JP3817568B2 - Carbide blade grinding tool and method of manufacturing carbide tool - Google Patents

Carbide blade grinding tool and method of manufacturing carbide tool Download PDF

Info

Publication number
JP3817568B2
JP3817568B2 JP2005022748A JP2005022748A JP3817568B2 JP 3817568 B2 JP3817568 B2 JP 3817568B2 JP 2005022748 A JP2005022748 A JP 2005022748A JP 2005022748 A JP2005022748 A JP 2005022748A JP 3817568 B2 JP3817568 B2 JP 3817568B2
Authority
JP
Japan
Prior art keywords
tool
grindstone
cemented carbide
grinding
carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005022748A
Other languages
Japanese (ja)
Other versions
JP2006205328A (en
Inventor
満宏 大見
Original Assignee
大見工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大見工業株式会社 filed Critical 大見工業株式会社
Priority to JP2005022748A priority Critical patent/JP3817568B2/en
Publication of JP2006205328A publication Critical patent/JP2006205328A/en
Application granted granted Critical
Publication of JP3817568B2 publication Critical patent/JP3817568B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Polishing Bodies And Polishing Tools (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Description

本発明は、超硬刃の一部を研削して段付き状に陥没した凹部を形成し、その凹部にダイヤモンド焼結板材を埋設して超硬刃の一部とした超硬工具の製造方法及びそのような凹部を超硬刃に研削加工するための超硬刃研削工具に関する。   The present invention provides a method for manufacturing a cemented carbide tool in which a part of a cemented carbide blade is ground to form a recessed part recessed in a stepped shape, and a diamond sintered plate material is embedded in the recessed part to form part of the cemented carbide blade. The present invention also relates to a cemented carbide grinding tool for grinding such a recess into a cemented carbide blade.

従来、超硬刃の一部にダイヤモンド焼結板材埋設用の凹部を研削加工するためには、例えば図13及び図14に示した研削工具1,3が用いられていた。図13の研削工具1は、ダイヤモンドの粉粒を電着させた円柱状の砥石部2を先端に備えた構造になっている。また、図14の研削工具3は、図13の研削工具1の改良品であって、砥石部2の外周面に溝部2Aを設け、研削効率の向上を図ったものである(例えば、特許文献1参照)。
実開昭58−169953号公報(第2,4図)
Conventionally, for example, grinding tools 1 and 3 shown in FIGS. 13 and 14 have been used to grind a concave portion for burying a diamond sintered plate material in a part of a cemented carbide blade. The grinding tool 1 in FIG. 13 has a structure in which a cylindrical grindstone portion 2 electrodeposited with diamond particles is provided at the tip. 14 is an improved product of the grinding tool 1 of FIG. 13, and is provided with a groove 2A on the outer peripheral surface of the grindstone 2 to improve the grinding efficiency (for example, Patent Document 1). 1).
Japanese Utility Model Publication No. 58-169953 (Figs. 2 and 4)

ところで、超硬刃に上記凹部を研削加工する前に、その超硬刃自体は、例えば円板形砥石を用いて硬鋼材シャフトから削り出される。このとき円板形砥石は、研削盤、マシニングセンター等の工作機械に取り付けられ、例えば3000〜5000rpmの回転数で駆動されるが、円板形砥石の外周部の加工接触面が非常に小さいため加工が可能であった。   By the way, before grinding the said recessed part in a cemented carbide blade, the cemented carbide blade itself is cut out from a hard-steel material shaft, for example using a disk-shaped grindstone. At this time, the disk-shaped grindstone is attached to a machine tool such as a grinding machine or a machining center, and is driven at a rotational speed of, for example, 3000 to 5000 rpm. However, the machining contact surface on the outer periphery of the disk-shaped grindstone is very small. Was possible.

ところが、上記した研削工具1,3の砥石部2は、円板形砥石に比べると、径寸法が十分小さく、その径寸法に対する砥石部2の加工接触面が十分大きいため、円板形砥石と同等の周速を得るためには、研削工具1,3の回転数を十分に(例えば、50000rpm程度まで)上げる必要があった。   However, since the grinding wheel portion 2 of the grinding tools 1 and 3 described above has a sufficiently small diameter size and a sufficiently large processing contact surface of the grinding wheel portion 2 with respect to the diameter size, In order to obtain the equivalent peripheral speed, it was necessary to sufficiently increase the number of rotations of the grinding tools 1 and 3 (for example, up to about 50000 rpm).

しかしながら、増速装置を備えた特種な工作機械(例えば、マシニングセンター、研削盤)を用いても回転数を十分に上げることはできず、約12000rpm程度にすることが限界であった。そして、図13の研削工具1を12000rpm程度で回転駆動した場合には、超硬刃にダイヤモンド焼結板材埋設用の凹部を研削加工するために、長時間(数日間)の加工時間を要し、製造コストが高くなっていた。しかも、増速装置を備えた特殊な工作機械は高価であるため、これも製造コストが高くなる原因になっていた。また、高速エアスピンドルを用いると50000rpmで研削工具1を回転駆動することができ、研削効率は向上するが、工具寿命が短くなると共に設備費が増加するという問題が発生する。   However, even if a special machine tool (for example, a machining center or a grinding machine) equipped with a speed increasing device is used, the rotational speed cannot be increased sufficiently, and the limit is about 12000 rpm. When the grinding tool 1 of FIG. 13 is driven to rotate at about 12000 rpm, it takes a long time (several days) to grind the concave portion for burying the diamond sintered plate material on the carbide blade. The manufacturing cost was high. In addition, a special machine tool equipped with a speed increasing device is expensive, and this also increases the manufacturing cost. Further, when the high-speed air spindle is used, the grinding tool 1 can be rotationally driven at 50000 rpm and the grinding efficiency is improved. However, there arises a problem that the tool life is shortened and the equipment cost is increased.

これに対し、図14の研削工具3を用いた場合には、研削効率が向上し、例えば、850rpm程度の回転数であっても(即ち、通常の工作機械を用いても)、図13の研削工具1に比べて研削加工時間の短縮を図ることが可能になる。しかしながら、研削効率の向上に伴い、単位時間当たりの研削屑の発生量も増加するので、砥石部2の先端面2B(図14参照)と凹部4の底面4Aとの間に研削屑が挟まり、加工精度が低下するという問題が生じていた。そして、NG品が増え、結局、超硬工具の製造コストが高くなっていた。なお、高速エアスピンドルを用いて図13の研削工具1を高速回転させた場合も同様に研削屑の問題が発生する。   On the other hand, when the grinding tool 3 of FIG. 14 is used, the grinding efficiency is improved. For example, even when the rotational speed is about 850 rpm (that is, using a normal machine tool), the grinding tool 3 of FIG. Compared with the grinding tool 1, it is possible to shorten the grinding time. However, as the grinding efficiency improves, the amount of grinding waste generated per unit time also increases, so that grinding waste is sandwiched between the tip surface 2B (see FIG. 14) of the grindstone portion 2 and the bottom surface 4A of the recess 4, There has been a problem that processing accuracy is lowered. And the number of NG products increased, and as a result, the manufacturing cost of carbide tools was high. In addition, when the grinding tool 1 of FIG. 13 is rotated at a high speed using a high-speed air spindle, the problem of grinding dust similarly occurs.

上記問題に加え、従来の研削工具1,3を用いて研削加工された凹部4では、図15に示すように、凹部4の底面4Aと段差面4Bとの間の角部4Cにダイヤモンド焼結板材5が乗り上がることがある。これに対し、ダイヤモンド焼結板材5の底部に面取りを追加加工すればよいが、凹部4の角部4Cに対応した寸法になるように面取りを追加加工することは困難である。このため、ダイヤモンド焼結板材5が凹部4の角部4Cに乗り上がることを確実に防ぐことができず、位置決め精度等のばらつきによりNG品の量が増え、これも超硬工具の製造コストが高くなる原因になっていた。   In addition to the above problem, in the concave portion 4 ground by using the conventional grinding tools 1 and 3, as shown in FIG. 15, the corner 4C between the bottom surface 4A and the stepped surface 4B of the concave portion 4 is sintered with diamond. The board 5 may get on. On the other hand, the chamfering may be additionally processed at the bottom of the diamond sintered plate material 5, but it is difficult to additionally process the chamfering so as to have a dimension corresponding to the corner 4C of the recess 4. For this reason, it is not possible to reliably prevent the diamond sintered plate material 5 from climbing on the corner portion 4C of the recess 4, and the amount of NG products increases due to variations in positioning accuracy and the like, which also increases the manufacturing cost of the carbide tool. It was the cause of the increase.

本発明は、上記事情に鑑みてなされたもので、従来より製造コストを低減させることが可能な超硬工具の製造方法及び超硬刃研削工具の提供を目的とする。   This invention is made | formed in view of the said situation, and it aims at provision of the manufacturing method of a cemented carbide tool and a cemented carbide blade grinding tool which can reduce manufacturing cost conventionally.

上記目的を達成するためになされた請求項1の発明に係る超硬刃研削工具は、超硬刃の一部にダイヤモンド焼結板材埋設用の凹部を研削加工するためのものであって、工作機械の回転駆動軸に取り付け可能な取付軸部の先端に、ダイヤモンドの粉粒を電着させた砥石部を有してなる超硬刃研削工具において、砥石部は、先端に向かって拡径しかつ外周面が軸方向に対して3〜4度の勾配で傾斜した円錐台形状をなすと共に、砥石部の先端面は、外周縁から中心に向かうに従って徐々に窪んだ凹面形状をなし、砥石部には、外周面と先端面とに開放した溝部が形成され、溝部は、砥石部の軸方向と略平行な第1の内面と、砥石部の軸方向に対して傾斜した第2の内面と、それら第1及び第2の内面が交差してなる内側稜線とを有してなり、その内側稜線の一端部が、砥石部の先端面に形成されたセンター孔の開口縁に位置し、第2の内面が、溝部の回転方向において第1の内面より後側に配置され、第2の内面と砥石部の外周面との間の稜線が、砥石部の軸方向に対して60±10度傾斜したところに特徴を有する。 A carbide blade grinding tool according to the invention of claim 1 made for achieving the above object is for grinding a recess for embedding a diamond sintered plate material in a part of a carbide blade, In a cemented carbide grinding tool that has a grindstone part that is electrodeposited with diamond particles at the tip of the mounting shaft that can be attached to the rotary drive shaft of the machine, the grindstone part expands toward the tip. In addition, the outer peripheral surface has a truncated cone shape with an inclination of 3 to 4 degrees with respect to the axial direction, and the front end surface of the grindstone portion has a concave shape gradually recessed from the outer peripheral edge toward the center. Is formed with a groove portion that is open to the outer peripheral surface and the tip surface, and the groove portion includes a first inner surface that is substantially parallel to the axial direction of the grindstone portion, and a second inner surface that is inclined with respect to the axial direction of the grindstone portion. An inner ridge line formed by intersecting the first and second inner surfaces, and One end portion of the side ridge, located in the opening edge of the grinding wheel portion of the forward end surface to the formed center hole, a second inner surface, disposed rearwardly of the first inner surface in the rotational direction of the groove, the second It is characterized in that the ridge line between the inner surface and the outer peripheral surface of the grindstone portion is inclined by 60 ± 10 degrees with respect to the axial direction of the grindstone portion.

請求項2の発明は、請求項1に記載の超硬刃研削工具において、砥石部のうちダイヤモンドの粉粒の電着対象物である錐形金属部の先端外縁部に、0.02〜0.08mmの面取り処理が施されたところに特徴を有する According to a second aspect of the present invention, in the cemented carbide blade grinding tool according to the first aspect, 0.02 to 0 at the tip outer edge portion of the conical metal portion that is an electrodeposition target object of diamond powder in the grindstone portion. It is characterized by a chamfering process of 0.08 mm .

請求項の発明に係る超硬工具の製造方法は、超硬刃の一部を研削して段付き状に陥没した凹部を形成し、その凹部にダイヤモンド焼結板材を埋設して超硬刃の一部とした超硬工具の製造方法において、請求項1又は2に記載の超硬刃研削工具を用いて超硬刃に凹部を研削加工しかつ凹部の段差面に、超硬刃研削工具における砥石部の外周面を押し付けることで、凹部の段差面を凹部の底面に対して覆い被せる側に傾斜させ、その段差面にダイヤモンド焼結板材の側面を突き合わせて位置決めするところに特徴を有する。 According to a third aspect of the present invention, there is provided a method for manufacturing a cemented carbide tool in which a cemented carbide blade is formed by grinding a part of a cemented carbide blade to form a recess recessed into a stepped shape, and embedding a diamond sintered plate material in the recess. the method of manufacturing a part and the cemented carbide tool, the stepped surface of the cemented carbide blade with a grinding tool by grinding a recess in carbide blade and the recess of claim 1 or 2, carbide blade grinding tool By pressing the outer peripheral surface of the grindstone portion, the stepped surface of the recess is inclined toward the side covering the bottom surface of the recessed portion, and the side surface of the diamond sintered plate material is abutted against the stepped surface and positioned.

請求項の発明は、請求項に記載の超硬工具の製造方法において、ダイヤモンド焼結材のみからなる焼結板材本体部の裏面に超硬合金板を重ねて焼結させておき、凹部を研削加工後、その凹部の深さを計測する工程と、ダイヤモンド焼結板材全体の板厚を、凹部の深さに対応させるように超硬合金板を平面研削する工程と、ダイヤモンド焼結板材における超硬合金板を凹部の底面に鑞付けする工程とを行うところに特徴を有する。 According to a fourth aspect of the present invention, in the method for manufacturing a cemented carbide tool according to the third aspect , the cemented carbide alloy plate is laminated and sintered on the back surface of the sintered plate material main body made of only the diamond sintered material, and the concave portion is formed. Measuring the depth of the concave portion after grinding, a step of surface grinding the cemented carbide plate so that the thickness of the entire sintered diamond plate material corresponds to the depth of the concave portion, and the diamond sintered plate material And the step of brazing the cemented carbide plate to the bottom surface of the recess.

[請求項1及びの発明]
請求項1及びの発明によれば、超硬刃研削工具の砥石部に溝部を設けたので、溝部を有しない従来の研削工具に比べ、超硬刃への凹部の研削加工時間が短縮される。しかも、増速装置を有しない通常の工作機械に取り付けて研削加工を行うことができる。さらに、本発明に係る超硬刃研削工具の砥石部における先端面は、凹面形状になっているので、砥石部の先端面と凹部の底面との間に、研削屑を収容可能なスペースが形成される。これにより、研削屑を原因とした加工精度の低下が防がれ、NG品を減らすことができる。また、砥石部の外周面が傾斜しているので超硬刃に形成される凹部の段差面も傾斜し、凹部のうち底面と段差面との間の角部を、ダイヤモンド焼結板材の側面から離すことができる。これにより、ダイヤモンド焼結板材が凹部内の角部に乗り上がることがなくなり、凹部の段差面とダイヤモンド焼結板材の側面との当接位置が安定し、位置決め精度が向上する。ここで、砥石部の外周面の勾配は3〜4度であるので、凹部の段差面と、ダイヤモンド焼結板材の側面との間のうち非当接部分の隙間を狭くすることができる。このように、本発明に係る超硬刃研削工具及び超硬工具の製造方法によれば、研削加工時間が短縮されかつNG品を減らすことができ、製造コストを低減することが可能になる。
[Inventions of Claims 1 and 3 ]
According to the first and third aspects of the present invention, since the groove portion is provided in the grindstone portion of the cemented carbide blade grinding tool, the grinding time of the concave portion to the carbide blade is shortened compared to the conventional grinding tool having no groove portion. The Moreover, it can be mounted on a normal machine tool that does not have a speed increasing device for grinding. Furthermore, since the front end surface in the grindstone part of the carbide blade grinding tool according to the present invention has a concave shape, a space capable of accommodating grinding waste is formed between the front end surface of the grindstone part and the bottom surface of the concave part. Is done. Thereby, the fall of the processing precision resulting from grinding waste is prevented, and NG products can be reduced. Moreover, since the outer peripheral surface of the grindstone portion is inclined, the step surface of the recess formed in the carbide blade is also inclined, and the corner between the bottom surface and the step surface of the recess is formed from the side surface of the diamond sintered plate material. Can be released. As a result, the diamond sintered plate material does not run over the corners in the recess, the contact position between the step surface of the recess and the side surface of the diamond sintered plate material is stabilized, and the positioning accuracy is improved. Here, since the gradient of the outer peripheral surface of the grindstone portion is 3 to 4 degrees, the gap in the non-contact portion between the step surface of the recess and the side surface of the diamond sintered plate material can be narrowed. Thus, according to the cemented carbide blade grinding tool and the method for manufacturing a cemented carbide tool according to the present invention, the grinding time can be shortened, NG products can be reduced, and the manufacturing cost can be reduced.

ここで、溝は、砥石部の軸方向と略平行な第1の内面と、砥石部の軸方向に対して傾斜した第2の内面と、それら第1及び第2の内面が交差してなる内側稜線とを有してなり、第2の内面と砥石部の外周面との間の稜線が、砥石部の軸方向に対して60±10度傾斜しているので、汎用品である錐形砥石を用いて超硬刃研削工具に溝部を形成することができ、超硬刃研削工具自体の製造コストを低減することが可能になる。このように、本発明によれば、研削加工時間が短縮されると共に、超硬刃研削工具自体の製造コストも低減され、従来より超硬工具の製造コストを低減させることが可能になる。 Here, the groove portion includes a first inner surface axial direction substantially parallel to the grinding wheel portion, a second inner surface that is inclined relative to the axial direction of the grinding wheel portion, intersect their first and second inner surfaces it was closed and the inner ridge, ridge between the second inner surface and the grindstone portion outer peripheral surface of, since the inclined 60 ± 10 degrees with respect to the axial direction of the grinding wheel portion, a general-cone comprising Grooves can be formed in the carbide blade grinding tool using the shaped grindstone, and the manufacturing cost of the carbide blade grinding tool itself can be reduced. As described above, according to the present invention, the grinding time is shortened, the manufacturing cost of the cemented carbide grinding tool itself is reduced, and the manufacturing cost of the cemented carbide tool can be reduced as compared with the prior art.

[請求項2の発明]
請求項2の超硬刃研削工具では、砥石部のうちダイヤモンドの粉粒の電着対象物である錐形金属部の先端外縁部に、0.02〜0.08mmの面取り処理を施したので、ダイヤモンドの粉粒が錐形金属部材の先端外縁部に電着し易くなり、超硬刃研削工具自体の形状のばらつきが抑えられる。これにより、異なる超硬刃研削工具を用いて研削を行った場合に、それら研削部分の形状のばらつきを抑えることができる
[Invention of claim 2 ]
In the cemented carbide blade grinding tool according to claim 2, 0.02 to 0.08 mm of chamfering is performed on the outer edge portion of the conical metal portion, which is an object of electrodeposition of diamond particles in the grindstone portion. Diamond powder particles are easily electrodeposited on the outer edge of the tip of the conical metal member, and variations in the shape of the cemented carbide grinding tool itself are suppressed. Thereby, when grinding is performed using different carbide blade grinding tools, it is possible to suppress variations in the shapes of the ground portions .

[請求項の発明]
請求項の超硬工具の製造方法によれば、凹部を研削加工後、その凹部の深さに対応した大きさに、ダイヤモンド焼結板材全体の板厚を調整してから、ダイヤモンド焼結板材における超硬合金板を凹部の底面に鑞付けすることで、超硬刃の表面とダイヤモンド焼結板材の表面とを確実に面一にすることができる。



[Invention of claim 4 ]
According to the method for manufacturing a cemented carbide tool according to claim 4 , after the recess is ground, the thickness of the entire diamond sintered plate is adjusted to a size corresponding to the depth of the recess, and then the diamond sintered plate The surface of the cemented carbide blade and the surface of the sintered diamond plate material can be surely flushed by brazing the cemented carbide alloy plate at the bottom of the recess.



以下、本発明の一実施形態を図1〜図12に基づいて説明する。本実施形態の超硬刃研削工具10は、図1に示すように取付軸部11の先端に砥石部14を有する。取付軸部11の先端部11Aは、段付き状に外径が小さくなっており、砥石部14の基端部分は、取付軸部11の先端部11Aより段付き状に外径が大きくなっている。   Hereinafter, an embodiment of the present invention will be described with reference to FIGS. The cemented carbide grinding tool 10 of this embodiment has the grindstone part 14 at the front-end | tip of the attachment shaft part 11, as shown in FIG. The distal end portion 11A of the mounting shaft portion 11 has a stepped outer diameter, and the base end portion of the grindstone portion 14 has a stepped outer diameter larger than the distal end portion 11A of the mounting shaft portion 11. Yes.

なお、超硬刃研削工具10は、例えば、ハイス鋼からなる硬鋼材シャフトから削り出して製造され、その硬鋼材シャフトを心出しするためのセンター孔10A,10Bが超硬刃研削工具10の両端面の中心に形成されている。また、これらセンター孔10A,10Bは奥側が閉塞した形状になっている。   The cemented carbide grinding tool 10 is manufactured by cutting from a hard steel shaft made of high-speed steel, for example, and center holes 10A and 10B for centering the hard steel shaft are provided at both ends of the cemented carbide grinding tool 10. It is formed at the center of the surface. Further, these center holes 10A and 10B have a shape in which the back side is closed.

砥石部14は、取付軸部11に一体成形された錐形金属部14S(図2参照)にダイヤモンドの粉粒16(図3参照。以下、「ダイヤモンド粉粒16」という)を電着してなり、全体として先端側(即ち、取付軸部11から離れた側)に向かって外径が徐々に拡径した円錐台形状になっている。また、図2に示すように、砥石部14の外周面14Bは、砥石部14の軸方向(例えば、図2の矢印L1の方向)に対して例えば3〜4度(図2の角度X)の勾配で傾斜している。さらに、砥石部14の先端面14Cは、砥石部14の軸方向と直交する架空の面S1に対し、5〜7度(図2の角度Y)の勾配で外周縁から中心に向かうに従って徐々に窪んだ凹面形状になっている。   The grindstone portion 14 is obtained by electrodepositing diamond powder particles 16 (see FIG. 3; hereinafter referred to as “diamond powder particles 16”) on the conical metal portion 14S (see FIG. 2) integrally formed with the mounting shaft portion 11. As a whole, it has a truncated cone shape whose outer diameter gradually increases toward the tip side (that is, the side away from the mounting shaft portion 11). 2, the outer peripheral surface 14B of the grindstone portion 14 is, for example, 3 to 4 degrees (angle X in FIG. 2) with respect to the axial direction of the grindstone portion 14 (for example, the direction of the arrow L1 in FIG. 2). It is inclined at a slope of. Furthermore, the front end surface 14C of the grindstone portion 14 gradually increases from the outer peripheral edge toward the center with a gradient of 5 to 7 degrees (angle Y in FIG. 2) with respect to the imaginary surface S1 orthogonal to the axial direction of the grindstone portion 14. It has a recessed concave shape.

図3に示すように、砥石部14には、外周面14Bと先端面14Cとに開放した溝部15が複数(例えば、3つ)形成されている。これら溝部15は、同一形状をなし、砥石部14の周方向に均等配置されている。各溝部15は、例えば、砥石部14の軸方向と略平行な第1の内面15Aと、砥石部14の軸方向に対して傾斜した第2の内面15Bと、それら第1及び第2の内面15A,15Bが交差してなる内側稜線15Cとを有してなり、第2の内面15Bが、溝部15の回転方向において第1の内面15Aより後側に配置されている。また、溝部15の内側稜線15Cの一端部は、図3に示すように、センター孔10Bの開口縁に位置している。さらに、第2の内面15Bと砥石部14の外周面14Bとの間の稜線15Dは、砥石部14の軸方向に対して60±10度(図9の角度Z参照)で傾斜している。   As shown in FIG. 3, the grindstone portion 14 is formed with a plurality of (for example, three) groove portions 15 that are open to the outer peripheral surface 14B and the tip surface 14C. These groove portions 15 have the same shape and are arranged uniformly in the circumferential direction of the grindstone portion 14. Each groove portion 15 includes, for example, a first inner surface 15A substantially parallel to the axial direction of the grindstone portion 14, a second inner surface 15B inclined with respect to the axial direction of the grindstone portion 14, and the first and second inner surfaces. 15A, 15B has an inner ridge line 15C formed by intersecting, and the second inner surface 15B is arranged on the rear side of the first inner surface 15A in the rotation direction of the groove portion 15. Further, one end portion of the inner ridge line 15C of the groove portion 15 is located at the opening edge of the center hole 10B as shown in FIG. Furthermore, the ridge line 15D between the second inner surface 15B and the outer peripheral surface 14B of the grindstone portion 14 is inclined at 60 ± 10 degrees (see angle Z in FIG. 9) with respect to the axial direction of the grindstone portion 14.

より具体的には、図4に示すように、各溝部15は、ダイヤモンド粉粒16が電着される前の錐形金属部14Sに対し、錐形砥石20を押し付けて形成される。この錐形砥石20は、端面20Aに対して外周面20Bが略60度の角度で傾斜している。そして、錐形砥石20の端面20Aと外周面20Bとによって、溝部15の第1及び第2の内面15A,15Bが研削される。このとき、錐形砥石20における端面20Aが、砥石部14の軸方向と平行になるように配置される。これにより第1の内面15Aが砥石部14の軸方向と略平行になり、第2の内面15Bが軸方向に対して傾斜し、前記稜線15Dが軸方向に対して60±10度の角度で傾斜する。   More specifically, as shown in FIG. 4, each groove portion 15 is formed by pressing a conical grindstone 20 against the conical metal portion 14S before the diamond powder particles 16 are electrodeposited. In this cone-shaped grindstone 20, the outer peripheral surface 20B is inclined at an angle of approximately 60 degrees with respect to the end surface 20A. Then, the first and second inner surfaces 15A and 15B of the groove portion 15 are ground by the end surface 20A and the outer peripheral surface 20B of the conical grindstone 20. At this time, the end surface 20 </ b> A of the cone-shaped grindstone 20 is arranged so as to be parallel to the axial direction of the grindstone portion 14. As a result, the first inner surface 15A is substantially parallel to the axial direction of the grindstone portion 14, the second inner surface 15B is inclined with respect to the axial direction, and the ridge line 15D is at an angle of 60 ± 10 degrees with respect to the axial direction. Tilt.

なお、本実施形態では、溝部15の第1及び第2の内面15A,15Bが汎用品である錐形砥石20によって一度に加工されるので、これらを別々に加工した場合に比べて超硬刃研削工具10の製造コストを低減させることができる。   In the present embodiment, since the first and second inner surfaces 15A and 15B of the groove portion 15 are processed at once by the cone-shaped grindstone 20 that is a general-purpose product, the cemented carbide blade is compared with a case where these are processed separately. The manufacturing cost of the grinding tool 10 can be reduced.

図5には、砥石部14の先端面14Cを、軸方向から見た状態が示されている。同図に示すように、先端面14Cのうち隣り合った溝部15,15間の円弧状外縁部の両端間を結ぶ弦G1と、その弦G1と平行な円弧状外縁部の外接線L2との間の距離Wは、先端面14Cの外径D(例えば、8mm)に対して10分の1〜5分の1(具体的に、本実施形態では略1/8)になっている。   FIG. 5 shows a state in which the tip surface 14C of the grindstone 14 is viewed from the axial direction. As shown in the figure, a chord G1 connecting both ends of an arcuate outer edge portion between adjacent grooves 15 and 15 on the tip surface 14C, and a circumscribed line L2 of the arcuate outer edge portion parallel to the chord G1 The distance W between them is 1/10 to 1/5 (specifically, approximately 1/8 in this embodiment) with respect to the outer diameter D (for example, 8 mm) of the distal end surface 14C.

図6には、ダイヤモンド粉粒16を電着させる前の状態の錐形金属部14Sの先端外縁部が拡大して示されている。同図に示すように、錐形金属部14Sの先端外縁部には、微細な面取り処理が施されている。この面取り処理によって錐形金属部14Sに形成された面取りテーパ面14Eは、軸方向に対して例えば45度の角度をなし、その面取り寸法は、例えば0.02〜0.08mmになっている。具体的には、錐形金属部14Sの径方向(同図の左右方向)において、面取り処理前の錐形金属部14Sにおける先端エッジ部14Fから、面取り処理後の面取りテーパ面14Eの縁部までの寸法L3が0.02〜0.08mmになっている。   FIG. 6 is an enlarged view of the outer edge portion of the tip of the conical metal portion 14S before the diamond powder particles 16 are electrodeposited. As shown in the drawing, a fine chamfering process is performed on the outer edge of the tip of the conical metal portion 14S. The chamfered tapered surface 14E formed on the conical metal portion 14S by this chamfering process has an angle of, for example, 45 degrees with respect to the axial direction, and the chamfered dimension is, for example, 0.02 to 0.08 mm. Specifically, in the radial direction of the conical metal portion 14S (the left-right direction in the figure), from the tip edge portion 14F of the conical metal portion 14S before the chamfering process to the edge of the chamfered tapered surface 14E after the chamfering process. The dimension L3 is 0.02 to 0.08 mm.

図3に示すように、ダイヤモンド粉粒16は、錐形金属部14Sの表面全体に電着し、図7(A)に示すように、面取りテーパ面14Eにも電着している。ここで、仮に錐形金属部14Sに面取り処理を施していないと、図7(B)に示すように、例えば錐形金属部14Sの先端エッジ部14Fでダイヤモンド粉粒16が隆起し、これにより電着後に砥石部14の先端外縁部の形状がばらついたり、或いはダイヤモンド粉粒16が欠け落ちる事態が生じ得る。しかしながら、本実施形態では、錐形金属部14Sの先端外縁部に面取り処理が施されているので、上記した事態の発生を防ぐことができる。また、錐形金属部14Sの先端エッジ部14Fの欠けも防止することができる。これらにより、超硬刃研削工具10自体の形状のばらつきが抑えられると共に、異なる超硬刃研削工具10を用いて研削を行った場合に、それら研削部分の形状のばらつきを抑えることができる。   As shown in FIG. 3, the diamond powder particles 16 are electrodeposited on the entire surface of the conical metal portion 14S, and are also electrodeposited on the chamfered tapered surface 14E as shown in FIG. 7A. Here, if the chamfered metal part 14S is not chamfered, as shown in FIG. 7B, for example, the diamond powder particles 16 are raised at the tip edge part 14F of the conical metal part 14S, thereby After electrodeposition, the shape of the outer edge of the tip of the grindstone 14 may vary, or the diamond powder particles 16 may fall off. However, in the present embodiment, since the chamfering process is performed on the outer peripheral edge portion of the conical metal portion 14S, the above-described situation can be prevented. Further, it is possible to prevent the tip edge portion 14F of the conical metal portion 14S from being chipped. As a result, variation in the shape of the cemented carbide blade grinding tool 10 itself can be suppressed, and when grinding is performed using a different carbide blade grinding tool 10, variation in the shape of the ground portions can be suppressed.

次に、上記構成からなる本実施形態の超硬刃研削工具10を用いて図8に示した超硬工具30を製造する方法について説明する。この超硬工具30は、超硬合金製の超硬シャフトを研削してなり、シャフト部30Sの先端に刃部30Hを備えた構造をなしている。刃部30Hは、大径部30H1の先端同軸上に小径部30H2を備え、その小径部30H2の先端をテーパー状に先細りにした構造になっている。また、刃部30Hの周面には複数の超硬刃31が形成され、それら各超硬刃31が、大径部30H1と小径部30H2とに跨って超硬工具30の軸方向に延びている。   Next, a method for manufacturing the cemented carbide tool 30 shown in FIG. 8 using the cemented carbide blade grinding tool 10 of the present embodiment having the above-described configuration will be described. The cemented carbide tool 30 is formed by grinding a cemented carbide shaft and has a blade portion 30H at the tip of the shaft portion 30S. The blade portion 30H includes a small-diameter portion 30H2 coaxially with the tip of the large-diameter portion 30H1, and has a structure in which the tip of the small-diameter portion 30H2 is tapered. A plurality of carbide blades 31 are formed on the peripheral surface of the blade portion 30H, and each of the carbide blades 31 extends in the axial direction of the carbide tool 30 across the large diameter portion 30H1 and the small diameter portion 30H2. Yes.

複数の超硬刃31のうち所定の超硬刃31には、軸方向の2箇所に互いに形状が異なる1対の凹部32,32が形成されている。これら両凹部32,32は、超硬刃31の平坦部分を研削して段付き状に陥没している。そして、一方の凹部32は、平面形状が略半円形をなし、大径部30H1の先端部から小径部30H2に僅かに差し掛かった位置に亘って形成されている。他方の凹部32は、平面形状が略扇形をなし、小径部30H2の先端部からテーパー状の先端部に亘って形成されている。また、略半円形の凹部32における円弧部は、略扇形の凹部32における円弧部に比べて曲率半径が大きくなっている。そして、各凹部32,32に対応した形状のダイヤモンド焼結板材35,35がそれぞれ各凹部32,32に埋設されて超硬刃31の一部になっている。   Of the plurality of carbide blades 31, a predetermined carbide blade 31 is formed with a pair of recesses 32, 32 having different shapes from each other at two locations in the axial direction. These concave portions 32 and 32 are stepped by grinding a flat portion of the carbide blade 31. The one concave portion 32 has a substantially semicircular planar shape, and is formed over a position slightly approaching the small diameter portion 30H2 from the distal end portion of the large diameter portion 30H1. The other concave portion 32 has a substantially fan-shaped planar shape and is formed from the distal end portion of the small diameter portion 30H2 to the tapered distal end portion. Further, the arc portion of the substantially semicircular recess 32 has a larger radius of curvature than the arc portion of the approximately fan-shaped recess 32. And the diamond sintered plate materials 35 and 35 of the shape corresponding to each recessed part 32 and 32 are embed | buried under each recessed part 32 and 32, respectively, and become a part of the cemented carbide blade 31. FIG.

ダイヤモンド焼結板材35は、図11に示すように、ダイヤモンド焼結材のみからなる焼結板材本体部35Aの裏面に超硬合金板35Bを重ねた構造になっている。具体的には、焼結板材本体部35Aと超硬合金板35Bとを重ねて超高圧で互いに押し付け、この状態で超高温で加熱することで焼結板材本体部35Aと超硬合金板35Bとを焼結してダイヤモンド焼結板材35が形成されている。なお、ダイヤモンド焼結板材35の全体の板厚は、例えば1.4mmになっており、そのうち焼結板材本体部35Aの厚さは、0.2又は0.5mmになっている。   As shown in FIG. 11, the diamond sintered plate material 35 has a structure in which a cemented carbide plate 35B is stacked on the back surface of a sintered plate material main body portion 35A made of only a diamond sintered material. Specifically, the sintered plate material main body portion 35A and the cemented carbide plate 35B are stacked and pressed against each other with ultra high pressure, and heated at an ultra high temperature in this state, thereby causing the sintered plate material main body portion 35A and the cemented carbide plate 35B to Is sintered to form a diamond sintered plate material 35. The overall plate thickness of the diamond sintered plate material 35 is, for example, 1.4 mm, and the thickness of the sintered plate material body 35A is 0.2 or 0.5 mm.

さて、上記超硬工具30を製造するためには、前記した略扇形の凹部32用と略半円形の凹部32用に、砥石径が異なる2種類の超硬刃研削工具10が用意される。これら各超硬刃研削工具10は、マシニングセンターの主軸(本発明に係る「工作機械の回転駆動軸」に相当する)に脱着可能なツールシャンク(図示せず)に固定され、マシニングセンターのマガジンラック(図示せず)に格納される。また、ワークとしては、予め複数の超硬刃31が研削加工されかつ、両凹部32,32は加工されていない超硬工具30が用意される。そして、このワークとしての超硬工具30が、マシニングセンターのワーク治具(図示せず)に取り付けられる。   In order to manufacture the cemented carbide tool 30, two types of cemented carbide grinding tools 10 having different grindstone diameters are prepared for the substantially sector-shaped recess 32 and the substantially semicircular recess 32. Each of these carbide blade grinding tools 10 is fixed to a tool shank (not shown) that can be attached to and detached from the main spindle of the machining center (corresponding to the “rotary drive shaft of the machine tool” according to the present invention). (Not shown). Also, as a workpiece, a carbide tool 30 is prepared in which a plurality of carbide blades 31 are ground in advance and the concave portions 32 and 32 are not processed. Then, the carbide tool 30 as the workpiece is attached to a workpiece jig (not shown) of the machining center.

さらに、マシニングセンターの別のワーク治具(図示せず)には、略扇形及び略半円形の凹部32,32に対応させて、予め半円形状及び略扇形状に加工された各ダイヤモンド焼結板材35,35が固定される。具体的には、ワーク治具の平坦面にダイヤモンド焼結板材35の焼結板材本体部35A側が接着剤で固定される。この接着剤は、特殊な接着解除液を加えることで接着効果を除去可能なものが用いられる。   Further, in another machining jig (not shown) of the machining center, each diamond sintered plate material processed into a semicircular shape and a substantially fan shape in advance corresponding to the substantially fan-shaped and substantially semicircular concave portions 32, 32. 35 and 35 are fixed. Specifically, the sintered plate material body 35A side of the diamond sintered plate material 35 is fixed to the flat surface of the work jig with an adhesive. As this adhesive, one that can remove the adhesive effect by adding a special debonding liquid is used.

上記準備が完了したらマシニングセンターを起動する。すると、砥石部14の径が比較的小さい一方の超硬刃研削工具10がツールシャンクを介してマシニングセンターの主軸に取り付けられる。そして、図9に示すように、超硬刃研削工具10の軸方向が、超硬刃31の平坦面31Hに対して直交する方向に向けられ、刃部30Hの先端部において、超硬刃31から側方に離された位置に配置される。このとき、超硬刃研削工具10の先端面14Cは、超硬刃31の平坦面31Hに対して0.2mm(図9の寸法t参照)沈んだ位置に位置決めされる。   When the above preparation is completed, start the machining center. Then, one carbide blade grinding tool 10 having a relatively small diameter of the grindstone portion 14 is attached to the spindle of the machining center via the tool shank. Then, as shown in FIG. 9, the axial direction of the cemented carbide blade grinding tool 10 is directed in a direction orthogonal to the flat surface 31 </ b> H of the cemented carbide blade 31. It is arranged at a position separated from the side. At this time, the tip surface 14 </ b> C of the carbide blade grinding tool 10 is positioned at a position where it sinks 0.2 mm (see dimension t in FIG. 9) with respect to the flat surface 31 </ b> H of the carbide blade 31.

次いで、超硬刃研削工具10が、例えば約800〜900rpmで回転駆動されかつ回転軸と直交する方向に移動し、砥石部14の外周面14Bが超硬刃31に押し付けられる。これにより、超硬刃31の平坦部分が研削され、刃部30Hの先端部に略扇形の凹部32が加工される。詳細には、砥石部14の外周面14Bのうち溝部15の稜線15Dで超硬刃31を構成する超硬合金を恰も切削するように比較的深く研削し、外周面14Bにおける溝部15以外の部分で面粗度を高めるように研削する。これにより、溝部15を有しない従来の超硬刃研削工具に比べて効率よく超硬刃31を研削加工することができる。そして、超硬刃31が設定値で0.2mm研削されたら、超硬刃研削工具10が超硬工具30から離脱され、マシニングセンターに備えた計測器により、超硬刃研削工具10によって研削された略扇形の凹部32の深さが自動計測される。そして、設定値の0.2mmと実測値との差を、超硬刃研削工具10のマシニングセンターの主軸に対する取り付け誤差寸法として求める。   Next, the carbide blade grinding tool 10 is driven to rotate at, for example, about 800 to 900 rpm and moves in a direction orthogonal to the rotation axis, and the outer peripheral surface 14 </ b> B of the grindstone portion 14 is pressed against the carbide blade 31. Thereby, the flat part of the cemented carbide blade 31 is ground, and the substantially fan-shaped recessed part 32 is processed in the front-end | tip part of the blade part 30H. In detail, it grinds comparatively deep so that the cemented carbide which comprises the cemented carbide blade 31 in the outer peripheral surface 14B of the grindstone part 14 may be cut with the ridgeline 15D of the groove part 15, and the part other than the groove part 15 in the outer peripheral surface 14B Grind to increase surface roughness. Thereby, the carbide blade 31 can be efficiently ground as compared with a conventional carbide blade grinding tool that does not have the groove 15. Then, when the carbide blade 31 is ground by 0.2 mm at a set value, the carbide blade grinding tool 10 is detached from the carbide tool 30 and ground by the carbide blade grinding tool 10 by a measuring instrument provided in the machining center. The depth of the substantially fan-shaped recess 32 is automatically measured. Then, the difference between the set value of 0.2 mm and the actually measured value is obtained as an attachment error dimension of the cemented carbide grinding tool 10 with respect to the spindle of the machining center.

次いで、この取り付け誤差寸法を反映させて、実際の凹部32の深さが1.4mmになるように、超硬刃研削工具10の先端面14Cが、平坦面31Hに対して再び所定位置に配置される。そして、超硬刃研削工具10が回転軸と直交する方向に移動し、超硬刃31に扇形状で深さ1.4mmの凹部32が研削加工される。   Next, the tip surface 14C of the cemented carbide grinding tool 10 is again placed at a predetermined position with respect to the flat surface 31H so that the actual recess 32 has a depth of 1.4 mm, reflecting this attachment error dimension. Is done. Then, the cemented carbide blade grinding tool 10 moves in a direction perpendicular to the rotation axis, and the cemented carbide blade 31 is ground to form a fan-shaped concave portion 32 having a depth of 1.4 mm.

ところで、超硬刃研削工具10にて研削加工している間に研削屑が発生する。しかしながら、本実施形態の超硬刃研削工具10では、砥石部14の先端面14Cが凹面形状になっているので、砥石部14の先端面14Cと凹部32の底面32Cとの間に、研削屑を収容可能なスペースが形成される。これにより、砥石部14の先端面14Cと凹部32の底面32Cとの間に研削屑が挟まっても上記スペースに収容されると共に、砥石部14の外周面14Bと段差面32Bとの隙間から研削屑が排出され、超硬刃研削工具10の位置が軸方向でばらつくことがなくなり、研削屑を原因とした加工精度の低下が防がれる。特に、本実施形態では、砥石部14の先端面14Cの全体が超硬刃31に重なることはないので(図9の二点鎖線参照)、研削屑が、前記したスペースを通って超硬刃31の刃先側から効率よく排除される。
なお、別のワークにおいて、砥石部14の先端面14Cの全体がワークに重なるような加工を行った場合は、前記したスペースに収容された研削屑が砥石部14における周面のうちワークに押し付けられた部分と反対側で、溝部15を通して前記スペースの外部に排出される。
By the way, grinding waste is generated during grinding with the carbide blade grinding tool 10. However, in the cemented carbide blade grinding tool 10 of the present embodiment, the front end surface 14C of the grindstone portion 14 has a concave shape, and therefore, grinding dust is provided between the front end surface 14C of the grindstone portion 14 and the bottom surface 32C of the concave portion 32. A space capable of accommodating the is formed. As a result, even if grinding debris is sandwiched between the front end surface 14C of the grindstone portion 14 and the bottom surface 32C of the recess 32, it is accommodated in the space and is ground from the gap between the outer peripheral surface 14B of the grindstone portion 14 and the step surface 32B. Waste is discharged, and the position of the cemented carbide grinding tool 10 does not vary in the axial direction, thereby preventing a reduction in processing accuracy due to grinding waste. In particular, in the present embodiment, since the entire tip surface 14C of the grindstone portion 14 does not overlap the carbide blade 31 (see the two-dot chain line in FIG. 9), the grinding scrap passes through the above-described space and the carbide blade. It is efficiently excluded from the 31 blade edge side.
In addition, in another workpiece, when processing is performed so that the entire tip surface 14C of the grindstone portion 14 overlaps the workpiece, the grinding waste accommodated in the space described above is pressed against the workpiece on the circumferential surface of the grindstone portion 14. On the side opposite to the formed portion, the space 15 is discharged to the outside through the groove 15.

超硬工具30に必要な略扇形の凹部32が全て加工されたら、それら略扇形の凹部32毎に深さが自動計測される。そして、ツール交換が行われ、砥石径が比較的大きな他方の超硬刃研削工具10がマシニングセンターの主軸に取り付けられ、その超硬刃研削工具10によって略半円形の凹部32が略扇形の凹部32と同様に加工される。   When all the substantially sector-shaped recesses 32 necessary for the carbide tool 30 are processed, the depth is automatically measured for each of the approximately sector-shaped recesses 32. Then, the tool is changed, and the other carbide blade grinding tool 10 having a relatively large grindstone diameter is attached to the spindle of the machining center, and the carbide blade grinding tool 10 makes the substantially semicircular recess 32 a substantially fan-shaped recess 32. It is processed in the same way.

次いで、超硬工具30及びダイヤモンド焼結板材35をマシニングセンターのワーク治具から取り外す。そして、略扇形及の略円形の凹部32,32に各ダイヤモンド焼結板材35を埋設する作業を行う。具体的には、ダイヤモンド焼結板材35のうち超硬合金板35Bに溶けた鑞を付け、図10に示すように、その超硬合金板35Bを凹部32の底面32Cに宛がう。そして、図11に示すように、ダイヤモンド焼結板材35の側面35Sを凹部32の段差面32Bに押し付ける。   Next, the cemented carbide tool 30 and the diamond sintered plate material 35 are removed from the work jig of the machining center. And the operation | work which embed | buries each diamond sintered board 35 in the substantially circular recessed parts 32 and 32 of substantially sector shape is performed. Specifically, a molten iron is attached to the cemented carbide plate 35B of the diamond sintered plate material 35, and the cemented carbide plate 35B is directed to the bottom surface 32C of the recess 32 as shown in FIG. Then, as shown in FIG. 11, the side surface 35 </ b> S of the diamond sintered plate material 35 is pressed against the step surface 32 </ b> B of the recess 32.

ここで、本実施形態の超硬刃研削工具10で研削加工された凹部32の段差面32Bは、砥石部14の外周面14Bに対応して、底面32Cに覆い被さる側に傾斜している。これにより、ダイヤモンド焼結板材35は、凹部32の底面32Cと段差面32Bとの間の角部32Dに乗り上がらないように離され、ダイヤモンド焼結板材35の側面35Sを各凹部32,32の段差面32Bに押し付けたときに、それら側面35Sと段差面32Bにおける底面32Cから離れた側の縁部同士(図11の35E,32E)が確実に当接する。即ち、超硬刃31に対するダイヤモンド焼結板材35の位置決め精度が向上する。また、砥石部14の外周面14Bの勾配は3〜4度であるので、凹部32の段差面32Bと、ダイヤモンド焼結板材35の側面35Sとの間のうち非当接部分の隙間を狭くすることができ、その隙間が鑞で埋められる。   Here, the stepped surface 32B of the recess 32 ground by the carbide blade grinding tool 10 of the present embodiment is inclined to the side covering the bottom surface 32C corresponding to the outer peripheral surface 14B of the grindstone portion 14. Thereby, the diamond sintered plate material 35 is separated so as not to ride on the corner portion 32D between the bottom surface 32C and the stepped surface 32B of the concave portion 32, and the side surface 35S of the diamond sintered plate material 35 is separated from each of the concave portions 32, 32. When pressed against the stepped surface 32B, the side surfaces 35S and the edge portions of the stepped surface 32B on the side away from the bottom surface 32C (35E and 32E in FIG. 11) abut securely. That is, the positioning accuracy of the diamond sintered plate material 35 with respect to the carbide blade 31 is improved. Further, since the gradient of the outer peripheral surface 14B of the grindstone 14 is 3 to 4 degrees, the gap between the non-contact portion between the step surface 32B of the recess 32 and the side surface 35S of the diamond sintered plate material 35 is narrowed. And the gap is filled with cocoons.

このように本実施形態の超硬刃研削工具10及び超硬工具30の製造方法によれば、通常のマシニングセンターであっても溝部15を備えない従来の超硬刃研削工具に比べて研削加工時間を短縮することができる。しかも、研削屑を効率よく排除して加工精度を向上させることが可能であると共に、超硬刃31に対するダイヤモンド焼結板材35の位置決め精度を向上させることができる。そして、これら加工精度、位置決め精度の向上に基づくNG品の削減及び研削加工時間の短縮により、製造コストを低減することが可能になる。   Thus, according to the manufacturing method of the cemented carbide grinding tool 10 and the cemented carbide tool 30 of the present embodiment, the grinding time is longer than that of a conventional cemented carbide grinding tool that does not include the groove portion 15 even in a normal machining center. Can be shortened. In addition, it is possible to improve the processing accuracy by efficiently removing grinding scraps, and it is possible to improve the positioning accuracy of the diamond sintered plate material 35 relative to the carbide blade 31. And it becomes possible to reduce a manufacturing cost by the reduction of the NG product based on improvement of these processing precision and positioning precision, and shortening of the grinding time.

なお、図8に示されたワークとしての超硬工具30に代え、図12に示された超硬工具30Xも上記したマシニングセンターを用いて製造することもできる。この超硬工具30Xは、同一径で軸方向に延び、先端部がテーパ状に先細りになっている。そして、この超硬工具30Xにおける所定の超硬刃31に形成された凹部32,32は、略扇形と略半円形になっているが、これら略扇形と略半円形の曲率半径は同じになっている。この場合、1種類の超硬刃研削工具10のみを使用してツール交換を行うことなく、超硬工具30Xに略半円形及び略扇形の両凹部32,32を加工することができる。
[他の実施形態]
本発明は、前記実施形態に限定されるものではなく、例えば、以下に説明するような実施形態も本発明の技術的範囲に含まれ、さらに、下記以外にも要旨を逸脱しない範囲内で種々変更して実施することができる。
In place of the cemented carbide tool 30 as the workpiece shown in FIG. 8, the cemented carbide tool 30X shown in FIG. 12 can also be manufactured using the above-described machining center. The cemented carbide tool 30X has the same diameter, extends in the axial direction, and has a tip portion that is tapered. And the recessed parts 32 and 32 formed in the predetermined carbide blade 31 in this carbide tool 30X are substantially fan-shaped and substantially semicircular, but the curvature radius of these substantially fan-shaped and substantially semicircular becomes the same. ing. In this case, both the substantially semicircular and substantially fan-shaped concave portions 32 and 32 can be machined in the carbide tool 30X without changing the tool by using only one type of carbide blade grinding tool 10.
[Other Embodiments]
The present invention is not limited to the above-described embodiment. For example, the embodiments described below are also included in the technical scope of the present invention, and various other than the following can be made without departing from the scope of the invention. It can be changed and implemented.

(1)前記実施形態の超硬刃研削工具10には、複数の溝部15が形成されていたが、溝部15は1つであってもよい。   (1) Although the plurality of groove portions 15 are formed in the carbide blade grinding tool 10 of the above-described embodiment, the number of the groove portions 15 may be one.

(2)前記実施形態では、超硬刃研削工具10をマシニングセンターに取り付けて超硬工具30を研削加工する場合について説明したが、研削盤に超硬刃研削工具10を取り付けて超硬工具30を研削加工してもよい。   (2) In the above embodiment, the description has been given of the case where the carbide tool 30 is attached to the machining center and the carbide tool 30 is ground. However, the carbide tool 30 is attached to the grinder by attaching the carbide tool 30. You may grind.

(3)前記実施形態では、図8に示された超硬工具30において、曲率半径が異なる凹部32,32を研削加工するために、砥石径が異なる2種類の超硬刃研削工具10を用いていたが、超硬刃研削工具10に円弧研削(即ち、超硬刃研削工具10が回転軸と直交する方向で円弧状に移動する研削)を行わせることで、1種類の超硬刃研削工具10で曲率半径が異なる凹部32,32を研削加工してもよい。また、図12に示された超硬工具30Xにおける同じ曲率の凹部を円弧研削で加工してもよい。   (3) In the said embodiment, in order to grind the recessed parts 32 and 32 from which a curvature radius differs in the carbide tool 30 shown by FIG. 8, two types of carbide blade grinding tools 10 from which a grindstone diameter differs are used. However, by making the carbide blade grinding tool 10 perform arc grinding (that is, grinding in which the carbide blade grinding tool 10 moves in an arc shape in a direction perpendicular to the rotation axis), one kind of carbide blade grinding is performed. You may grind the recessed parts 32 and 32 from which a curvature radius differs with the tool 10. FIG. Moreover, you may process the recessed part of the same curvature in the cemented carbide tool 30X shown by FIG. 12 by circular grinding.

本発明の一実施形態に係る超硬刃研削工具の部分側断面図1 is a partial sectional side view of a cemented carbide blade grinding tool according to an embodiment of the present invention. 超硬刃研削工具における先端部の側断面図Side sectional view of the tip of a cemented carbide grinding tool 超硬刃研削工具における先端部の斜視図Perspective view of the tip of a carbide blade grinding tool 超硬刃研削工具の砥石部及び錐形砥石の斜視図Perspective view of grinding wheel part and cone-shaped grinding wheel of carbide blade grinding tool 超硬刃研削工具を軸方向から見た砥石部の底面図Bottom view of the grinding wheel as seen from the axial direction of the carbide cutting tool 超硬刃研削工具の砥石部における先端外縁部の断面図Cross-sectional view of the outer edge of the tip of the grinding wheel of a carbide blade grinding tool 超硬刃研削工具の砥石部における先端外縁部の断面図Cross-sectional view of the outer edge of the tip of the grinding wheel of a carbide blade grinding tool 超硬工具の側面図Carbide tool side view 超硬刃研削工具を超硬工具の超硬刃に対向させた状態の側面図Side view of a cemented carbide grinding tool facing the cemented carbide blade of a cemented carbide tool 超硬工具の断面図Cross section of carbide tool 超硬刃の凹部にダイヤモンド焼結板材を埋め込んだ状態の断面図Cross-sectional view of diamond blades embedded in the recesses of the carbide blade 超硬工具の側面図Carbide tool side view 従来の研削工具の側面図Side view of a conventional grinding tool 従来の研削工具の側面図Side view of a conventional grinding tool 従来の研削工具で超硬刃を研削した場合の凹部の断面図Cross-sectional view of a recess when a cemented carbide blade is ground with a conventional grinding tool

符号の説明Explanation of symbols

10 超硬刃研削工具
11 取付軸部
14 砥石部
14B 外周面
14C 先端面
14S 錐形金属部
15 溝部
15A 第1の内面
15B 第2の内面
15C 内側稜線
15D 稜線
16 ダイヤモンド粉粒
30 超硬工具
31 超硬刃
31H 平坦面
32I,32 凹部
32B 段差面
32C 底面
32D 底面側角部
35 ダイヤモンド焼結板材
35A 焼結板材本体部
35B 超硬合金板
DESCRIPTION OF SYMBOLS 10 Carbide blade grinding tool 11 Mounting shaft part 14 Grinding wheel part 14B Outer peripheral surface 14C Front end surface 14S Conical metal part 15 Groove part 15A 1st inner surface 15B 2nd inner surface 15C Inner ridgeline 15D Ridge line 16 Diamond powder 30 Carbide tool 31 Carbide blade 31H Flat surface 32I, 32 Recess 32B Stepped surface 32C Bottom surface 32D Bottom side corner 35 Diamond sintered plate 35A Sintered plate body 35B Cemented carbide plate

Claims (4)

超硬刃の一部にダイヤモンド焼結板材埋設用の凹部を研削加工するためのものであって、工作機械の回転駆動軸に取り付け可能な取付軸部の先端に、ダイヤモンドの粉粒を電着させた砥石部を有してなる超硬刃研削工具において、
前記砥石部は、先端に向かって拡径しかつ外周面が軸方向に対して3〜4度の勾配で傾斜した円錐台形状をなすと共に、前記砥石部の先端面は、外周縁から中心に向かうに従って徐々に窪んだ凹面形状をなし、
前記砥石部には、外周面と先端面とに開放した溝部が形成され、
前記溝部は、前記砥石部の軸方向と略平行な第1の内面と、前記砥石部の軸方向に対して傾斜した第2の内面と、それら第1及び第2の内面が交差してなる内側稜線とを有してなり、その内側稜線の一端部が、前記砥石部の先端面に形成されたセンター孔の開口縁に位置し、
前記第2の内面が、前記溝部の回転方向において前記第1の内面より後側に配置され、
前記第2の内面と前記砥石部の外周面との間の稜線が、前記砥石部の軸方向に対して60±10度傾斜したことを特徴とする超硬刃研削工具。
This is for grinding a recess for embedding a diamond sintered plate material on a part of a carbide blade. Electrodeposition of diamond powder particles on the tip of a mounting shaft that can be mounted on the rotary drive shaft of a machine tool In the carbide blade grinding tool having the grindstone part made,
The grindstone portion has a truncated cone shape whose diameter increases toward the tip and the outer peripheral surface is inclined at a gradient of 3 to 4 degrees with respect to the axial direction, and the tip surface of the grindstone portion is centered from the outer periphery. Concave shape gradually recessed as you go,
In the grindstone part, a groove part opened to the outer peripheral surface and the tip surface is formed,
The groove portion includes a first inner surface substantially parallel to the axial direction of the grindstone portion, a second inner surface inclined with respect to the axial direction of the grindstone portion, and the first and second inner surfaces intersecting each other. An inner ridge line, one end of the inner ridge line is located at the opening edge of the center hole formed in the tip surface of the grindstone part,
The second inner surface is disposed on the rear side of the first inner surface in the rotation direction of the groove,
A cemented carbide grinding tool, wherein a ridge line between the second inner surface and the outer peripheral surface of the grindstone portion is inclined by 60 ± 10 degrees with respect to the axial direction of the grindstone portion.
前記砥石部のうちダイヤモンドの粉粒の電着対象物である錐形金属部の先端外縁部に、0.02〜0.08mmの面取り処理が施されたことを特徴とする請求項1に記載の超硬刃研削工具。   The chamfering process of 0.02-0.08 mm was given to the front-end | tip outer edge part of the cone-shaped metal part which is the electrodeposition object of the diamond particle of the said grindstone part. Carbide blade grinding tool. 超硬刃の一部を研削して段付き状に陥没した凹部を形成し、その凹部にダイヤモンド焼結板材を埋設して前記超硬刃の一部とした超硬工具の製造方法において、In the method of manufacturing a cemented carbide tool, a part of the cemented carbide blade is ground to form a recessed part depressed in a stepped shape, and a diamond sintered plate material is embedded in the recessed part to make a part of the cemented carbide blade.
前記請求項1又は2に記載の超硬刃研削工具を用いて前記超硬刃に前記凹部を研削加工しかつ前記凹部の段差面に、前記超硬刃研削工具における前記砥石部の外周面を押し付けることで、前記凹部の段差面を前記凹部の底面に対して覆い被せる側に傾斜させ、その段差面に前記ダイヤモンド焼結板材の側面を突き合わせて位置決めすることを特徴とした超硬工具の製造方法。  The carbide blade grinding tool according to claim 1 or 2 is used to grind the concave portion into the carbide blade, and the stepped surface of the concave portion is provided with an outer peripheral surface of the grindstone portion in the carbide blade grinding tool. Manufacturing a cemented carbide tool characterized in that, by pressing, the stepped surface of the concave portion is inclined to the side covering the bottom surface of the concave portion, and the side surface of the diamond sintered plate material is butted against the stepped surface. Method.
ダイヤモンド焼結材のみからなる焼結板材本体部の裏面に超硬合金板を重ねて焼結させておき、A cemented carbide plate is laminated and sintered on the back surface of the sintered plate material main body made only of the diamond sintered material,
前記凹部を研削加工後、その凹部の深さを計測する工程と、前記ダイヤモンド焼結板材全体の板厚を、前記凹部の深さに対応させるように前記超硬合金板を平面研削する工程と、前記ダイヤモンド焼結板材における前記超硬合金板を前記凹部の底面に鑞付けする工程とを行うことを特徴とする請求項3に記載の超硬工具の製造方法。  A step of measuring the depth of the concave portion after grinding the concave portion, and a step of surface grinding the cemented carbide plate so that the thickness of the entire diamond sintered plate material corresponds to the depth of the concave portion, and The method for manufacturing a cemented carbide tool according to claim 3, wherein the step of brazing the cemented carbide alloy plate in the diamond sintered plate material to the bottom surface of the recess is performed.
JP2005022748A 2005-01-31 2005-01-31 Carbide blade grinding tool and method of manufacturing carbide tool Expired - Fee Related JP3817568B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005022748A JP3817568B2 (en) 2005-01-31 2005-01-31 Carbide blade grinding tool and method of manufacturing carbide tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005022748A JP3817568B2 (en) 2005-01-31 2005-01-31 Carbide blade grinding tool and method of manufacturing carbide tool

Publications (2)

Publication Number Publication Date
JP2006205328A JP2006205328A (en) 2006-08-10
JP3817568B2 true JP3817568B2 (en) 2006-09-06

Family

ID=36962692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005022748A Expired - Fee Related JP3817568B2 (en) 2005-01-31 2005-01-31 Carbide blade grinding tool and method of manufacturing carbide tool

Country Status (1)

Country Link
JP (1) JP3817568B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018079538A (en) * 2016-11-16 2018-05-24 日進工具株式会社 Sintered body blazing tool

Also Published As

Publication number Publication date
JP2006205328A (en) 2006-08-10

Similar Documents

Publication Publication Date Title
US7367753B2 (en) Milling cutter
WO2007142224A1 (en) Cutting tool and cutting insert
CN107073588B (en) Method for grinding a parting blade and parting blade
JP6098440B2 (en) Ball end mill
JP3817567B2 (en) Carbide blade grinding tool and method of manufacturing carbide tool
CN105710427B (en) Milling cutter tool and machining method using same
JP2006198743A (en) Small-diameter rotary tool, and method of cutting workpiece formed of high-hardness material
JP2005111626A (en) Grinding wheel
JP2007021623A (en) Tip and milling tool
JP4553880B2 (en) Milling tools
JP3817568B2 (en) Carbide blade grinding tool and method of manufacturing carbide tool
JP4380285B2 (en) Stepped end mill and manufacturing method thereof
JP4746339B2 (en) Cutting tool manufacturing method
JP4545100B2 (en) Compound tool
JP4666282B2 (en) Drill
JP3485544B2 (en) Milling tools
JP2021115684A (en) Multi-blade ball end mil and processing method of multi-blade ball end mill
JP2006088242A (en) Drilling tool
JP2008229764A (en) Rotary tool and machining method
JP5929144B2 (en) Hard sintered ball end mill
JPH10249805A (en) Router cutting edge
JPH078131Y2 (en) Diamond tools
JP2002126930A (en) Multiblade ball end mill
JP3077033B2 (en) Chip for disk cutter and method of processing the same
JP2008254130A (en) Hole saw and its manufacturing method

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20060524

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20060612

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees