JP2000095725A - Production of unsaturated carboxylic acid - Google Patents

Production of unsaturated carboxylic acid

Info

Publication number
JP2000095725A
JP2000095725A JP10269803A JP26980398A JP2000095725A JP 2000095725 A JP2000095725 A JP 2000095725A JP 10269803 A JP10269803 A JP 10269803A JP 26980398 A JP26980398 A JP 26980398A JP 2000095725 A JP2000095725 A JP 2000095725A
Authority
JP
Japan
Prior art keywords
reaction
catalyst
unsaturated carboxylic
carboxylic acid
saturated hydrocarbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10269803A
Other languages
Japanese (ja)
Other versions
JP3817374B2 (en
Inventor
Goetz Beter Schindler
シンドラー、ゲーツ、ベーター
Toshiaki Ui
利明 宇井
Koichi Nagai
功一 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Eneos Corp
Original Assignee
Nippon Petrochemicals Co Ltd
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Petrochemicals Co Ltd, Sumitomo Chemical Co Ltd filed Critical Nippon Petrochemicals Co Ltd
Priority to JP26980398A priority Critical patent/JP3817374B2/en
Publication of JP2000095725A publication Critical patent/JP2000095725A/en
Application granted granted Critical
Publication of JP3817374B2 publication Critical patent/JP3817374B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain the objective unsaturated carboxylic acid such as acrylic acid and methacrylic acid in increased space-time yield without lowering the selectivity of the objective compound by using a saturated hydrocarbon such as propane and isobutane as a raw material. SOLUTION: An unsaturated carboxylic acid is produced by the vapor-phase catalytic oxidation of a 3-8C saturated hydrocarbon in the presence of molecular oxygen and a catalyst. The catalytic reaction is carried out under a reaction pressure of >=152 Kpa while keeping the contact time to <=10 sec.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、炭素原子数が3〜
8の飽和炭化水素を分子状酸素および触媒存在下に気相
接触酸化して不飽和カルボン酸を製造する方法に関す
る。詳しくはプロパン、イソブタン等の飽和炭化水素を
分子状酸素および触媒存在下に気相接触酸化して、プロ
パンからはアクリル酸を、イソブタンからはメタクリル
酸を、ノルマルブタンからは無水マレイン酸、ペンタン
類からは無水マレイン酸、無水フタル酸を製造する方法
に関する。
[0001] The present invention relates to a method for producing a compound having 3 to 3 carbon atoms.
8 relates to a method for producing an unsaturated carboxylic acid by subjecting a saturated hydrocarbon of No. 8 to gas phase catalytic oxidation in the presence of molecular oxygen and a catalyst. Specifically, saturated hydrocarbons such as propane and isobutane are oxidized in the gas phase in the presence of molecular oxygen and a catalyst to produce acrylic acid from propane, methacrylic acid from isobutane, maleic anhydride and pentane from normal butane. To a method for producing maleic anhydride and phthalic anhydride.

【0002】[0002]

【従来の技術】炭素原子数が3〜8の飽和炭化水素を分
子状酸素および触媒存在下に気相接触酸化して不飽和含
酸素化合物および/または不飽和炭化水素を製造する方
法は、すでに数多く提案されている。ノルマルブタンか
ら無水マレイン酸の製造のように、すでに工業化された
例もあるが、まだ工業化の領域に達していないものが数
多くある。たとえば、プロパンを原料としたアクロレイ
ン、アクリル酸等の含酸素化合物および/またはプロピ
レンを製造する方法に関しては、例えば特開昭55−6
2041号、特開平2−83348号、特開平6−19
9731号、特開平6−218286号、特開平6−2
79351号、特開平7−10801号などがあり、イ
ソブタンからはメタクロレイン、メタクリル酸等の含酸
素化合物および/またはイソブチレンを製造する方法に
関しては、例えば特開昭55−6204、特開平3−2
0237号、特開平4−59738号、特開平4−59
739号、特開平4−128247号、特開平5−17
8774号、特開平5−213799号、特開平6−2
11725号、特公平7−33344号、特公平7−1
16071号、特公平8−5820号、特公平8−32
644号、特許番号第2558036号などが提案され
ている。また、出願人らも特開平3−106839号、
特開平7−10782号、特開平8−12606号、特
開平9−12490、特開平9−20700号を報告し
ている。
2. Description of the Related Art A process for producing an unsaturated oxygen-containing compound and / or an unsaturated hydrocarbon by subjecting a saturated hydrocarbon having 3 to 8 carbon atoms to gas-phase catalytic oxidation in the presence of molecular oxygen and a catalyst has already been known. Many have been proposed. Some examples have already been industrialized, such as the production of maleic anhydride from normal butane, but there are many that have not yet reached the area of industrialization. For example, a method for producing oxygen-containing compounds such as acrolein and acrylic acid and / or propylene using propane as a raw material is described in, for example, JP-A-55-66-1980.
No. 2041, JP-A-2-83348, JP-A-6-19
9731, JP-A-6-218286, JP-A-6-2
JP-A-79351 and JP-A-7-10801. Methods for producing oxygen-containing compounds such as methacrolein and methacrylic acid from isobutane and / or isobutylene are described in, for example, JP-A-55-6204 and JP-A-3-2.
0237, JP-A-4-59738, JP-A-4-59
739, JP-A-4-128247, JP-A-5-17
8774, JP-A-5-213799, JP-A-6-2
No. 11725, No. 7-33344, No. 7-1
No. 16071, No. 8-5820, No. 8-32
No. 644, Patent No. 2558036 and the like have been proposed. In addition, the applicants have also disclosed Japanese Patent Application Laid-Open No. 3-106839,
JP-A-7-10782, JP-A-8-12606, JP-A-9-12490, and JP-A-9-20700 are reported.

【0003】実際にこれらの製造方法を用いて不飽和含
酸素化合物および/または不飽和炭化水素を製造する場
合、飽和炭化水素の転化率、目的とする含酸素化合物の
選択率、空時収率(STY:単位触媒量あたりの目的生
成物の生産量)、触媒寿命が重要な因子となってくる
が、現在のところノルマルブタンから無水マレイン酸を
製造する技術以外においては、それらすべての因子を十
分に満足する反応方法は開発されていないのが実状であ
る。
[0003] When an unsaturated oxygen-containing compound and / or unsaturated hydrocarbon is actually produced by using these production methods, the conversion of saturated hydrocarbon, the selectivity of the desired oxygen-containing compound, the space-time yield. (STY: production amount of target product per unit catalyst amount) and catalyst life are important factors. At present, except for the technology for producing maleic anhydride from normal butane, all of these factors must be considered. In fact, no satisfactory reaction method has been developed.

【0004】転化率については、原料である飽和炭化水
素の反応性が極端に乏しいため、生成物が逐次酸化を起
こしにくいノルマルブタンからの無水マレイン酸の製造
や、不飽和炭化水素を原料とする製造法のように、1パ
スの反応のみで目的とする含酸素化合物の収率を満足す
る触媒、反応方法が開発できていない。そこで、現状に
おいては、未反応飽和炭化水素をリサイクルするプロセ
スを採用せざるを得ないが、かかる方法に於いても、転
化率を向上させるために反応温度を上げる等で反応条件
を過酷にした場合は、目的化合物である不飽和含酸素化
合物および/または不飽和炭化水素の逐次酸化が進行し
てしまい選択率が極端に低下してしまう。さらに、反応
温度の上昇に伴い触媒寿命が短くなるとの不都合を生じ
る。
As for the conversion, since the reactivity of the saturated hydrocarbon as the raw material is extremely poor, the production of maleic anhydride from normal butane, in which the product is unlikely to cause sequential oxidation, or the use of unsaturated hydrocarbon as the raw material As in the production method, a catalyst and a reaction method satisfying the yield of the target oxygen-containing compound by only one-pass reaction have not been developed. Therefore, at present, a process of recycling unreacted saturated hydrocarbons must be adopted.However, in such a method, the reaction conditions were made severe, for example, by raising the reaction temperature in order to improve the conversion. In this case, the sequential oxidation of the unsaturated oxygen-containing compound and / or unsaturated hydrocarbon as the target compound proceeds, and the selectivity is extremely lowered. Further, there is an inconvenience that the catalyst life is shortened as the reaction temperature rises.

【0005】目的化合物の製造コストを決定する重要な
因子の1つに、空時収率がある。どんなに収率の高い触
媒やプロセスであっても、空時収率が低ければ、所定の
生産量を確保するための触媒量、反応器が大きくなり、
それとともに付帯設備も大きくなるため、製造コストは
高くなってしまう。逆に空時収率が高ければ、製造コス
トは低くなり有利になる。とりわけ、未反応の原料をリ
サイクルさせなければならないようなプロセスにおいて
は、空時収率の向上が製造コストに与える影響が大き
い。
[0005] One of the important factors that determines the production cost of the target compound is the space-time yield. No matter how high the yield of the catalyst or process, if the space-time yield is low, the amount of catalyst and the reactor required to secure a given production volume will increase,
At the same time, the size of the incidental equipment is increased, so that the manufacturing cost is increased. Conversely, if the space-time yield is high, the production cost will be low, which is advantageous. In particular, in a process in which unreacted raw materials must be recycled, the improvement of the space-time yield has a large effect on the production cost.

【0006】しかしながら、現在の製造技術において
は、空時収率という概念で整理した場合、非常に低い例
しかしめされていないのが、実状である。前述のとお
り、これらの飽和炭化水素の酸化反応を選択率よく行う
ために低温で実施すると転化率が低くなる。そこで、こ
れらの飽和炭化水素の酸化反応では空時収率を向上させ
るため、原料の飽和炭化水素の濃度を向上させて反応を
行っている例が多い。たとえば、特公平7−11607
1号、特公平8−5820号、特公平8−32644号
においては、イソブタン酸化反応において、イソブタン
濃度を60%という高濃度で実施しているにもかかわら
ず、その空時収率を計算すると、反応管を入れている恒
温層の温度が340℃以上という高い反応温度にもかか
わらず、1mmol/g−cat/hr以下である。さ
らに、恒温層の温度が370℃という、Keggin型
ヘテロポリ酸触媒の使用上限温度においてでさえ、2m
mol/g−cat/hr程度である。特許第2558
036号においては、同じイソブタン酸化反応で、50
%のイソブタン濃度で、しかも反応温度280℃という
低温であるにもかかわらず、高い生産性でメタクロレイ
ン、メタクリル酸を合成している。しかしながら、リ
ン、バナジウム含有の複合酸化物触媒を用いているた
め、主生成物はメタクロレインであり、メタクリル酸を
得るためには、さらにもう一段の酸化を行わなければな
らないため、工業的に不利である。
[0006] However, in the current production technology, when the concept is referred to as the space-time yield, a very low example is not mentioned. As described above, when the oxidation reaction of these saturated hydrocarbons is performed at a low temperature in order to perform the oxidation reaction with a high selectivity, the conversion rate decreases. In order to improve the space-time yield in the oxidation reaction of these saturated hydrocarbons, the reaction is often performed by increasing the concentration of the raw material saturated hydrocarbon. For example, Tokiko 7-11607
No. 1, Japanese Patent Publication No. 8-5820, and Japanese Patent Publication No. 8-32644, when the isobutane oxidation reaction is carried out at a high isobutane concentration of 60%, the space-time yield is calculated. Despite the high reaction temperature of 340 ° C. or higher, the temperature of the thermostatic chamber containing the reaction tube is 1 mmol / g-cat / hr or lower. Furthermore, even at a constant temperature of 370 ° C., which is the upper limit temperature of use of the Keggin-type heteropolyacid catalyst, 2 m
It is about mol / g-cat / hr. Patent No. 2558
No. 036, in the same isobutane oxidation reaction, 50
Although isobutane concentration is as low as 280 ° C and the reaction temperature is as low as 280 ° C, methacrolein and methacrylic acid are synthesized with high productivity. However, the main product is methacrolein due to the use of a composite oxide catalyst containing phosphorus and vanadium, and further oxidization must be performed to obtain methacrylic acid, which is industrially disadvantageous. It is.

【0007】反応原料の分圧を高くして、反応速度を上
げるのは周知の事実であるが、従来の技術では、原料濃
度を高めて行う例の教示はあるものの、反応圧力を上げ
て分圧を上げる例は知られていない。通常の気相酸化反
応では、反応圧力を上げることにより反応速度は向上す
るが、目的生成物からの逐次酸化が進行してしまい、選
択率が低下するために好ましくないのも周知の事実であ
る。よって、従来の技術については、反応圧力は低い方
が好ましいと考えられている。事実、プロパン、イソブ
タンの酸化に関する従来の技術では、反応圧力に関して
は加圧反応条件でも可能とは記載されているものの、
「より好ましくは2気圧以下、常圧付近がより好まし
い」と記載されているにすぎず、152KPa以上の反
応圧力を用いている実施例を本出願人は知らない。
It is a well-known fact that the reaction pressure is increased by increasing the partial pressure of the reaction raw material. However, in the prior art, although there is a teaching of an example in which the concentration of the raw material is increased, the reaction pressure is increased by increasing the reaction pressure. No example of increasing pressure is known. In a normal gas phase oxidation reaction, the reaction rate is improved by increasing the reaction pressure, but it is also a well-known fact that the sequential oxidation from the target product proceeds, and the selectivity is lowered, which is not preferable. . Therefore, it is considered that the lower the reaction pressure is, the more preferable the prior art is. In fact, in the prior art relating to the oxidation of propane and isobutane, although the reaction pressure is described as being possible under pressurized reaction conditions,
The present applicant merely describes that "more preferably 2 atmospheres or less, and more preferably around normal pressure", and does not know any examples using a reaction pressure of 152 KPa or more.

【0008】[0008]

【発明が解決しようとする課題】かかる事情下に鑑み、
本発明者等はプロパン、イソブタン等の飽和炭化水素を
原料として用い、これよりアクリル酸或いはメタクリル
酸等の不飽和カルボン酸を製造する方法に於いて、目的
生成物の選択率を低下させることなく、単位触媒触媒当
りの目的生成物の生産量が高い、すなわち空時収率に優
れた製造方法を見出すことを目的とし、鋭意検討した結
果、特定の操業条件を用いる場合には上記目的を全て満
足し得ることを見出し、本発明を完成するに至った。
In view of such circumstances,
The present inventors use a saturated hydrocarbon such as propane or isobutane as a raw material, and in a method for producing an unsaturated carboxylic acid such as acrylic acid or methacrylic acid from the same without lowering the selectivity of a target product. The purpose of the present invention is to find a production method with a high production amount of the target product per unit catalyst, that is, an excellent space-time yield. They have found that they can be satisfied, and have completed the present invention.

【0009】[0009]

【課題を解決するための手段】すなわち本発明は、炭素
原子数が3〜8の飽和炭化水素を分子状酸素および触媒
存在下に気相接触酸化して不飽和含カルボン酸を製造す
る方法において、該触媒反応を接触時間が10秒以下
で、かつ反応圧力を152KPa以上で実施することを
特徴とする不飽和含カルボン酸の製造方法を提供するも
のである。
The present invention provides a method for producing an unsaturated carboxylic acid by subjecting a saturated hydrocarbon having 3 to 8 carbon atoms to gas-phase catalytic oxidation in the presence of molecular oxygen and a catalyst. A process for producing an unsaturated carboxylic acid, wherein the catalytic reaction is carried out at a contact time of 10 seconds or less and a reaction pressure of 152 KPa or more.

【0010】[0010]

【発明の実施の形態】本発明の実施に際しては、反応原
料として炭素原子数が3〜8の飽和炭化水素とはプロパ
ン、イソブタン等が挙げられ、これらは分子状酸素およ
び触媒存在下に気相接触酸化されアクリル酸或いはメタ
クリル酸等の不飽和含カルボン酸が製造される。本発明
によれば、炭素原子数が3〜8の飽和炭化水素を分子状
酸素および触媒存在下に気相接触酸化して不飽和含酸素
化合物および/または不飽和炭化水素を製造する各種触
媒での該反応において、常圧反応条件での最適接触時
間、またはその保持時間に近い値を保持しつつ、反応圧
力を152KPa以上に昇圧して反応を実施することに
より、原料である炭素原子数が3〜8の飽和炭化水素目
的化合物の転化率、選択率を低下させることなく、反応
圧力の増加による原料分圧の向上した分、空時収率が向
上するのである。
BEST MODE FOR CARRYING OUT THE INVENTION In the practice of the present invention, a saturated hydrocarbon having 3 to 8 carbon atoms as a raw material for reaction includes propane, isobutane and the like. These are gaseous gas in the presence of molecular oxygen and a catalyst. Catalytic oxidation produces an unsaturated carboxylic acid such as acrylic acid or methacrylic acid. According to the present invention, various catalysts for producing an unsaturated oxygen-containing compound and / or an unsaturated hydrocarbon by subjecting a saturated hydrocarbon having 3 to 8 carbon atoms to gas-phase catalytic oxidation in the presence of molecular oxygen and a catalyst are provided. In the above reaction, while maintaining the optimum contact time under normal pressure reaction conditions or a value close to the holding time, the reaction pressure is increased to 152 KPa or more to carry out the reaction, whereby the number of carbon atoms as a raw material is reduced. Without lowering the conversion and selectivity of the 3 to 8 saturated hydrocarbon target compounds, the space-time yield is improved by the increase in the partial pressure of the raw material due to the increase in the reaction pressure.

【0011】本発明にもちいられる触媒は、炭素原子数
が3〜8の飽和炭化水素を分子状酸素および触媒存在下
に気相接触酸化して不飽和含酸素化合物および/または
不飽和炭化水素を製造する従来の技術において用いられ
ている触媒であれば、その組成、形態を問わず、本発明
が提示する反応条件において、生産性の向上が達成でき
る。具体的には、リン,モリブデンを主成分とするヘテ
ロポリ酸系触媒、リン、バナジウムを主成分とする複合
酸化物触媒、リン、モリブデン、バナジウムを主成分と
する複合酸化物触媒、およびヘテロポリ酸触媒、ニオ
ブ、モリブデン、バナジウム、アンチモンを主成分とす
る複合酸化物触媒、リン、モリブデン、バナジウム、ア
ンチモンおよび/または砒素を主成分とするヘテロポリ
酸触媒、タリウムを含む複合酸化物触媒、ニオブ、モリ
ブデン、バナジウム、テルルを主成分とする複合酸化物
触媒、ビスマス、バナジウム、モリブデン、銀を主成分
とする複合酸化物触媒等である。就中、一般式PaMo
bVcXdYeZfOg(式中、P,Mo,V,Oはそ
れぞれ燐、モリブデン、バナジウム、酸素を、Xは銅、
銀、ビスマス、鉄、コバルト、ランタン、セリウムから
なる群より選ばれた少なくとも一種の元素、Yはアルカ
リ金属、アルカリ土類金属およびタリウムからなる群よ
り選ばれた少なくとも一種の元素、Zは砒素、アンチモ
ン、ホウ素、ゲルマニウム、セレン、テルルを示し、ま
た添字のa,b,c,d,e,fおよびgは各元素の原
子比を表し、b=12としたとき、a,c,dは0(ゼ
ロ)を含まない3以下の値であり、d、e、fは0を含
む3以下の値であり、gは酸素以外のそれぞれの元素の
酸化状態および原子比によって定まる数値である)で示
されるケギン型ヘテロポリ酸の部分中和塩からなる触媒
の適用が推奨される。
The catalyst used in the present invention is obtained by subjecting a saturated hydrocarbon having 3 to 8 carbon atoms to gas-phase catalytic oxidation in the presence of molecular oxygen and a catalyst to convert an unsaturated oxygen-containing compound and / or an unsaturated hydrocarbon. As long as the catalyst is used in the conventional technology for production, regardless of its composition and form, improvement in productivity can be achieved under the reaction conditions proposed by the present invention. Specifically, a heteropolyacid catalyst mainly containing phosphorus and molybdenum, a composite oxide catalyst mainly containing phosphorus and vanadium, a composite oxide catalyst mainly containing phosphorus, molybdenum and vanadium, and a heteropolyacid catalyst , Niobium, molybdenum, vanadium, antimony-based composite oxide catalyst, phosphorus, molybdenum, vanadium, antimony and / or arsenic-based heteropolyacid catalyst, thallium-containing composite oxide catalyst, niobium, molybdenum, A composite oxide catalyst containing vanadium and tellurium as main components; a composite oxide catalyst containing bismuth, vanadium, molybdenum, and silver as main components; Above all, general formula PaMo
bVcXdYeZfOg (where P, Mo, V, and O represent phosphorus, molybdenum, vanadium, and oxygen, respectively, X represents copper,
Silver, bismuth, iron, cobalt, lanthanum, at least one element selected from the group consisting of cerium, Y is at least one element selected from the group consisting of alkali metals, alkaline earth metals and thallium, Z is arsenic, Antimony, boron, germanium, selenium and tellurium are shown, and subscripts a, b, c, d, e, f and g represent the atomic ratio of each element, and when b = 12, a, c and d are (It is a value of 3 or less not including 0 (zero), d, e, and f are values of 3 or less including 0, and g is a numerical value determined by the oxidation state and atomic ratio of each element other than oxygen.) It is recommended to use a catalyst comprising a partially neutralized salt of a Keggin-type heteropolyacid represented by

【0012】用いる触媒の形態、性能によって、到達し
うる反応圧力は異なってくるが、常に常圧状態での最適
な接触時間またはその保持時間に近い値を保持すること
が好ましい。すなわち、反応原料の標準条件(常圧、2
5℃換算)での供給速度と触媒量との関係で求まる空間
速度、いわゆるSV(単位/hr)は、圧力が2倍にな
れば2倍に、3倍になれば3倍に上昇させることによ
り、転化率、選択率は、ほぼ変化することなく空時収率
は2倍、3倍に向上し、本発明は達成できる。
The reaction pressure that can be reached varies depending on the form and performance of the catalyst used, but it is preferable to always maintain the optimum contact time at normal pressure or a value close to the holding time. That is, the standard conditions (normal pressure, 2
The space velocity, which is the SV (unit / hr) obtained from the relationship between the supply rate and the amount of catalyst at 5 ° C.), should be increased twice if the pressure doubles, and triple if the pressure triples. As a result, the space-time yield is improved twice or three times without substantially changing the conversion and the selectivity, and the present invention can be achieved.

【0013】反応圧力については、通常の固定床流通式
反応器では、充填している触媒により、反応器の入口部
はある程度の圧力上昇が生じる。その圧力上昇は、用い
られている触媒の形態、層長、さらには、反応ガスの空
間速度によって異なるが、本発明で用いられる反応圧力
は、現在、気相酸化反応に工業的に用いられている反応
条件で到達しうる圧力上昇分以上の圧力をかけることに
よって達成できる。その圧力を具体的な数字で表わすと
152KPa以上となる。
[0013] Regarding the reaction pressure, in a usual fixed bed flow type reactor, a certain amount of pressure rise occurs at the inlet of the reactor due to the charged catalyst. The pressure rise depends on the type of catalyst used, the bed length, and the space velocity of the reaction gas, but the reaction pressure used in the present invention is currently used industrially for gas phase oxidation reactions. This can be achieved by applying a pressure equal to or higher than the pressure increase that can be achieved under the reaction conditions. The pressure is 152 KPa or more when expressed in concrete numbers.

【0014】反応に供給する原料ガス中の飽和炭化水素
の濃度としては、1〜85モル%、好ましくは3〜70
モル%で実施することができる。飽和炭化水素を分子状
酸素および触媒存在下に気相接触酸化して不飽和含酸素
化合物および/または不飽和炭化水素を製造する反応に
おいては、反応速度は飽和炭化水素の濃度に1次の場合
が多く、その領域においては原料ガス中の飽和炭化水素
の濃度が高い程空時収率が高く工業的に有利になる。
The concentration of the saturated hydrocarbon in the raw material gas supplied to the reaction is 1 to 85 mol%, preferably 3 to 70 mol%.
It can be carried out in mole%. In a reaction for producing an unsaturated oxygen-containing compound and / or an unsaturated hydrocarbon by subjecting a saturated hydrocarbon to gas-phase catalytic oxidation in the presence of molecular oxygen and a catalyst, the reaction rate is determined based on the primary concentration of the saturated hydrocarbon. In that region, the higher the concentration of the saturated hydrocarbon in the raw material gas, the higher the space-time yield and the industrially advantageous.

【0015】分子状酸素の濃度に関しては、原料である
飽和炭化水素の濃度、及びその濃度での爆発範囲内に入
らないことを考慮して設定しなければならない。なお、
分子状酸素としては、空気、純酸素、酸素富化空気等が
用いられる。
The concentration of molecular oxygen must be set in consideration of the concentration of the saturated hydrocarbon as the raw material and the fact that the concentration does not fall within the explosion range at that concentration. In addition,
As molecular oxygen, air, pure oxygen, oxygen-enriched air and the like are used.

【0016】反応に供給する原料ガス中には、原料であ
る飽和炭化水素、分子状酸素以外にも水蒸気、希ガス
類、窒素、原料とは炭素数および/または構造の異なる
飽和炭化水素、一酸化炭素、二酸化炭素、さらには生成
物である不飽和含酸素化合物、不飽和炭化水素が含まれ
ていてもよい。特に、水蒸気については、単に爆発範囲
を避け、反応熱を除去するための希釈剤にとどまらず、
反応に関与して転化率、選択率、さらには触媒寿命にも
好ましい影響を与える反応系、触媒系である場合があ
り、そのような系においては、水蒸気を30モル%以下
の範囲で含有させるのが好ましい。
The raw material gas supplied to the reaction includes, in addition to the raw material, saturated hydrocarbons and molecular oxygen, water vapor, rare gases, nitrogen, saturated hydrocarbons having different carbon numbers and / or structures from the raw materials, carbon monoxide. , Carbon dioxide, and unsaturated oxygenated compounds and unsaturated hydrocarbons as products. In particular, for water vapor, it is not just a diluent to avoid the explosion range and remove the heat of reaction,
The reaction system may be a reaction system or a catalyst system that participates in the reaction and has a favorable influence on the conversion, selectivity, and even the life of the catalyst. In such a system, water vapor is contained in a range of 30 mol% or less. Is preferred.

【0017】本発明は、固定床のみならず、流動床、移
動床など、反応方式に限定なく利用することができる。
The present invention can be used not only in a fixed bed, but also in a reaction system such as a fluidized bed and a moving bed.

【0018】[0018]

【発明の効果】本発明の方法によれば、炭素原子数が3
〜8の飽和炭化水素を分子状酸素および触媒存在下に気
相接触酸化して不飽和カルボン酸を製造するに際し、触
媒に対する原料の接触時間(反応時間)と反応圧力を規
定するという極めて簡便な方法により、同一触媒を用い
ても、目的化合物の選択率を低下することなく、より高
い空時収率で目的とする不飽和カルボン酸を得ることが
できるもので、産業上の利用価値は極めて大である。
According to the method of the present invention, the number of carbon atoms is 3
When producing unsaturated carboxylic acids by subjecting saturated hydrocarbons of the formulas (1) to (8) to gas-phase catalytic oxidation in the presence of molecular oxygen and a catalyst, it is extremely simple to regulate the contact time (reaction time) of the raw material with the catalyst and the reaction pressure. By the method, even if the same catalyst is used, the desired unsaturated carboxylic acid can be obtained with a higher space-time yield without lowering the selectivity of the target compound, and its industrial utility value is extremely high. Is big.

【0019】[0019]

【実施例】以下に実施例を挙げて本発明をさらに具体的
に説明するが、本発明はこれら実施例によって限定され
るものではない。尚、本発明の於いて空間速度、接触時
間、転化率、選択率、および空時収量(STY)の定義
は以下のとおりである。
EXAMPLES The present invention will be described more specifically with reference to the following examples, but the present invention is not limited to these examples. In the present invention, the definitions of space velocity, contact time, conversion, selectivity, and space-time yield (STY) are as follows.

【0020】空間速度(1/hr)=(原料ガス供給速
度(標準状態基準(ml/hr))÷(触媒量(m
l)) 接触時間(sec)=60×60×(反応圧力(KP
a)/100)÷(空間速度(1/hr)) 転化率(%)=〔(反応した飽和炭化水素のモル数)÷
(供給した飽和炭化水素のモル数)〕×100 選択率(%)=〔(生成した不飽和カルボン酸のモル
数)÷(反応した飽和炭化水素のモル数)〕×100 空時収量(mmol/ml/hr)=空間速度(1/h
r)×(原料飽和炭化水素供給ガス濃度(%))×(転
化率(%))×(選択率(%))÷22.4÷106
Space velocity (1 / hr) = (source gas supply rate (standard state standard (ml / hr)) ÷ (catalyst amount (m
l)) Contact time (sec) = 60 × 60 × (reaction pressure (KP
a) / 100) {(space velocity (1 / hr)) conversion (%) = [(moles of reacted saturated hydrocarbon)}
(Mole number of supplied saturated hydrocarbon)] × 100 Selectivity (%) = [(Mole number of generated unsaturated carboxylic acid) ÷ (Mole number of reacted saturated hydrocarbon)] × 100 Space-time yield (mmol) / Ml / hr) = space velocity (1 / h)
r) × (concentration of raw material saturated hydrocarbon feed gas (%)) × (conversion (%)) × (selectivity (%)) ÷ 22.4 ÷ 10 6

【0021】実施例1 イオン交換水 230gに85%オルトリン酸 21.
0g、リン酸銅Cu3(PO4 2 ・3H2 O 6.0
5g、硝酸セシウム 38.2g、60%砒酸水溶液
13.3gを加え、撹拌溶解し均一な水溶液(A液と称
する)とした。次に1リットルのオートクレーブにイオ
ン交換水 330gを仕込み、温度を40℃に保持した
後、モリブデン酸アンモニウム〔(NH4 6 Mo7
32・4H 2 O〕 296.5gを添加し、撹拌溶解し
た。そこに、A液を全量注入して沈殿を析出させスラリ
ーとした後、五酸化バナジウムV2 5 6.36gを
添加した。オートクレーブの内温を120℃に加熱し、
熟成処理を12時間行った後、120℃乾燥機中で水分
を蒸発させ、乾燥固体を取り出した。触媒スラリーの乾
燥固体 100部にセラミックファイバー4部、イオン
交換水19部を加え、混練後3mmφで押し出し成型を
行った。押し出し品を乾燥後、空気気流中、250℃ま
で昇温して塩分解(脱硝酸アンモニウム、脱硝酸根)を
行った後、窒素気流中、435℃で3時間焼成して触媒
とした。この触媒は、酸素原子を除く組成は、Mo12
0.5 1.5 As0.4 Cu0.3 Cs1.4 であり、赤外吸収
スペクトルおよびX線回折より、立方晶系ケギン型ヘテ
ロポリ酸構造を持つことが確認できた。この触媒4ml
を内径15mmのガラス製反応管に充填し、イソブタン
37モル%、酸素37モル%、水蒸気16モル%、残り
が窒素からなる組成の原料ガスを空間速度(標準状態基
準)2041/hrで反応管を通し、さらに、反応圧力
を200KPaまで昇圧した後、反応温度329℃で活
性試験を行った。なお、接触時間は3.5秒であった。
その結果、イソブタン転化率7.1%、メタクリル酸の
選択率55.5%であった。空時収量(STY)をもと
めると1.33mmol/ml/hrであった。
Example 1 85% orthophosphoric acid in 230 g of ion-exchanged water 21.
0g, copper phosphate CuThree(POFour)Two・ 3HTwoO 6.0
5 g, cesium nitrate 38.2 g, 60% arsenic acid aqueous solution
13.3 g was added, and the mixture was stirred and dissolved to form a uniform aqueous solution (referred to as solution A).
To do). Next, put the ion in a 1 liter autoclave.
330 g of exchange water was charged, and the temperature was maintained at 40 ° C.
Then, ammonium molybdate [(NHFour)6Mo7O
32・ 4H TwoO] 296.5 g was added and dissolved by stirring.
Was. Thereto, the entire amount of solution A was injected to precipitate a slurry,
And then vanadium pentoxide VTwoOFive 6.36g
Was added. Heat the internal temperature of the autoclave to 120 ° C,
After performing the aging treatment for 12 hours, the
Was evaporated and a dry solid was removed. Drying of catalyst slurry
100 parts of dry solid, 4 parts of ceramic fiber, ion
Add 19 parts of exchange water, knead and extrude with 3mmφ
went. After the extruded product has been dried,
To decompose salt (deammonium nitrate, denitrifier)
After that, the catalyst was calcined at 435 ° C for 3 hours in a nitrogen stream.
And In this catalyst, the composition excluding oxygen atoms is Mo.12V
0.5P1.5As0.4Cu0.3Cs1.4And infrared absorption
From the spectrum and X-ray diffraction, cubic Keggin-type
It was confirmed that it had a lopolyacid structure. 4 ml of this catalyst
Into a glass reaction tube having an inner diameter of 15 mm,
37 mol%, oxygen 37 mol%, water vapor 16 mol%, remaining
At a space velocity (standard state base)
Quasi) Through the reaction tube at 2041 / hr,
Is increased to 200 KPa, and then activated at a reaction temperature of 329 ° C.
A sex test was performed. The contact time was 3.5 seconds.
As a result, the isobutane conversion was 7.1% and the conversion of methacrylic acid was
The selectivity was 55.5%. Based on space-time yield (STY)
The result was 1.33 mmol / ml / hr.

【0022】比較例1 実施例1で調製した触媒を用い、実施例1と同様の方法
にて活性試験を行った。ただし、原料ガスは空間速度
(標準状態基準)1025/hrで反応管を通し、反応
圧力は常圧の100KPaとした。なお、接触時間は
3.5秒であり、反応温度は実施例1とほぼ同等の33
0℃で活性試験を行った。その結果、イソブタン転化率
7.6%、メタクリル酸の選択率57.4%であり、空
時収量(STY)をもとめると0.74mmol/ml
/hrであった。
Comparative Example 1 Using the catalyst prepared in Example 1, an activity test was conducted in the same manner as in Example 1. However, the raw material gas was passed through the reaction tube at a space velocity (standard state standard) of 1025 / hr, and the reaction pressure was 100 KPa at normal pressure. The contact time was 3.5 seconds, and the reaction temperature was 33, which was almost the same as in Example 1.
The activity test was performed at 0 ° C. As a result, the conversion of isobutane was 7.6%, the selectivity of methacrylic acid was 57.4%, and the space-time yield (STY) was 0.74 mmol / ml.
/ Hr.

【0023】実施例2 実施例1で調製した触媒を用い、実施例1と同様の方法
にて活性試験を行った。ただし、原料ガスは空間速度
(標準状態基準)2744/hrで反応管を通し、反応
圧力は270KPaとした。なお、接触時間は3.5秒
であり、反応温度は比較例とほぼ同等の332℃で活性
試験を行った。その結果、イソブタン転化率9.0%、
メタクリル酸の選択率51.9%であり、空時収量(S
TY)をもとめると2.12mmol/ml/hrであ
った。
Example 2 Using the catalyst prepared in Example 1, an activity test was carried out in the same manner as in Example 1. However, the source gas passed through the reaction tube at a space velocity (standard state standard) of 2744 / hr, and the reaction pressure was 270 KPa. The contact time was 3.5 seconds, and the activity test was performed at 332 ° C., which was almost the same as the reaction temperature in the comparative example. As a result, the isobutane conversion was 9.0%,
The selectivity of methacrylic acid was 51.9%, and the space-time yield (S
TY) was 2.12 mmol / ml / hr.

【0024】比較例2 実施例1で調製した触媒を用い、実施例1と同様の方法
にて活性試験を行った。ただし、用いた触媒量は0.5
mlであり、原料ガスは空間速度(標準状態基準)20
59/hr、反応圧力は常圧の100KPa、接触時間
は1.8秒で活性試験を行った。ただし、その際、空時
収量(STY)が最高となるように、反応炉の温度を3
54℃とした。その結果、イソブタン転化率8.3%、
メタクリル酸の選択率50.4%であり、空時収量(S
TY)をもとめると1.41mmol/ml/hrであ
った。
Comparative Example 2 Using the catalyst prepared in Example 1, an activity test was conducted in the same manner as in Example 1. However, the amount of catalyst used was 0.5
ml, and the raw material gas has a space velocity (standard state standard) of 20.
The activity test was performed at a reaction pressure of 100 KPa at normal pressure and a contact time of 1.8 seconds at 59 / hr. However, at this time, the temperature of the reactor was set at 3 so that the space-time yield (STY) was maximized.
54 ° C. As a result, the isobutane conversion was 8.3%,
The selectivity of methacrylic acid was 50.4%, and the space-time yield (S
TY) was 1.41 mmol / ml / hr.

【0025】実施例3 実施例1で調製した触媒を用い、比較例2と同様の方法
にて活性試験を行った。ただし、原料ガスは空間速度
(標準状態基準)7605/hrで反応管を通し、反応
圧力は370KPaとした。なお、接触時間は1.8秒
であり、反応温度は比較例2と同様、反応炉の温度を3
55℃とした。その結果、イソブタン転化率12.0
%、メタクリル酸の選択率43.8%であり、空時収量
(STY)をもとめると6.60mmol/ml/hr
であった。
Example 3 Using the catalyst prepared in Example 1, an activity test was conducted in the same manner as in Comparative Example 2. However, the source gas passed through the reaction tube at a space velocity (standard state standard) of 7605 / hr, and the reaction pressure was 370 KPa. The contact time was 1.8 seconds, and the reaction temperature was set to 3 in the same manner as in Comparative Example 2.
55 ° C. As a result, the isobutane conversion was 12.0.
%, The selectivity of methacrylic acid is 43.8%, and the space-time yield (STY) is 6.60 mmol / ml / hr.
Met.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 宇井 利明 愛媛県新居浜市惣開町5番1号 住友化学 工業株式会社内 (72)発明者 永井 功一 愛媛県新居浜市惣開町5番1号 住友化学 工業株式会社内 Fターム(参考) 4G069 BB12B BB14B BC06B BC31B BC59B BD01B BD02B BD06B BD07B CB07 CB14 CB15 CB17 CB63 CB74 4H006 AA02 AC46 BA05 BA09 BA12 BA13 BA14 BA15 BA27 BA35 BA75 BC11 BC13 BC19 BE30 BS10 4H039 CA65 CC30  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Toshiaki Ui 5-1 Sokai-cho, Niihama-shi, Ehime Sumitomo Chemical Co., Ltd. (72) Inventor Koichi Nagai 5-1 Sokai-cho, Niihama-shi, Ehime Sumitomo Chemical F-term (reference) in Kogyo Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】炭素原子数が3〜8の飽和炭化水素を分子
状酸素および触媒存在下に気相接触酸化して不飽和含カ
ルボン酸を製造する方法において、該触媒反応を接触時
間が10秒以下で、かつ反応圧力を152KPa以上で
実施することを特徴とする不飽和含カルボン酸の製造方
法。
1. A process for producing an unsaturated carboxylic acid by subjecting a saturated hydrocarbon having 3 to 8 carbon atoms to gas-phase catalytic oxidation in the presence of molecular oxygen and a catalyst to produce an unsaturated carboxylic acid. A method for producing an unsaturated carboxylic acid, wherein the method is carried out at a reaction pressure of 152 KPa or more for seconds or less.
【請求項2】炭素原子数が3〜8の飽和炭化水素がプロ
パンであり、不飽和カルボン酸がアクリル酸であること
を特徴とする請求項1記載の不飽和カルボン酸の製造方
法。
2. The method for producing an unsaturated carboxylic acid according to claim 1, wherein the saturated hydrocarbon having 3 to 8 carbon atoms is propane and the unsaturated carboxylic acid is acrylic acid.
【請求項3】炭素原子数が3〜8の飽和炭化水素がイソ
ブタンであり、不飽和カルボン酸がメタクリル酸である
ことを特徴とする請求項1記載の不飽和カルボン酸の製
造方法。
3. The process for producing an unsaturated carboxylic acid according to claim 1, wherein the saturated hydrocarbon having 3 to 8 carbon atoms is isobutane, and the unsaturated carboxylic acid is methacrylic acid.
JP26980398A 1998-09-24 1998-09-24 Process for producing unsaturated carboxylic acid Expired - Fee Related JP3817374B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26980398A JP3817374B2 (en) 1998-09-24 1998-09-24 Process for producing unsaturated carboxylic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26980398A JP3817374B2 (en) 1998-09-24 1998-09-24 Process for producing unsaturated carboxylic acid

Publications (2)

Publication Number Publication Date
JP2000095725A true JP2000095725A (en) 2000-04-04
JP3817374B2 JP3817374B2 (en) 2006-09-06

Family

ID=17477398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26980398A Expired - Fee Related JP3817374B2 (en) 1998-09-24 1998-09-24 Process for producing unsaturated carboxylic acid

Country Status (1)

Country Link
JP (1) JP3817374B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006522764A (en) * 2003-04-09 2006-10-05 ビーエーエスエフ アクチェンゲゼルシャフト Method for partial direct oxidation of propane and / or isobutane by heterogeneous catalysis
JP2011152543A (en) * 2011-04-28 2011-08-11 Nippon Kayaku Co Ltd Method for producing catalyst for producing methacrylic acid
US8338640B2 (en) 2003-04-09 2012-12-25 Basf Aktiengesellschaft Heterogeneously catalyzed partial direct oxidation of propane and/or isobutane

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006522764A (en) * 2003-04-09 2006-10-05 ビーエーエスエフ アクチェンゲゼルシャフト Method for partial direct oxidation of propane and / or isobutane by heterogeneous catalysis
JP4914208B2 (en) * 2003-04-09 2012-04-11 ビーエーエスエフ ソシエタス・ヨーロピア Method for partial direct oxidation of propane and / or isobutane by heterogeneous catalysis
US8338640B2 (en) 2003-04-09 2012-12-25 Basf Aktiengesellschaft Heterogeneously catalyzed partial direct oxidation of propane and/or isobutane
JP2011152543A (en) * 2011-04-28 2011-08-11 Nippon Kayaku Co Ltd Method for producing catalyst for producing methacrylic acid

Also Published As

Publication number Publication date
JP3817374B2 (en) 2006-09-06

Similar Documents

Publication Publication Date Title
JP4346822B2 (en) Molybdenum-vanadium catalyst for the low temperature selective oxidation of propylene, its production and use
US6646158B1 (en) Catalytic oxidation of alkanes to corresponding acids
US4568790A (en) Process for oxydehydrogenation of ethane to ethylene
US6310241B1 (en) Catalysts methods for producing acetic acid from ethane oxidation using MO, V, PD and NB based catalysts, processes of making same and methods of using same
US5907056A (en) Catalysts for the oxidation of ethane to acetic acid, processes of making same and processes of using same
US4155938A (en) Oxidation of olefins
US20020072629A1 (en) Zn and/or Ga promoted multi-metal oxide catalyst
EP0010902B1 (en) Process for the production of (meth)acrylic acid by the catalytic vapour phase oxidation of isobutane or propane
KR101331766B1 (en) Process for producing catalyst for use in producing unsaturated aldehyde and unsaturated carboxylic acid, and process for producing unsaturated aldehyde and unsaturated carboxylic acid
JP3465350B2 (en) Method for producing catalyst for methacrylic acid production
US6156928A (en) Method for gas phase production of acetic acid from ethane
US6028221A (en) Catalyst systems for the one step gas phase production of acetic acid from ethylene and methods of making and using the same
JP4182237B2 (en) Catalyst for gas-phase catalytic oxidation reaction of isobutane and method for producing alkene and / or oxygen-containing compound using the same
JPS5824417B2 (en) Propylene Mataha Isobutylene Color Acrylic Sant Methacrylic Sanno Seizouhou
JPH10128112A (en) Catalyst for vapor phase contact oxidation reaction of isobutane and its preparation
JP2558036B2 (en) Method for producing methacrolein and / or methacrylic acid
JP2000095725A (en) Production of unsaturated carboxylic acid
US4113769A (en) Process for preparing unsaturated carboxylic acids by gas phase catalytic oxidation of the corresponding aldehydes
JP3855298B2 (en) Process for producing alkene and / or oxygen-containing compound
JP3603331B2 (en) Method for producing oxygenated compound using C4-LPG
JP3316881B2 (en) Method for producing catalyst for producing methacrylic acid
US3836586A (en) Process for producing acrolein or methacrolein
JP3482476B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP3316880B2 (en) Method for producing catalyst for producing methacrylic acid
JP2000169420A (en) Production of acrylic acid

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060612

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090616

Year of fee payment: 3

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D05

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090616

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100616

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100616

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110616

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110616

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120616

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120616

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130616

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees