合金製とする、あるいは、白金以外の耐熱性金属や耐火物などの耐熱材料で構成し、溶融ガラスと接触する表面を白金ライニングもしくは白金合金ライニングするのが、溶融ガラスGによる浸食を防ぐうえで好ましい。
駆動モータ62としては、溶融ガラスGの攪拌を行うことができるものであれば特に限定されず公知の種々の駆動手段を用いることができる。
【0032】
このようにして合流部50を構成することより、攪拌装置56により攪拌を行う部分と、下降管18,19の下端とを十分に隔離し、攪拌により生じた溶融ガラスGの渦流が下降管18,19の下端に到達して下降管18,19の下端を浸食するのを防止し、この部分の耐久性を向上することができる。特に、前述したように、溶融ガラスGと大気との界面においては反応性に富むことから、白金または白金合金製の下降管18の下端部であっても、界面近傍の浸食の防止を強化することができる点で極めて有効である。
【0033】
ここで、本発明の減圧脱泡装置10の処理対象となる溶融ガラスGは、特に制限的ではなく、例えば、ソーダ石灰ガラスやホウケイ酸ガラスなどを挙げることができるが、本発明の減圧脱泡装置10は多量の溶融ガラスを処理することができる。従って、多量の処理が必要とされるソーダ石灰ガラスなどの大プラントに適用できるようになる。
【0034】
このような本発明の減圧脱泡装置10で溶融ガラスGを脱泡処理して次の処理炉に連続的に供給するプロセス例を以下に示す。なお、第1減圧脱泡部11と第2減圧脱泡部12は同様に構成されるので、主に第1減圧脱泡部11についての作用について以下説明する。
まず、溶解槽20において、ガラスを溶融して溶融ガラスGとするが、このときの温度は、ソーダ石灰ガラスの場合には1250〜1450℃、好ましくは1280〜1320℃である。この範囲内であると、溶融ガラスGの粘性を十分に小さくし、効率的な減圧脱泡処理が可能となり、装置(特に白金または白金合金)の劣化を抑えることもできる。なお、ホウケイ酸ガラスなど他の組成のガラスについても、上記ソーダ石灰ガラスと同様の粘性となるような温度に溶融するのが好ましい。
【0035】
そして、図示しない真空ポンプで減圧ハウジング11a内および減圧脱泡槽14内を真空吸引状態に維持する。この状態で、溶解槽20で溶融されたガラスGは溶解槽の下流端に設けたピット22を通って上昇管16を介して上昇して減圧脱泡槽14内に導かれ、溶融ガラスGは減圧脱泡槽14内で減圧条件下において脱泡処理される。このとき、均圧管42により、減圧脱泡槽14内の気相圧力が第2減圧脱泡部11の減圧脱泡槽15内の気相圧力と同一圧力に保持されるため、両減圧脱泡部12および14を通過する溶融ガラスGに同一の組成履歴を付与することができる。
【0036】
次いで、脱泡処理された溶融ガラスGは下降管18を介して合流部50に導かれて、第2減圧脱泡部12からの溶融ガラスGと合流されて、攪拌された後、次の成形部(図示せず)に供給される。
なお、本発明の減圧脱泡装置10は、第1減圧脱泡部11と第2減圧脱泡部12の2本構成であるので、溶融ガラスGは2本の上昇管でそれぞれの減圧脱泡槽に供給され、対応する2本の下降管で排出されて、合流部50に供給される。
【0037】
ところで、本発明の並列式減圧脱泡装置は、図2に示すサイフォン方式減圧脱泡装置のみならず、特開平5−262530号公報、特開平7−291633号公報に示す水平式減圧脱泡装置にも適用してもよいのはもちろんである。
以上、本発明の並列式減圧脱泡装置について詳細に説明したが、本発明は上記実施例に限定されず、本発明の要旨を逸脱しない範囲において、各種の改良および変更を行ってもよいのはもちろんである。
【0038】
【発明の効果】
以上、詳細に説明したように、本発明によれば、連続的に供給される溶融ガラスから気泡を除去する、溶融ガラスの減圧脱泡装置において、大量の溶融ガラスを処理することができ、生産量の変動に対しても機動的な対応が可能でありながら、均質性に優れた溶融ガラスを得ることができる。また、メンテナンス時においても、継続的に使用することができる。
【図面の簡単な説明】
【図1】 本発明の並列式減圧脱泡装置の一例を示す概略断面図である。
【図2】 図1に示される並列式減圧脱泡装置の第1減圧脱泡部および合流部の概略断面図を示す。
【図3】 図1に示される並列式減圧脱泡装置における合流部の一例を示す概略断面図である。
【図4】 従来における減圧脱泡装置の一例を示す概略断面図である。
【符号の説明】
10 (並列式)減圧脱泡装置
11 第1減圧脱泡部
11a 減圧ハウジング
12 第2減圧脱泡部
12a 減圧ハウジング
14,15 減圧脱泡槽
16 上昇管
18,19 下降管
20 溶解槽
22 上流ピット
30 電鋳耐火物
32 断熱レンガ
42 均圧管
44 コック
50 合流部
52 炉材区画壁
52a 排出口
54 スロート炉材
54a スロート
56 攪拌装置
58 キャナル
60 スターラ
60a 回転軸
60b 回転羽根
62 駆動モータ
64 貯留槽
66 合流槽
100 減圧脱泡装置
102 溶解槽
104 減圧ハウジング
106 脱泡槽
108 上昇管
110 下降管
112 断熱材
[0001]
BACKGROUND OF THE INVENTION
The present invention belongs to the technical field of a vacuum degassing apparatus for molten glass that removes bubbles from continuously supplied molten glass.
[0002]
[Prior art]
Conventionally, in order to improve the quality of a molded glass product, a vacuum degassing apparatus that removes bubbles generated in the molten glass before the molten glass melted in the melting furnace is molded by a molding apparatus has been used. . Such a conventional vacuum degassing apparatus is shown in FIG. The vacuum degassing apparatus 100 shown in FIG. 4 depressurizes the molten glass G in the melting tank 102 under reduced pressure to form a next processing tank (not shown) such as a processing tank for a plate material such as a float bath or a working tank such as a bottle. Used in a continuous supply process, a vacuum degassing tank 106 is horizontally accommodated in a vacuum suction housing 104 that is sucked in vacuum, and a riser pipe 108 and a downfall pipe 110 that are vertically attached to both ends thereof are accommodated. Has been.
[0003]
The ascending pipe 108 communicates with the vacuum degassing tank 106 to raise the molten glass G before the defoaming treatment from the melting tank 102 and introduce it into the vacuum degassing tank 106. The downcomer 110 communicates with the reduced-pressure defoaming tank 106, lowers the molten glass G after the defoaming process from the reduced-pressure defoaming tank 106, and guides it to the next processing tank (not shown). In the reduced pressure housing 104, a heat insulating material 112 such as a heat insulating brick is provided around the reduced pressure defoaming tank 106, the ascending pipe 108, and the descending pipe 110 so as to cover them. The decompression housing 104 is made of metal, for example, stainless steel, and is vacuumed from the outside by a vacuum pump (not shown) or the like, the inside is decompressed, and the inside of the decompression deaeration tank 106 is set to a predetermined decompression. For example, the pressure is maintained at a reduced pressure of 1/20 to 1/3 atm.
[0004]
Since the conventional vacuum degassing apparatus 100 is configured to process a molten glass G at a high temperature, for example, 1200 to 1400 ° C., it is disclosed in Japanese Patent Application Laid-Open No. 2-221129 relating to the application of the present applicant. As shown in the drawing, the portions that are in direct contact with the molten glass G, such as the vacuum degassing tank 106, the rising pipe 108, and the downfalling pipe 110, are usually made of noble metal such as platinum, platinum rhodium, or platinum alloy such as platinum palladium. It consists of a circular tube. The present applicant has put a vacuum degassing apparatus into practical use by using a platinum alloy circular tube.
Here, these are constituted by noble metal circular tubes such as platinum alloys because not only the molten glass G is hot, but also the noble metal has low high temperature reactivity with the molten glass and is inhomogeneous due to reaction with the molten glass. This is because the strength at a high temperature can be secured to some extent without causing any deterioration.
In particular, the vacuum defoaming tank 106 is composed of a noble metal circular tube, in addition to the above reasons, a current is passed through the noble metal circular tube itself to cause self-heating to uniformly heat and melt the molten glass G in the cylinder. This is to keep the temperature of the glass G at a predetermined temperature.
[0005]
[Problems to be solved by the invention]
By the way, when the vacuum degassing tank 106 is made of a noble metal, it is preferable to use a circular tube from the viewpoint of high temperature strength. However, since noble metals such as platinum are expensive, the thickness cannot be increased . Therefore, there is a limit to the diameter of the circular tube in terms of both cost and strength, the diameter of the circular tube cannot be increased so much, and the flow rate of the molten glass G that can be defoamed in the vacuum degassing tank 106 is also limited. There was a problem that it was not possible to construct a vacuum degassing apparatus with a large flow rate. Of course, it is conceivable to increase the amount of defoaming by increasing the overall length of the tubular vacuum degassing tank 106 and increasing the flow rate. Compared to the above, there is a problem that the apparatus becomes longer. For this reason, there also existed a problem that the defoaming processing amount (flow rate) of the molten glass G in the vacuum degassing apparatus 100 could not be enlarged.
[0006]
In addition, when only one vacuum degassing apparatus having a small amount of defoaming treatment (flow rate) is used as described above, the flow rate of the molten glass G is also set in accordance with the amount to be produced. There is a problem that the range of possible flow rate is narrow and therefore it is difficult to respond flexibly to fluctuations in production volume.
Furthermore, in the event of an emergency, such as when platinum or a platinum alloy constituting the reduced pressure defoaming tank 106, the rising pipe 108, the downfalling pipe 110, etc. is damaged, the repair takes several months, and during that time, the reduced pressure defoaming apparatus There is also a problem in that the glass cannot be used, and the production of glass products is hindered.
[0007]
An object of the present invention is to solve the problems of the prior art, and to process a large amount of molten glass in a vacuum degassing apparatus for molten glass that removes bubbles from continuously supplied molten glass. An object of the present invention is to provide a parallel-type vacuum degassing apparatus that can obtain a molten glass excellent in homogeneity while being able to flexibly cope with fluctuations in production volume.
[0008]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, the present invention includes two vacuum degassing parts for performing vacuum degassing of molten glass supplied from a melting tank, and molten glass supplied from the two vacuum degassing parts. And the two vacuum degassing parts are provided in a vacuum housing that is vacuum-sucked, and in the vacuum housing, respectively. A vacuum defoaming tank for foaming, an introduction means that is provided in communication with the vacuum degassing tank and that introduces molten glass before the degassing defoaming supplied from the melting tank into the vacuum degassing tank; A degassing unit that is provided in communication with the defoaming tank and leads the molten glass after depressurization defoaming from the depressurization defoaming tank to the merging section; and further, the two depressurization units communicate with each other. Provided is a parallel-type vacuum degassing apparatus characterized by having a pressure equalizing pipe .
[0009]
Here, the introduction means is a riser pipe that raises the molten glass before vacuum degassing and introduces it into the vacuum degassing tank, and the derivation means sends the molten glass after vacuum degassing to the vacuum degassing tank. It is preferable that it is a downcomer pipe that descends from the outlet and leads out to the junction.
The merging section includes two storage tanks that communicate with the two derivation means, a merging tank that is provided so as to communicate with both of the two storage tanks via a throat, and a downstream of the merging tank. And a stirring device provided in communication with the side.
[0010]
Moreover, it is preferable that the pressure equalizing pipe is provided with a cock for blocking communication between the vacuum degassing tanks of the two vacuum degassing parts.
The molten glass is preferably soda lime glass.
Furthermore, it is preferable that at least a main portion of the introduction unit, the vacuum degassing tank, and the lead-out unit that are in direct contact with the molten glass is formed of an electroformed refractory.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the parallel vacuum degassing apparatus of the present invention will be described in detail based on the preferred embodiments shown in the accompanying drawings.
[0012]
In FIG. 1, the schematic sectional drawing of the parallel-type vacuum degassing apparatus of this invention is shown.
As shown in FIG. 1, the parallel-type vacuum degassing apparatus 10 (hereinafter referred to as the vacuum degassing apparatus 10) performs a vacuum degassing process on the molten glass G in the melting tank 20, and a next processing tank (not shown), For example, it is used in a process for continuously supplying a plate material such as a float bath to a forming processing tank such as a bottle or a forming work tank such as a bottle. The first vacuum degassing unit 11, the second vacuum degassing unit 12, The pressure tube 42 and the merging portion 50 are configured.
In addition, since the 1st vacuum degassing part 11 and the 2nd vacuum degassing part 12 are comprised similarly to each other, hereafter, the 1st vacuum degassing part 11 is mainly demonstrated and about the 2nd vacuum degassing part 12 below. The explanation is basically omitted.
[0013]
FIG. 2 shows a schematic cross-sectional view of the first vacuum degassing unit 11 and the merging unit 50 of the parallel-type vacuum degassing apparatus 10 shown in FIG.
The first vacuum degassing unit 11 includes a vacuum housing 11 a, a vacuum degassing tank 14, an ascending pipe 16, and a descending pipe 18.
The decompression housing 11a is for ensuring the airtightness of the decompression defoaming tank 14, and is formed in a substantially gate shape. The material and structure of the decompression housing 11a is not particularly limited as long as it has the airtightness and strength required for the decompression defoaming tank 14, but is made of metal, particularly stainless steel. Is preferred. Such a decompression housing 11a is vacuum-sucked by a vacuum pump (not shown) or the like from the outside, the inside is decompressed, and a predetermined decompression, for example 1/20 / It is configured to maintain a reduced pressure of 3 atm.
[0014]
A vacuum degassing tank 14 is provided in the upper part of the vacuum housing 11a. A rising pipe 16 communicates with the left end of the vacuum degassing tank 14, and a down pipe 18 communicates with the right end of the vacuum degassing tank 14. The ascending pipe 16 and the descending pipe 18 are respectively disposed in the legs of the decompression housing 11a. However, the descending pipe 18 communicates with a junction 50 described later together with the descending pipe 19 of the second decompression defoaming part 12. As is possible, it is configured to be inclined or refracted midway.
[0015]
In the vacuum degassing apparatus 10 of the present invention, the materials of the vacuum degassing tank 14, the rising pipe 16 and the descending pipe 18 are not particularly limited, and platinum, platinum rhodium, platinum alloys such as platinum palladium and the like, Examples include cast refractories, among which electrocast refractories are preferably used. That is, by forming the main part in direct contact with the molten glass G in the vacuum degassing apparatus 10 with an electroformed refractory, the cost is significantly reduced as compared with those made of noble metal alloys conventionally used. Since it is possible to design in a free shape and a free thickness, it is possible to increase the capacity of the vacuum degassing apparatus 10 and to perform vacuum degassing at a higher temperature. It is.
[0016]
There are no particular limitations on the shape of the vacuum degassing tank 14, the ascending pipe 16, and the descending pipe 18, as long as they are at least cylindrical. For example, the cross-sectional shape may be not only circular but also square. When constructing the vacuum degassing tank 14, the rising pipe 16, and the downfalling pipe 18 using the electroformed refractory, the method is not particularly limited. For example, small rectangular parallelepiped electrocast bricks are stacked, and a portion of the joint between them. A cylindrical tube of a predetermined length may be formed by filling the joint material with a joint material, or cylindrical electroformed bricks cast into a cylindrical shape or a rectangular tube shape are stacked in a row, and the joint portion between them is jointed. A cylindrical tube having a predetermined length may be formed by filling with a material.
[0017]
In addition, about the part immersed in the molten glass G in the upstream pit 20 at the lower end of the riser pipe 16 and the lower part of the downcomer pipe 18 and the part immersed in the molten glass G in the furnace material partition wall 52 described later. In particular, since there is an interface between the molten glass G and the atmosphere, the vicinity of this interface is rich in reactivity, and it cannot be used with fired bricks. Deterioration of the part tends to progress. Therefore, it is preferable that the lower end portion of the rising pipe 16 and the lower end portion of the down pipe 18 are made of platinum or a platinum alloy.
[0018]
The electrocast refractory is not particularly limited as long as the refractory raw material is electrically melted and then cast into a predetermined shape, and various conventionally known electrocast refractories may be used. Among these, alumina-based electrocast refractories, zirconia-based electrocast refractories, AZS-based electrocast refractories and the like are preferable examples because they have high corrosion resistance and little foaming from the substrate. Specifically, marsnite (MB-G), ZB-X950, zirconite (ZB) (all manufactured by Asahi Glass Co., Ltd.) and the like.
[0019]
A heat insulating brick 32 (hereinafter referred to as a heat insulating brick 32) covering the vacuum defoaming tank 14 is disposed around the vacuum degassing tank 14, and the rise pipe 16 and the down pipe 18 are respectively surrounded by the bricks. A heat insulating brick 32 is disposed to cover the surface.
As the heat insulating brick 32, known various bricks may be used and are not particularly limited. The heat-insulating bricks 32 arranged in this way are accommodated in the decompression housing 11a by covering the outside with the decompression housing 11a. The temperature outside the decompression housing 11a should be as low as possible, for example, about 100 ° C., by blocking the heat transmitted to the decompression housing 11a by the heat insulating brick 32 as much as possible in order to avoid high temperature creep of the decompression housing material. preferable.
[0020]
Moreover, it is good also as a structure which can provide a heating heater with the heat insulation brick 32 around the decompression degassing tank 14, the riser pipe 16, and the downfall pipe 18 as needed, and it can let cooling water pass through. It is good also as a structure which can be cooled.
[0021]
Here, since the vacuum degassing apparatus 10 of the present invention is a parallel type having the first vacuum degassing part 11 and the second vacuum degassing part 12, the melt that has passed through these vacuum degassing parts 11 and 12 is used. By adopting a configuration in which the glass G is merged by the merging unit 50, it is possible to perform a vacuum defoaming treatment of a large amount of molten glass, and for example, only one of the vacuum degassing units is operated in response to fluctuations in production volume , Enabling agile response.
[0022]
However, the composition of the molten glass G obtained may be slightly different between the vacuum degassing parts 11 and 12 if the two machines are simply arranged in parallel. For example, it is technically difficult to completely match the degree of vacuum in the vacuum degassing tanks 14 and 15 between the two vacuum degassing parts 11 and 12, so that the molten glass between the vacuum degassing tanks 14 and 15 is molten. The pressure of the gas phase in contact with G differs, so that the concentration (partial pressure) of the gas component of the molten glass that passes therethrough (for example, SO 2 , CO 2, etc. in soda-lime glass) also varies. Therefore, the composition of the gas phase components that have contacted the molten glass passing through both apparatuses is different, that is, the composition histories are different, so that molten glasses having slightly different contained gas components are obtained. Can cause bubbles. There is also a difference in volatile components such as Na 2 O in the mother composition. The molten glass obtained by merging molten glasses having different compositions in this way has a problem that the composition is likely to be uneven, sufficient homogeneity cannot be obtained, and the optical properties of the glass product may be deteriorated. is there.
[0023]
Therefore, the present invention provides a pressure equalizing pipe 42 that allows the first vacuum degassing part 11 and the second vacuum degassing part 12 to communicate with each other, thereby enabling the vacuum degassing treatment of a large amount of molten glass G, It is possible to obtain a molten glass G excellent in homogeneity.
[0024]
Specifically, as shown in FIG. 1, a pressure equalizing pipe 42 is provided in communication between the decompression housing 11 a of the first decompression defoaming part 11 and the decompression housing 12 a of the second decompression defoaming part 12. .
The pressure equalizing pipe 42 is a pipe for maintaining the gas phase in both the vacuum degassing tanks 14 and 15 at the same pressure. For example, as shown in FIG. Are communicated and connected to each other so that the vacuum degassing parts 11 and 12 are communicated with each other. The connection location of the pressure equalizing pipe 42 is not particularly limited, and may be configured so that at least both the decompression housings 11a and 12a communicate with each other. The material and shape of the pressure equalizing tube 42 are not particularly limited, but are preferably made of stainless steel.
[0025]
Thus, since it was set as the structure which connected both the vacuum degassing parts 11 and 12, since the gaseous-phase pressure of both the vacuum degassing tanks 14 and 15 becomes equal, the gas component in the glass contained in a gaseous phase, and in glass The partial pressure (concentration) of the volatilization component (for example, in soda lime glass, gas components such as SO 2 and CO 2 and volatilization components such as Na 2 O) can be made equal. Therefore, since the same composition history can be given to the molten glass G passing through both the vacuum degassing portions 11 and 12, the molten glass G obtained by performing the vacuum degassing treatment from both the vacuum degassing portions 11 and 12 is used. It is possible to obtain a molten glass G having the same composition and excellent in homogeneity with very few bubbles and uneven composition after merging.
[0026]
Incidentally, in the middle of the pressure equalizing pipe 42 is preferably cock 44 for blocking communication between both closes the vacuum degassing vessel 14 and 15 equalizing pressure pipe 42 is provided. That is, when one of the vacuum degassing unit 11 or 12 has become unusable due to maintenance, if closed equalizing pressure pipe 42 by cock 44 and the other of the vacuum degassing unit 11 or 12 subsequently used alone It is possible to minimize the hindrance to the production of glass products. In particular, when platinum or a platinum alloy constituting the decompression defoaming tank 14, the rising pipe 16 and the lowering pipe 18 is damaged, it takes several months to repair it, which is effective.
[0027]
The molten glass G that has been subjected to the vacuum degassing process by the vacuum degassing parts 11 and 12 reaches the joining part 50 via the downcomers 18 and 19.
The merging unit 50 is for merging and stirring the molten glass G supplied from the two vacuum degassing units 11 and 12 and then supplying the molten glass G to the inlet of the next step, for example, a spout.
[0028]
FIG. 2 and FIG. 3 show an example of such a merging portion 50.
The merging section 50 shown in the figure has an elliptical or rectangular parallelepiped furnace material partition wall 52, throat furnace materials 54 and 54, and a stirring device 56, and the furnace material partition wall 52 includes a storage tank 64. 64 and the merging tank 66 are formed.
The furnace material partition wall 52 is a casing for joining the molten glass G supplied from the two downcomers 18 and 19 into one flow path, and has two downcomers 18 and 19 on the upper surface. The lower end portions of the molten glass G are inserted at a predetermined distance from each other, and a discharge port 52a for discharging the joined molten glass G to the outside of the furnace material partition wall 52 is formed on the side surface, but the present invention is not limited thereto. There is no particular limitation as long as the two downcomers 18 and 19 and the downstream stirring device 56 are connected.
[0029]
The throat furnace materials 54 and 54 are plates for preventing a vortex generated by a stirring device 56 described later from reaching the lower ends of the downcomers 18 and 19 and preventing erosion of the lower ends of the downcomers 18 and 19. Throats 54 a and 54 a for discharging the molten glass G flowing out from the pipes 18 and 19 only to the downstream side are formed, and two throats 54 a and 54 a are provided in the furnace material partition wall 52 corresponding to the two downcomers 18 and 19. It is done. Therefore, the two throat furnace materials 54 and 54 partition the downstream sides of the two downcomers 18 and 19, respectively, so that the upstream side of the throat furnace materials 54 and 54 is inside the furnace material partition wall 52. The storage tanks 64 and 64 are formed, and the downstream side sandwiched between the two throat furnace materials 54 and 54 in the furnace material partition wall 52 forms the merge tank 66. That is, in the merging unit 50, the molten glass G supplied and stored in the two storage tanks 64 and 64 is merged in the merging tank 66 via the throats 54a and 54a of the throat furnace material. Is supplied to the stirring device 56 from the discharge port 52a.
[0030]
The stirring device 56 is for stirring and homogenizing the molten glass G joined in the joining tank 66 in the furnace material partition wall 52. Various known stirring devices used for stirring the molten glass are used. There is no particular limitation. The illustrated stirring device 56 includes a canal 58, a stirrer 60, and a drive motor 62.
The canal 58 is for securing a space for stirring the molten glass G and is provided so as to communicate with the discharge port 52a of the furnace material partition wall 52 and accommodate the stirrer 60. The stirrer 60 is formed in the axial direction (for example, in the lower direction) at the position of the stirrer 60, and is formed in the horizontal direction on the upstream side and the downstream side thereof, that is, in a rectangular shape so that the stirring by the 60 can be performed efficiently. It is preferable to do this.
[0031]
The stirrer 60 stirs the molten glass G, and includes a rotating shaft 60a whose upper end is rotatably supported by the drive motor 62, and a rotating blade 60b disposed at the lower end of the rotating shaft 60a. Is done. Therefore, by driving the drive motor 62, the rotating blade 60b rotates through the rotating shaft 60a, and the molten glass G introduced into the canal 58 is forcibly stirred and homogenized. The material and structure of the stirrer 60 are not particularly limited. The surface of the stirrer 60 made of platinum or a platinum alloy, or made of a heat-resistant material other than platinum or a refractory material, such as refractory, is made of platinum. In order to prevent erosion by the molten glass G, lining or platinum alloy lining is preferable.
The drive motor 62 is not particularly limited as long as it can stir the molten glass G, and various known drive means can be used.
[0032]
By constructing the merging portion 50 in this manner, the portion to be agitated by the agitator 56 and the lower ends of the downcomers 18 and 19 are sufficiently separated, and the vortex of the molten glass G generated by the agitation is produced by the downcomer 18. 19 can be prevented from reaching the lower end of the downcomers 18 and 19 and eroding the lower ends of the downcomers 18 and 19, thereby improving the durability of this portion. In particular, as described above, since the interface between the molten glass G and the atmosphere is highly reactive, even at the lower end of the downcomer 18 made of platinum or platinum alloy, the prevention of erosion near the interface is enhanced. It is extremely effective in that it can be used.
[0033]
Here, the molten glass G to be processed by the vacuum degassing apparatus 10 of the present invention is not particularly limited, and examples thereof include soda lime glass and borosilicate glass. The apparatus 10 can process a large amount of molten glass. Therefore, it becomes possible to apply to a large plant such as soda-lime glass that requires a large amount of treatment.
[0034]
An example of a process in which the molten glass G is defoamed with the vacuum degassing apparatus 10 of the present invention and continuously supplied to the next processing furnace will be described below. In addition, since the 1st vacuum degassing part 11 and the 2nd vacuum degassing part 12 are comprised similarly, the effect | action about the 1st vacuum degassing part 11 is mainly demonstrated below.
First, in the melting tank 20, the glass is melted to obtain a molten glass G. The temperature at this time is 1250 to 1450 ° C., preferably 1280 to 1320 ° C. in the case of soda-lime glass. Within this range, the viscosity of the molten glass G can be made sufficiently small, an efficient vacuum degassing treatment can be performed, and deterioration of the apparatus (particularly platinum or platinum alloy) can be suppressed. In addition, about glass of other compositions, such as a borosilicate glass, it is preferable to fuse | melt at the temperature which becomes the same viscosity as the said soda-lime glass.
[0035]
And the inside of the pressure reduction housing 11a and the pressure reduction deaeration tank 14 are maintained in a vacuum suction state by a vacuum pump (not shown). In this state, the glass G melted in the melting tank 20 passes through the pit 22 provided at the downstream end of the melting tank and rises through the riser 16 and is guided into the vacuum degassing tank 14. Defoaming treatment is performed in a vacuum degassing tank 14 under reduced pressure conditions. At this time, the pressure equalizing pipe 42 keeps the gas pressure in the vacuum degassing tank 14 at the same pressure as the gas pressure in the vacuum degassing tank 15 of the second vacuum degassing section 11. The same composition history can be imparted to the molten glass G passing through the portions 12 and 14.
[0036]
Next, the defoamed molten glass G is guided to the merging section 50 through the downcomer 18, merged with the molten glass G from the second vacuum degassing section 12, stirred, and then formed into the next molding. Part (not shown).
In addition, since the vacuum degassing apparatus 10 of this invention is the 2 structure of the 1st vacuum degassing part 11 and the 2nd vacuum degassing part 12, the molten glass G is each a vacuum degassing with two riser pipes. It is supplied to the tank, discharged through the two corresponding downcomers, and supplied to the junction 50.
[0037]
By the way, the parallel vacuum degassing apparatus of the present invention is not limited to the siphon type vacuum degassing apparatus shown in FIG. 2, but also the horizontal vacuum degassing apparatus shown in Japanese Patent Laid-Open Nos. 5-262530 and 7-291633. Of course, it may be applied to.
The parallel vacuum degassing apparatus of the present invention has been described in detail above. However, the present invention is not limited to the above-described embodiments, and various improvements and modifications may be made without departing from the scope of the present invention. Of course.
[0038]
【The invention's effect】
As described above in detail, according to the present invention, a large amount of molten glass can be processed and produced in a vacuum degassing apparatus for molten glass that removes bubbles from continuously supplied molten glass. A molten glass having excellent homogeneity can be obtained while being able to flexibly cope with fluctuations in quantity. Further, it can be used continuously even during maintenance.
[Brief description of the drawings]
FIG. 1 is a schematic sectional view showing an example of a parallel-type vacuum degassing apparatus of the present invention.
FIG. 2 is a schematic cross-sectional view of a first vacuum degassing part and a merging part of the parallel-type vacuum degassing apparatus shown in FIG.
FIG. 3 is a schematic cross-sectional view showing an example of a merging section in the parallel-type vacuum degassing apparatus shown in FIG.
FIG. 4 is a schematic sectional view showing an example of a conventional vacuum degassing apparatus.
[Explanation of symbols]
10 (Parallel type) vacuum degassing device 11 first vacuum degassing part 11a vacuum housing 12 second vacuum degassing part 12a vacuum housing 14, 15 vacuum degassing tank 16 ascending pipe 18, 19 descending pipe 20 dissolution tank 22 upstream pit 30 Electroformed refractory 32 Heat insulation brick 42 Pressure equalizing pipe 44 Cock 50 Junction section 52 Furnace material partition wall
52a Discharge port 54 Throat furnace material
54a Throat 56 Stirrer 58 Canal 60 Stirrer
60a Rotating shaft
60b Rotary blade 62 Drive motor 64 Storage tank 66 Merge tank
100 Vacuum degassing equipment
102 Dissolution tank
104 decompression housing
106 Defoaming tank
108 riser
110 Downcomer
112 Thermal insulation

Claims (6)

溶解槽から供給される溶融ガラスの減圧脱泡を行う2本の減圧脱泡部と、この2本の減圧脱泡部から供給される溶融ガラスを合流し攪拌して下流側に供給する合流部とを具備し、
前記2本の減圧脱泡部は、それぞれ、真空吸引される減圧ハウジングと、この減圧ハウジング内に設けられ、溶融ガラスの減圧脱泡を行う減圧脱泡槽と、この減圧脱泡槽に連通して設けられ、前記溶解槽から供給される減圧脱泡前の溶融ガラスを前記減圧脱泡槽に導入する導入手段と、前記減圧脱泡槽に連通して設けられ、減圧脱泡後の溶融ガラスを前記減圧脱泡槽から前記合流部に導出する導出手段とを有し、
さらに、前記2本の減圧脱泡部を互いに連通する均圧管を有することを特徴とする並列式減圧脱泡装置。
Two vacuum degassing parts for performing vacuum degassing of the molten glass supplied from the melting tank, and a merging part for joining the molten glass supplied from the two vacuum degassing parts, stirring them, and supplying them to the downstream side And
The two vacuum degassing sections are respectively connected to the vacuum housing that is vacuum-sucked, a vacuum degassing tank that is provided in the vacuum housing and degassed the molten glass, and communicates with the vacuum degassing tank. Introducing means for introducing molten glass before depressurized defoaming supplied from the melting tank into the depressurized defoaming tank, and communicating with the depressurized defoaming tank, and molten glass after depressurized defoaming And deriving means for deriving from the vacuum degassing tank to the merging section,
Furthermore, it has a pressure equalization pipe | tube which mutually connects the said two vacuum degassing parts, The parallel type vacuum degassing apparatus characterized by the above-mentioned.
前記導入手段は、減圧脱泡前の溶融ガラスを上昇させて前記減圧脱泡槽に導入する上昇管であり、前記導出手段は、減圧脱泡後の溶融ガラスを前記減圧脱泡槽から下降させて前記合流部に導出する下降管である請求項1に記載の並列式減圧脱泡装置。The introducing means is a riser pipe that raises the molten glass before the vacuum degassing and introduces it into the vacuum degassing tank, and the derivation means lowers the molten glass after the vacuum degassing from the vacuum degassing tank. The parallel-type vacuum degassing apparatus according to claim 1, which is a downcomer pipe led out to the junction. 前記合流部は、2本の前記導出手段がそれぞれ連通する2つの貯留槽と、この2つの貯留槽の両方にスロートを介して連通するように設けられる合流槽と、この合流槽の下流側に連通して設けられる攪拌装置とを有する請求項1または2に記載の並列式減圧脱泡装置。The merging section includes two storage tanks through which the two derivation means communicate with each other, a merging tank provided so as to communicate with both of the two storage tanks via a throat, and a downstream side of the merging tank. The parallel-type vacuum degassing apparatus according to claim 1, further comprising a stirrer provided in communication. 前記均圧管に、前記2本の減圧脱泡部の減圧脱泡槽の連通を遮断するためのコックが設けられた請求項1〜3のいずれか1項に記載の並列式減圧脱泡装置。4. The parallel-type vacuum degassing apparatus according to claim 1, wherein the pressure equalizing pipe is provided with a cock for blocking communication between the vacuum degassing tanks of the two vacuum degassing sections. 前記溶融ガラスは、ソーダ石灰ガラスである請求項1〜4のいずれか1項に記載の並列式減圧脱泡装置。The parallel-type vacuum degassing apparatus according to any one of claims 1 to 4, wherein the molten glass is soda-lime glass. 前記導入手段、前記減圧脱泡槽および前記導出手段は、少なくとも前記溶融ガラスと直接接触する主要部分が電鋳耐火物で形成された請求項1〜5のいずれか1項に記載の並列式減圧脱泡装置。The parallel decompression according to any one of claims 1 to 5, wherein at least a main portion that directly contacts the molten glass is formed of an electroformed refractory in the introduction unit, the vacuum degassing tank, and the lead-out unit. Defoaming device.
JP29393997A 1997-10-06 1997-10-27 Parallel vacuum deaerator Expired - Fee Related JP3724156B2 (en)

Priority Applications (12)

Application Number Priority Date Filing Date Title
JP29393997A JP3724156B2 (en) 1997-10-27 1997-10-27 Parallel vacuum deaerator
US09/164,356 US6119484A (en) 1997-10-06 1998-10-01 Vacuum degassing apparatus for molten glass
KR1019980041667A KR100682778B1 (en) 1997-10-06 1998-10-02 Vacuum degassing apparatus for molten glass
TW087116447A TW498058B (en) 1997-10-06 1998-10-02 Vacuum degassing apparatus for molten glass
IDP981327A ID20649A (en) 1997-10-06 1998-10-05 REASON FOR THE DECREASE OF GAS HAMPA FOR GLASS RELEASE
EP00122258A EP1078891B1 (en) 1997-10-06 1998-10-06 Parallel arrangement of a vacuum degassing apparatus for molten glass
EP04007832A EP1439148A3 (en) 1997-10-06 1998-10-06 Apparatus for degassing molten glass under reduced pressure
DE69823560T DE69823560T2 (en) 1997-10-06 1998-10-06 Parallel arrangement of a vacuum degassing device for molten glass
EP98118842A EP0908417B2 (en) 1997-10-06 1998-10-06 Vacuum degassing apparatus for molten glass
DE69807812T DE69807812T3 (en) 1997-10-06 1998-10-06 Vacuum degassing apparatus for molten glass
US09/473,680 US6405564B1 (en) 1997-10-06 1999-12-29 Vacuum degassing apparatus for molten glass
KR1020060029382A KR100682779B1 (en) 1997-10-06 2006-03-31 Vacuum degassing apparatus for molten glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29393997A JP3724156B2 (en) 1997-10-27 1997-10-27 Parallel vacuum deaerator

Publications (2)

Publication Number Publication Date
JPH11130443A JPH11130443A (en) 1999-05-18
JP3724156B2 true JP3724156B2 (en) 2005-12-07

Family

ID=17801137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29393997A Expired - Fee Related JP3724156B2 (en) 1997-10-06 1997-10-27 Parallel vacuum deaerator

Country Status (1)

Country Link
JP (1) JP3724156B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006059577A1 (en) * 2004-12-01 2006-06-08 Nippon Sheet Glass Company, Limited Glass production apparatus and process for producing glass
CN111704347B (en) * 2020-06-08 2022-03-18 中建材蚌埠玻璃工业设计研究院有限公司 Large-flow noble metal channel

Also Published As

Publication number Publication date
JPH11130443A (en) 1999-05-18

Similar Documents

Publication Publication Date Title
US6119484A (en) Vacuum degassing apparatus for molten glass
US6405564B1 (en) Vacuum degassing apparatus for molten glass
US7650764B2 (en) Vacuum degassing apparatus for molten glass
JP3823544B2 (en) Vacuum degassing apparatus for molten glass and manufacturing method thereof
JP3785788B2 (en) Vacuum degassing equipment for molten glass
US6948338B2 (en) Vacuum degassing apparatus for molten glass
JP3724156B2 (en) Parallel vacuum deaerator
JP3861459B2 (en) Vacuum degassing equipment for molten glass
JP5772823B2 (en) Vacuum degassing apparatus and vacuum degassing method for molten glass, and glass product manufacturing apparatus and manufacturing method
JP3724153B2 (en) Vacuum degassing equipment for molten glass
JP3915268B2 (en) Vacuum degassing equipment for molten glass
JP3817868B2 (en) Vacuum degassing equipment for molten glass
JP4103236B2 (en) Glass manufacturing equipment by vacuum degassing
WO2011145526A1 (en) Pressure reducing and defoaming device for molten glass, molten glass manufacturing method, and glass product manufacturing method
JP3915288B2 (en) Vacuum degassing equipment for molten glass
JP3785810B2 (en) Vacuum degassing equipment for molten glass
JPH11240725A (en) Vacuum deaerator for molten glass
JP4513248B2 (en) Vacuum degassing apparatus and vacuum degassing method
JP2000007345A5 (en)
JP4674432B2 (en) Molten glass conduit structure, molten glass vacuum degassing apparatus, molten glass manufacturing method and glass article manufacturing method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050912

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080930

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090930

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090930

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100930

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100930

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110930

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110930

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120930

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120930

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120930

Year of fee payment: 7

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120930

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130930

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees