JP3817374B2 - Process for producing unsaturated carboxylic acid - Google Patents

Process for producing unsaturated carboxylic acid Download PDF

Info

Publication number
JP3817374B2
JP3817374B2 JP26980398A JP26980398A JP3817374B2 JP 3817374 B2 JP3817374 B2 JP 3817374B2 JP 26980398 A JP26980398 A JP 26980398A JP 26980398 A JP26980398 A JP 26980398A JP 3817374 B2 JP3817374 B2 JP 3817374B2
Authority
JP
Japan
Prior art keywords
reaction
catalyst
pressure
space
isobutane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26980398A
Other languages
Japanese (ja)
Other versions
JP2000095725A (en
Inventor
シンドラー、ゲーツ、ベーター
利明 宇井
功一 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP26980398A priority Critical patent/JP3817374B2/en
Publication of JP2000095725A publication Critical patent/JP2000095725A/en
Application granted granted Critical
Publication of JP3817374B2 publication Critical patent/JP3817374B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【0001】
【発明の属する技術分野】
本発明は、炭素原子数が3〜8の飽和炭化水素を分子状酸素および触媒存在下に気相接触酸化して不飽和カルボン酸を製造する方法に関する。詳しくはプロパン、イソブタン等の飽和炭化水素を分子状酸素および触媒存在下に気相接触酸化して、プロパンからはアクリル酸を、イソブタンからはメタクリル酸を、ノルマルブタンからは無水マレイン酸、ペンタン類からは無水マレイン酸、無水フタル酸を製造する方法に関する。
【0002】
【従来の技術】
炭素原子数が3〜8の飽和炭化水素を分子状酸素および触媒存在下に気相接触酸化して不飽和含酸素化合物および/または不飽和炭化水素を製造する方法は、すでに数多く提案されている。ノルマルブタンから無水マレイン酸の製造のように、すでに工業化された例もあるが、まだ工業化の領域に達していないものが数多くある。たとえば、プロパンを原料としたアクロレイン、アクリル酸等の含酸素化合物および/またはプロピレンを製造する方法に関しては、例えば特開昭55−62041号、特開平2−83348号、特開平6−199731号、特開平6−218286号、特開平6−279351号、特開平7−10801号などがあり、イソブタンからはメタクロレイン、メタクリル酸等の含酸素化合物および/またはイソブチレンを製造する方法に関しては、例えば特開昭55−6204、特開平3−20237号、特開平4−59738号、特開平4−59739号、特開平4−128247号、特開平5−178774号、特開平5−213799号、特開平6−211725号、特公平7−33344号、特公平7−116071号、特公平8−5820号、特公平8−32644号、特許番号第2558036号などが提案されている。また、出願人らも特開平3−106839号、特開平7−10782号、特開平8−12606号、特開平9−12490、特開平9−20700号を報告している。
【0003】
実際にこれらの製造方法を用いて不飽和含酸素化合物および/または不飽和炭化水素を製造する場合、飽和炭化水素の転化率、目的とする含酸素化合物の選択率、空時収率(STY:単位触媒量あたりの目的生成物の生産量)、触媒寿命が重要な因子となってくるが、現在のところノルマルブタンから無水マレイン酸を製造する技術以外においては、それらすべての因子を十分に満足する反応方法は開発されていないのが実状である。
【0004】
転化率については、原料である飽和炭化水素の反応性が極端に乏しいため、生成物が逐次酸化を起こしにくいノルマルブタンからの無水マレイン酸の製造や、不飽和炭化水素を原料とする製造法のように、1パスの反応のみで目的とする含酸素化合物の収率を満足する触媒、反応方法が開発できていない。そこで、現状においては、未反応飽和炭化水素をリサイクルするプロセスを採用せざるを得ないが、かかる方法に於いても、転化率を向上させるために反応温度を上げる等で反応条件を過酷にした場合は、目的化合物である不飽和含酸素化合物および/または不飽和炭化水素の逐次酸化が進行してしまい選択率が極端に低下してしまう。さらに、反応温度の上昇に伴い触媒寿命が短くなるとの不都合を生じる。
【0005】
目的化合物の製造コストを決定する重要な因子の1つに、空時収率がある。どんなに収率の高い触媒やプロセスであっても、空時収率が低ければ、所定の生産量を確保するための触媒量、反応器が大きくなり、それとともに付帯設備も大きくなるため、製造コストは高くなってしまう。逆に空時収率が高ければ、製造コストは低くなり有利になる。とりわけ、未反応の原料をリサイクルさせなければならないようなプロセスにおいては、空時収率の向上が製造コストに与える影響が大きい。
【0006】
しかしながら、現在の製造技術においては、空時収率という概念で整理した場合、非常に低い例しかしめされていないのが、実状である。前述のとおり、これらの飽和炭化水素の酸化反応を選択率よく行うために低温で実施すると転化率が低くなる。そこで、これらの飽和炭化水素の酸化反応では空時収率を向上させるため、原料の飽和炭化水素の濃度を向上させて反応を行っている例が多い。たとえば、特公平7−116071号、特公平8−5820号、特公平8−32644号においては、イソブタン酸化反応において、イソブタン濃度を60%という高濃度で実施しているにもかかわらず、その空時収率を計算すると、反応管を入れている恒温層の温度が340℃以上という高い反応温度にもかかわらず、1mmol/g−cat/hr以下である。さらに、恒温層の温度が370℃という、Keggin型ヘテロポリ酸触媒の使用上限温度においてでさえ、2mmol/g−cat/hr程度である。特許第2558036号においては、同じイソブタン酸化反応で、50%のイソブタン濃度で、しかも反応温度280℃という低温であるにもかかわらず、高い生産性でメタクロレイン、メタクリル酸を合成している。しかしながら、リン、バナジウム含有の複合酸化物触媒を用いているため、主生成物はメタクロレインであり、メタクリル酸を得るためには、さらにもう一段の酸化を行わなければならないため、工業的に不利である。
【0007】
反応原料の分圧を高くして、反応速度を上げるのは周知の事実であるが、従来の技術では、原料濃度を高めて行う例の教示はあるものの、反応圧力を上げて分圧を上げる例は知られていない。通常の気相酸化反応では、反応圧力を上げることにより反応速度は向上するが、目的生成物からの逐次酸化が進行してしまい、選択率が低下するために好ましくないのも周知の事実である。よって、従来の技術については、反応圧力は低い方が好ましいと考えられている。事実、プロパン、イソブタンの酸化に関する従来の技術では、反応圧力に関しては加圧反応条件でも可能とは記載されているものの、「より好ましくは2気圧以下、常圧付近がより好ましい」と記載されているにすぎず、152KPa以上の反応圧力を用いている実施例を本出願人は知らない。
【0008】
【発明が解決しようとする課題】
かかる事情下に鑑み、本発明者等はプロパン、イソブタン等の飽和炭化水素を原料として用い、これよりアクリル酸或いはメタクリル酸等の不飽和カルボン酸を製造する方法に於いて、目的生成物の選択率低下を抑制して、単位触媒触媒当りの目的生成物の生産量が高い、すなわち空時収率に優れた製造方法を見出すことを目的とし、鋭意検討した結果、特定の操業条件を用いる場合には上記目的を全て満足し得ることを見出し、本発明を完成するに至った。
【0009】
【課題を解決するための手段】
すなわち本発明は、炭素原子数が3〜8の飽和炭化水素を分子状酸素および触媒存在下に気相接触酸化して不飽和カルボン酸を製造する方法において、該触媒反応を接触時間が10秒以下で、かつ反応圧力152KPa以上で実施することを特徴とする不飽和カルボン酸の製造方法を提供するものである。
【0010】
【発明の実施の形態】
本発明の実施に際しては、反応原料として炭素原子数が3〜8の飽和炭化水素とはプロパン、イソブタン等が挙げられ、これらは分子状酸素および触媒存在下に気相接触酸化されアクリル酸或いはメタクリル酸等の不飽和カルボン酸が製造される。本発明によれば、炭素原子数が3〜8の飽和炭化水素を分子状酸素および触媒存在下に気相接触酸化して不飽和含酸素化合物および/または不飽和炭化水素を製造する各種触媒での該反応において、常圧反応条件での最適接触時間、またはその保持時間に近い値を保持しつつ、反応圧力を152KPa以上に昇圧して反応を実施することにより、原料である炭素原子数が3〜8の飽和炭化水素の転化率や目的化合物の選択率低下を抑制して、反応圧力の増加による原料分圧の向上した分、空時収率が向上するのである。
【0011】
本発明にもちいられる触媒は、炭素原子数が3〜8の飽和炭化水素を分子状酸素および触媒存在下に気相接触酸化して不飽和含酸素化合物および/または不飽和炭化水素を製造する従来の技術において用いられている触媒であれば、その組成、形態を問わず、本発明が提示する反応条件において、生産性の向上が達成できる。具体的には、リン,モリブデンを主成分とするヘテロポリ酸系触媒、リン、バナジウムを主成分とする複合酸化物触媒、リン、モリブデン、バナジウムを主成分とする複合酸化物触媒、およびヘテロポリ酸触媒、ニオブ、モリブデン、バナジウム、アンチモンを主成分とする複合酸化物触媒、リン、モリブデン、バナジウム、アンチモンおよび/または砒素を主成分とするヘテロポリ酸触媒、タリウムを含む複合酸化物触媒、ニオブ、モリブデン、バナジウム、テルルを主成分とする複合酸化物触媒、ビスマス、バナジウム、モリブデン、銀を主成分とする複合酸化物触媒等である。
就中、一般式PaMobVcXdYeZfOg(式中、P,Mo,V,Oはそれぞれ燐、モリブデン、バナジウム、酸素を、Xは銅、銀、ビスマス、鉄、コバルト、ランタン、セリウムからなる群より選ばれた少なくとも一種の元素、Yはアルカリ金属、アルカリ土類金属およびタリウムからなる群より選ばれた少なくとも一種の元素、Zは砒素、アンチモン、ホウ素、ゲルマニウム、セレン、テルルを示し、また添字のa,b,c,d,e,fおよびgは各元素の原子比を表し、b=12としたとき、a,c,dは0(ゼロ)を含まない3以下の値であり、d、e、fは0を含む3以下の値であり、gは酸素以外のそれぞれの元素の酸化状態および原子比によって定まる数値である)で示されるケギン型ヘテロポリ酸の部分中和塩からなる触媒の適用が推奨される。
【0012】
用いる触媒の形態、性能によって、到達しうる反応圧力は異なってくるが、常に常圧状態での最適な接触時間またはその保持時間に近い値を保持することが好ましい。すなわち、反応原料の標準条件(常圧、25℃換算)での供給速度と触媒量との関係で求まる空間速度、いわゆるSV(単位/hr)は、圧力が2倍になれば2倍に、3倍になれば3倍に上昇させることにより、転化率、選択率は、ほぼ変化することなく空時収率は2倍、3倍に向上し、本発明は達成できる。
【0013】
反応圧力については、通常の固定床流通式反応器では、充填している触媒により、反応器の入口部はある程度の圧力上昇が生じる。その圧力上昇は、用いられている触媒の形態、層長、さらには、反応ガスの空間速度によって異なるが、本発明で用いられる反応圧力は、現在、気相酸化反応に工業的に用いられている反応条件で到達しうる圧力上昇分以上の圧力をかけることによって達成できる。その圧力を具体的な数字で表わすと152KPa以上となる。
【0014】
反応に供給する原料ガス中の飽和炭化水素の濃度としては、1〜85モル%、好ましくは3〜70モル%で実施することができる。飽和炭化水素を分子状酸素および触媒存在下に気相接触酸化して不飽和含酸素化合物および/または不飽和炭化水素を製造する反応においては、反応速度は飽和炭化水素の濃度に1次の場合が多く、その領域においては原料ガス中の飽和炭化水素の濃度が高い程空時収率が高く工業的に有利になる。
【0015】
分子状酸素の濃度に関しては、原料である飽和炭化水素の濃度、及びその濃度での爆発範囲内に入らないことを考慮して設定しなければならない。なお、分子状酸素としては、空気、純酸素、酸素富化空気等が用いられる。
【0016】
反応に供給する原料ガス中には、原料である飽和炭化水素、分子状酸素以外にも水蒸気、希ガス類、窒素、原料とは炭素数および/または構造の異なる飽和炭化水素、一酸化炭素、二酸化炭素、さらには生成物である不飽和含酸素化合物、不飽和炭化水素が含まれていてもよい。特に、水蒸気については、単に爆発範囲を避け、反応熱を除去するための希釈剤にとどまらず、反応に関与して転化率、選択率、さらには触媒寿命にも好ましい影響を与える反応系、触媒系である場合があり、そのような系においては、水蒸気を30モル%以下の範囲で含有させるのが好ましい。
【0017】
本発明は、固定床のみならず、流動床、移動床など、反応方式に限定なく利用することができる。
【0018】
【発明の効果】
本発明の方法によれば、炭素原子数が3〜8の飽和炭化水素を分子状酸素および触媒存在下に気相接触酸化して不飽和カルボン酸を製造するに際し、触媒に対する原料の接触時間(反応時間)と反応圧力を規定するという極めて簡便な方法により、同一触媒を用いても、目的化合物の選択率低下を抑制して、より高い空時収率で目的とする不飽和カルボン酸を得ることができるもので、産業上の利用価値は極めて大である。
【0019】
【実施例】
以下に実施例を挙げて本発明をさらに具体的に説明するが、本発明はこれら実施例によって限定されるものではない。尚、本発明の於いて空間速度、接触時間、転化率、選択率、および空時収量(STY)の定義は以下のとおりである。
【0020】

Figure 0003817374
【0021】
実施例1
イオン交換水 230gに85%オルトリン酸 21.0g、リン酸銅Cu3 (PO4 2 ・3H2 O 6.05g、硝酸セシウム 38.2g、60%砒酸水溶液 13.3gを加え、撹拌溶解し均一な水溶液(A液と称する)とした。次に1リットルのオートクレーブにイオン交換水 330gを仕込み、温度を40℃に保持した後、モリブデン酸アンモニウム〔(NH4 6 Mo7 32・4H2 O〕 296.5gを添加し、撹拌溶解した。そこに、A液を全量注入して沈殿を析出させスラリーとした後、五酸化バナジウムV2 5 6.36gを添加した。オートクレーブの内温を120℃に加熱し、熟成処理を12時間行った後、120℃乾燥機中で水分を蒸発させ、乾燥固体を取り出した。
触媒スラリーの乾燥固体 100部にセラミックファイバー4部、イオン交換水19部を加え、混練後3mmφで押し出し成型を行った。押し出し品を乾燥後、空気気流中、250℃まで昇温して塩分解(脱硝酸アンモニウム、脱硝酸根)を行った後、窒素気流中、435℃で3時間焼成して触媒とした。この触媒は、酸素原子を除く組成は、Mo120.5 1.5 As0.4 Cu0.3 Cs1.4 であり、赤外吸収スペクトルおよびX線回折より、立方晶系ケギン型ヘテロポリ酸構造を持つことが確認できた。
この触媒4mlを内径15mmのガラス製反応管に充填し、イソブタン37モル%、酸素37モル%、水蒸気16モル%、残りが窒素からなる組成の原料ガスを空間速度(標準状態基準)2041/hrで反応管を通し、さらに、反応圧力を200KPaまで昇圧した後、反応温度329℃で活性試験を行った。なお、接触時間は3.5秒であった。その結果、イソブタン転化率7.1%、メタクリル酸の選択率55.5%であった。空時収量(STY)をもとめると1.33mmol/ml/hrであった。
【0022】
比較例1
実施例1で調製した触媒を用い、実施例1と同様の方法にて活性試験を行った。ただし、原料ガスは空間速度(標準状態基準)1025/hrで反応管を通し、反応圧力は常圧の100KPaとした。なお、接触時間は3.5秒であり、反応温度は実施例1とほぼ同等の330℃で活性試験を行った。その結果、イソブタン転化率7.6%、メタクリル酸の選択率57.4%であり、空時収量(STY)をもとめると0.74mmol/ml/hrであった。
【0023】
実施例2
実施例1で調製した触媒を用い、実施例1と同様の方法にて活性試験を行った。ただし、原料ガスは空間速度(標準状態基準)2744/hrで反応管を通し、反応圧力は270KPaとした。なお、接触時間は3.5秒であり、反応温度は比較例とほぼ同等の332℃で活性試験を行った。その結果、イソブタン転化率9.0%、メタクリル酸の選択率51.9%であり、空時収量(STY)をもとめると2.12mmol/ml/hrであった。
【0024】
比較例2
実施例1で調製した触媒を用い、実施例1と同様の方法にて活性試験を行った。ただし、用いた触媒量は0.5mlであり、原料ガスは空間速度(標準状態基準)2059/hr、反応圧力は常圧の100KPa、接触時間は1.8秒で活性試験を行った。ただし、その際、空時収量(STY)が最高となるように、反応炉の温度を354℃とした。その結果、イソブタン転化率8.3%、メタクリル酸の選択率50.4%であり、空時収量(STY)をもとめると1.41mmol/ml/hrであった。
【0025】
実施例3
実施例1で調製した触媒を用い、比較例2と同様の方法にて活性試験を行った。ただし、原料ガスは空間速度(標準状態基準)7605/hrで反応管を通し、反応圧力は370KPaとした。なお、接触時間は1.8秒であり、反応温度は比較例2と同様、反応炉の温度を355℃とした。その結果、イソブタン転化率12.0%、メタクリル酸の選択率43.8%であり、空時収量(STY)をもとめると6.60mmol/ml/hrであった。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing an unsaturated carboxylic acid by vapor-phase catalytic oxidation of a saturated hydrocarbon having 3 to 8 carbon atoms in the presence of molecular oxygen and a catalyst. Specifically, saturated hydrocarbons such as propane and isobutane are subjected to gas phase catalytic oxidation in the presence of molecular oxygen and catalyst, acrylic acid from propane, methacrylic acid from isobutane, maleic anhydride and pentanes from normal butane. Relates to a process for producing maleic anhydride and phthalic anhydride.
[0002]
[Prior art]
Many methods for producing unsaturated oxygenated compounds and / or unsaturated hydrocarbons by gas phase catalytic oxidation of saturated hydrocarbons having 3 to 8 carbon atoms in the presence of molecular oxygen and a catalyst have already been proposed. . There are examples that have already been industrialized, such as the production of maleic anhydride from normal butane, but there are many that have not yet reached the field of industrialization. For example, regarding methods for producing oxygen-containing compounds such as acrolein and acrylic acid and / or propylene using propane as a raw material, for example, Japanese Patent Laid-Open Nos. 55-62041, 2-83348, 6-199731, JP-A-6-218286, JP-A-6-279351, JP-A-7-10801, and the like. Regarding the method for producing oxygen-containing compounds such as methacrolein and methacrylic acid and / or isobutylene from isobutane, for example, Japanese Utility Model Laid-Open Nos. 55-6204, 3-20237, 4-59738, 4-59739, 4-128247, 5-178774, 5-213799, and 5-213799. No. 6-221725, No. 7-33344, No. 7-116071, No. 8-5 No. 20, Kokoku 8-32644 Patent, and Patent No. 2558036 has been proposed. The applicants have also reported JP-A-3-106839, JP-A-7-10782, JP-A-8-12606, JP-A-9-12490, and JP-A-9-20700.
[0003]
When an unsaturated oxygenated compound and / or an unsaturated hydrocarbon is actually produced using these production methods, the conversion rate of the saturated hydrocarbon, the selectivity of the target oxygenated compound, the space time yield (STY: (Product of target product per unit catalyst amount) and catalyst life are important factors, but at present, all of these factors are sufficiently satisfied except for the technology for producing maleic anhydride from normal butane In fact, no reaction method has been developed.
[0004]
Regarding the conversion rate, since the reactivity of the saturated hydrocarbon as the raw material is extremely poor, the production of maleic anhydride from normal butane where the product is unlikely to oxidize sequentially, and the production method using unsaturated hydrocarbon as the raw material As described above, a catalyst and a reaction method that satisfy the yield of the target oxygen-containing compound by only one-pass reaction have not been developed. Therefore, in the present situation, a process for recycling unreacted saturated hydrocarbons must be adopted, but even in such a method, the reaction conditions were severed by increasing the reaction temperature in order to improve the conversion rate. In this case, the sequential oxidation of the unsaturated oxygen-containing compound and / or unsaturated hydrocarbon as the target compound proceeds, and the selectivity is extremely lowered. Furthermore, there arises a disadvantage that the catalyst life is shortened as the reaction temperature increases.
[0005]
One of the important factors determining the production cost of the target compound is the space-time yield. No matter how high the yield of catalyst or process, if the space-time yield is low, the amount of catalyst and the reactor required to secure the specified production volume will increase, and the incidental equipment will increase accordingly. Will be expensive. Conversely, if the space-time yield is high, the manufacturing cost is low, which is advantageous. In particular, in a process in which unreacted raw materials have to be recycled, the improvement in space-time yield has a great influence on manufacturing costs.
[0006]
However, in the current manufacturing technology, when it is arranged by the concept of space-time yield, the reality is that it is not a very low example. As described above, when the oxidation reaction of these saturated hydrocarbons is carried out at a low temperature in order to carry out the selectivity, the conversion rate is lowered. Therefore, in order to improve the space-time yield in the oxidation reaction of these saturated hydrocarbons, there are many examples in which the reaction is performed by increasing the concentration of the saturated hydrocarbon of the raw material. For example, in Japanese Patent Publication Nos. 7-116071, No. 8-5820 and No. 8-32644, the isobutane oxidation reaction is carried out at a high isobutane concentration of 60%. When the time yield is calculated, the temperature of the constant temperature layer containing the reaction tube is 1 mmol / g-cat / hr or less despite the high reaction temperature of 340 ° C. or more. Furthermore, even at the upper limit temperature of the Keggin type heteropolyacid catalyst where the temperature of the thermostatic layer is 370 ° C., it is about 2 mmol / g-cat / hr. In Japanese Patent No. 2558036, methacrolein and methacrylic acid are synthesized with high productivity in the same isobutane oxidation reaction, with an isobutane concentration of 50% and a low reaction temperature of 280 ° C. However, since a complex oxide catalyst containing phosphorus and vanadium is used, the main product is methacrolein, and in order to obtain methacrylic acid, further oxidation must be performed, which is industrially disadvantageous. It is.
[0007]
Although it is a well-known fact that the reaction rate is increased by increasing the partial pressure of the reaction raw material, the conventional technique teaches an example of increasing the raw material concentration, but raises the reaction pressure to increase the partial pressure. There are no known examples. In a normal gas phase oxidation reaction, the reaction rate is improved by increasing the reaction pressure, but it is also a well-known fact that sequential oxidation from the target product proceeds and the selectivity decreases, which is not preferable. . Therefore, it is considered that a lower reaction pressure is preferable for the conventional technique. In fact, in the conventional technology relating to the oxidation of propane and isobutane, although it is described that the reaction pressure is possible even under pressurized reaction conditions, it is described as “more preferably 2 atmospheres or less, more preferably near atmospheric pressure”. However, the present applicant is unaware of an embodiment using a reaction pressure of 152 KPa or higher.
[0008]
[Problems to be solved by the invention]
In view of such circumstances, the present inventors use saturated hydrocarbons such as propane and isobutane as raw materials, and in the process for producing unsaturated carboxylic acids such as acrylic acid or methacrylic acid from this, selection of the target product As a result of intensive studies aimed at finding a production method that suppresses the decrease in the rate and produces a high production amount of the target product per unit catalyst catalyst, that is, excellent in space-time yield, use specific operating conditions. In some cases, the inventors have found that the above objects can be satisfied, and have completed the present invention.
[0009]
[Means for Solving the Problems]
That is, the present invention provides a process for preparing non-saturated Kazuka carboxylic acid of a saturated hydrocarbon having a carbon number of 3-8 and a gas phase catalytic oxidation in the presence of molecular oxygen and a catalyst, the contact time the catalyst reaction 10 seconds or less, and in which the reaction pressure is to provide a method of manufacturing a non-saturated Kazuka carboxylic acid which comprises carrying out at least 152 kPa.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
In the practice of the present invention, examples of the reaction raw material include saturated hydrocarbons having 3 to 8 carbon atoms such as propane and isobutane, which are vapor-phase catalytically oxidized in the presence of molecular oxygen and a catalyst, and then acrylic or methacrylic. not saturated Kazuka carboxylic acid such as an acid is produced. According to the present invention, various catalysts for producing unsaturated oxygenated compounds and / or unsaturated hydrocarbons by gas phase catalytic oxidation of saturated hydrocarbons having 3 to 8 carbon atoms in the presence of molecular oxygen and a catalyst. In this reaction, the reaction pressure is increased to 152 KPa or more while maintaining the optimum contact time under normal pressure reaction conditions or a value close to the retention time, whereby the number of carbon atoms as a raw material is reduced. a decrease in the selectivity of the conversion rate and the target compound of saturated hydrocarbons having 3 to 8 to suppress, minutes with improved material partial pressure due to the increase in the reaction pressure, the space-time yield is improved.
[0011]
The catalyst used in the present invention is a conventional process for producing unsaturated oxygenated compounds and / or unsaturated hydrocarbons by vapor phase catalytic oxidation of saturated hydrocarbons having 3 to 8 carbon atoms in the presence of molecular oxygen and the catalyst. As long as the catalyst is used in this technique, productivity can be improved under the reaction conditions proposed by the present invention regardless of the composition and form. Specifically, a heteropolyacid catalyst containing phosphorus and molybdenum as main components, a composite oxide catalyst containing phosphorus and vanadium as main components, a composite oxide catalyst containing phosphorus, molybdenum and vanadium as main components, and a heteropolyacid catalyst , Composite oxide catalysts based on niobium, molybdenum, vanadium and antimony, heteropolyacid catalysts based on phosphorus, molybdenum, vanadium, antimony and / or arsenic, composite oxide catalysts containing thallium, niobium, molybdenum, Examples thereof include composite oxide catalysts mainly containing vanadium and tellurium, composite oxide catalysts mainly containing bismuth, vanadium, molybdenum, and silver.
In particular, the general formula PaMobVcXdYeZfOg (wherein P, Mo, V and O are selected from the group consisting of phosphorus, molybdenum, vanadium and oxygen, and X is selected from the group consisting of copper, silver, bismuth, iron, cobalt, lanthanum and cerium) At least one element, Y is at least one element selected from the group consisting of alkali metals, alkaline earth metals and thallium, Z is arsenic, antimony, boron, germanium, selenium, tellurium, and the subscripts a and b , C, d, e, f and g represent atomic ratios of the respective elements. When b = 12, a, c, d are values of 3 or less not including 0 (zero), d, e, f is a value of 3 or less including 0, and g is a numerical value determined by the oxidation state and atomic ratio of each element other than oxygen)) Application of medium is recommended.
[0012]
Although the reaction pressure that can be reached varies depending on the form and performance of the catalyst used, it is preferable to always maintain an optimum contact time at normal pressure or a value close to the retention time. That is, the space velocity obtained by the relationship between the supply rate of the reaction raw material under standard conditions (normal pressure, converted at 25 ° C.) and the amount of catalyst, so-called SV (unit / hr), is doubled when the pressure is doubled. If it becomes 3 times, by raising it to 3 times, the conversion rate and selectivity are almost unchanged, and the space time yield is improved 2 times and 3 times, and the present invention can be achieved.
[0013]
Regarding the reaction pressure, in a normal fixed bed flow type reactor, the pressure at the inlet of the reactor rises to some extent due to the catalyst being packed. The pressure rise varies depending on the type of catalyst used, the layer length, and the space velocity of the reaction gas, but the reaction pressure used in the present invention is currently used industrially for gas phase oxidation reactions. This can be achieved by applying a pressure higher than the pressure increase that can be achieved under certain reaction conditions. When the pressure is expressed by specific numbers, it becomes 152 KPa or more.
[0014]
The concentration of the saturated hydrocarbon in the raw material gas supplied to the reaction can be 1 to 85 mol%, preferably 3 to 70 mol%. In the reaction in which saturated hydrocarbons are vapor-phase catalytically oxidized in the presence of molecular oxygen and a catalyst to produce unsaturated oxygenated compounds and / or unsaturated hydrocarbons, the reaction rate is first order of the saturated hydrocarbon concentration. In that region, the higher the saturated hydrocarbon concentration in the raw material gas, the higher the space time yield and the more industrially advantageous.
[0015]
The concentration of molecular oxygen must be set in consideration of the concentration of the saturated hydrocarbon as a raw material and the fact that it does not fall within the explosion range at that concentration. As the molecular oxygen, air, pure oxygen, oxygen-enriched air, or the like is used.
[0016]
In the raw material gas supplied to the reaction, in addition to the saturated hydrocarbon and molecular oxygen that are the raw materials, water vapor, noble gases, nitrogen, saturated hydrocarbons, carbon monoxide, carbon dioxide having a different carbon number and / or structure from the raw materials Furthermore, the product may contain an unsaturated oxygen-containing compound and an unsaturated hydrocarbon. In particular, with regard to water vapor, it is not only a diluent for avoiding the explosion range and removing reaction heat, but also a reaction system and catalyst that have a positive effect on the conversion rate, selectivity, and catalyst life by participating in the reaction. In such a system, it is preferable to contain water vapor in a range of 30 mol% or less.
[0017]
The present invention can be used without limitation to reaction systems such as a fixed bed, a fluidized bed, and a moving bed.
[0018]
【The invention's effect】
According to the method of the present invention, when an unsaturated carboxylic acid is produced by vapor-phase catalytic oxidation of a saturated hydrocarbon having 3 to 8 carbon atoms in the presence of molecular oxygen and a catalyst, the contact time of the raw material with respect to the catalyst ( The reaction time) and the reaction pressure are regulated by a very simple method. Even if the same catalyst is used, the decrease in selectivity of the target compound is suppressed, and the target unsaturated carboxylic acid can be obtained in a higher space time yield. It can be obtained, and its industrial utility value is extremely large.
[0019]
【Example】
The present invention will be described more specifically with reference to the following examples. However, the present invention is not limited to these examples. In the present invention, the definitions of space velocity, contact time, conversion rate, selectivity, and space time yield (STY) are as follows.
[0020]
Figure 0003817374
[0021]
Example 1
Add 21.0 g of 85% orthophosphoric acid, 6.05 g of copper phosphate Cu 3 (PO 4 ) 2 .3H 2 O, 38.2 g of cesium nitrate, and 13.3 g of 60% aqueous arsenic acid solution to 230 g of ion-exchanged water, and dissolve by stirring. A uniform aqueous solution (referred to as solution A) was obtained. Next, 330 g of ion-exchanged water was charged into a 1 liter autoclave and the temperature was kept at 40 ° C., and then 296.5 g of ammonium molybdate [(NH 4 ) 6 Mo 7 O 32 · 4H 2 O] was added and dissolved by stirring. did. Then, the entire amount of the liquid A was injected to precipitate a precipitate to form a slurry, and then 6.36 g of vanadium pentoxide V 2 O 5 was added. After heating the internal temperature of the autoclave to 120 ° C. and performing aging treatment for 12 hours, the water was evaporated in a 120 ° C. drier to take out the dried solid.
4 parts of ceramic fibers and 19 parts of ion-exchanged water were added to 100 parts of the dried solid of the catalyst slurry, and after kneading, extrusion molding was performed at 3 mmφ. After drying the extruded product, the temperature was raised to 250 ° C. in an air stream and subjected to salt decomposition (ammonium denitration, denitrating radical), and then calcined at 435 ° C. for 3 hours in a nitrogen stream to obtain a catalyst. The composition of this catalyst excluding oxygen atoms is Mo 12 V 0.5 P 1.5 As 0.4 Cu 0.3 Cs 1.4 , and it can be confirmed from the infrared absorption spectrum and X-ray diffraction that it has a cubic Keggin type heteropolyacid structure. It was.
4 ml of this catalyst was packed in a glass reaction tube having an inner diameter of 15 mm, and a raw material gas having a composition consisting of 37 mol% isobutane, 37 mol% oxygen, 16 mol% water vapor, and the balance nitrogen was used as the space velocity (standard condition standard) 2041 / hr. Then, the reaction pressure was increased to 200 KPa, and then an activity test was conducted at a reaction temperature of 329 ° C. The contact time was 3.5 seconds. As a result, the conversion of isobutane was 7.1% and the selectivity of methacrylic acid was 55.5%. The space time yield (STY) was calculated to be 1.33 mmol / ml / hr.
[0022]
Comparative Example 1
Using the catalyst prepared in Example 1, an activity test was performed in the same manner as in Example 1. However, the raw material gas was passed through the reaction tube at a space velocity (standard condition standard) of 1025 / hr, and the reaction pressure was 100 KPa, which is normal pressure. The contact time was 3.5 seconds, and the activity test was conducted at a reaction temperature of 330 ° C., which was almost the same as in Example 1. As a result, the conversion of isobutane was 7.6%, the selectivity of methacrylic acid was 57.4%, and the space-time yield (STY) was 0.74 mmol / ml / hr.
[0023]
Example 2
Using the catalyst prepared in Example 1, an activity test was performed in the same manner as in Example 1. However, the source gas was passed through the reaction tube at a space velocity (standard condition standard) of 2744 / hr, and the reaction pressure was 270 KPa. The contact time was 3.5 seconds, and the activity test was conducted at a reaction temperature of 332 ° C., which was almost the same as that of the comparative example. As a result, the conversion of isobutane was 9.0%, the selectivity of methacrylic acid was 51.9%, and the space time yield (STY) was 2.12 mmol / ml / hr.
[0024]
Comparative Example 2
Using the catalyst prepared in Example 1, an activity test was performed in the same manner as in Example 1. However, the amount of catalyst used was 0.5 ml, the activity test was performed with the raw material gas having a space velocity (standard condition standard) of 2059 / hr, a reaction pressure of 100 KPa at normal pressure, and a contact time of 1.8 seconds. However, at that time, the temperature of the reactor was set to 354 ° C. so that the space time yield (STY) was maximized. As a result, the conversion of isobutane was 8.3%, the selectivity of methacrylic acid was 50.4%, and the space-time yield (STY) was 1.41 mmol / ml / hr.
[0025]
Example 3
Using the catalyst prepared in Example 1, an activity test was performed in the same manner as in Comparative Example 2. However, the source gas was passed through the reaction tube at a space velocity (standard condition standard) of 7605 / hr, and the reaction pressure was 370 KPa. The contact time was 1.8 seconds, and the reaction temperature was 355 ° C. as in Comparative Example 2. As a result, the conversion of isobutane was 12.0%, the selectivity of methacrylic acid was 43.8%, and the space-time yield (STY) was 6.60 mmol / ml / hr.

Claims (1)

イソブタンを分子状酸素および触媒存在下に気相接触酸化してメタクリル酸を製造する方法において、該触媒反応を接触時間が10秒以下で、かつ反応圧力が200KPa以上で実施することを特徴とするメタクリル酸の製造方法。A method for producing methacrylic acid by vapor-phase catalytic oxidation of isobutane in the presence of molecular oxygen and a catalyst, wherein the catalytic reaction is carried out at a contact time of 10 seconds or less and a reaction pressure of 200 KPa or more. A method for producing methacrylic acid .
JP26980398A 1998-09-24 1998-09-24 Process for producing unsaturated carboxylic acid Expired - Fee Related JP3817374B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26980398A JP3817374B2 (en) 1998-09-24 1998-09-24 Process for producing unsaturated carboxylic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26980398A JP3817374B2 (en) 1998-09-24 1998-09-24 Process for producing unsaturated carboxylic acid

Publications (2)

Publication Number Publication Date
JP2000095725A JP2000095725A (en) 2000-04-04
JP3817374B2 true JP3817374B2 (en) 2006-09-06

Family

ID=17477398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26980398A Expired - Fee Related JP3817374B2 (en) 1998-09-24 1998-09-24 Process for producing unsaturated carboxylic acid

Country Status (1)

Country Link
JP (1) JP3817374B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY140509A (en) * 2003-04-09 2009-12-31 Basf Ag Method for the heterogeneously catalyzed partial direct oxidation of propane and/or isobutane
DE10316465A1 (en) 2003-04-09 2004-10-28 Basf Ag Heterogeneously catalyzed partial oxidation of propane and/or isobutane to (meth)acrylic acid involves separating product, dividing residual product gas into portions to be recycled and discharged, and recycling at pressure of feeding step
JP2011152543A (en) * 2011-04-28 2011-08-11 Nippon Kayaku Co Ltd Method for producing catalyst for producing methacrylic acid

Also Published As

Publication number Publication date
JP2000095725A (en) 2000-04-04

Similar Documents

Publication Publication Date Title
JP4346822B2 (en) Molybdenum-vanadium catalyst for the low temperature selective oxidation of propylene, its production and use
US4568790A (en) Process for oxydehydrogenation of ethane to ethylene
US4524236A (en) Process for oxydehydrogenation of ethane to ethylene
US4075127A (en) Catalyst for production of α,β-unsaturated carboxylic acids
JPS5946934B2 (en) Method for manufacturing methacrylic acid
JP4182237B2 (en) Catalyst for gas-phase catalytic oxidation reaction of isobutane and method for producing alkene and / or oxygen-containing compound using the same
JPS584691B2 (en) Method for producing methacrolein
JPS5824417B2 (en) Propylene Mataha Isobutylene Color Acrylic Sant Methacrylic Sanno Seizouhou
JPH03137937A (en) Preparation of catalyst for preparing methacrylic acid
JP3961834B2 (en) Catalyst for the oxidation of lower olefins to unsaturated aldehydes, process for their production and use
JP3817374B2 (en) Process for producing unsaturated carboxylic acid
JPH0791212B2 (en) Method for producing methacrylic acid
JP2558036B2 (en) Method for producing methacrolein and / or methacrylic acid
JP3772392B2 (en) Composite oxide catalyst and method for producing methacrylic acid
JP3855298B2 (en) Process for producing alkene and / or oxygen-containing compound
JP3482476B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP3316881B2 (en) Method for producing catalyst for producing methacrylic acid
EP0634210B1 (en) Method of preparing catalyst used for producing methacrylic acids
JP3603331B2 (en) Method for producing oxygenated compound using C4-LPG
JP2614089B2 (en) Acrolein production method
JP3316880B2 (en) Method for producing catalyst for producing methacrylic acid
JPH0924277A (en) Catalyst and process for preparing methacrylic acid
JPS5824419B2 (en) Fuhouwa Carbon Sanno Seizouhouhou
US3493608A (en) Catalytic oxidation of propylene and isobutylene to aldehydes and acids
US3576857A (en) Process of preparing unsaturated acids and aldehydes

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060612

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090616

Year of fee payment: 3

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D05

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090616

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100616

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100616

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110616

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110616

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120616

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120616

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130616

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees