JP3816404B2 - 監視システム - Google Patents

監視システム Download PDF

Info

Publication number
JP3816404B2
JP3816404B2 JP2002024604A JP2002024604A JP3816404B2 JP 3816404 B2 JP3816404 B2 JP 3816404B2 JP 2002024604 A JP2002024604 A JP 2002024604A JP 2002024604 A JP2002024604 A JP 2002024604A JP 3816404 B2 JP3816404 B2 JP 3816404B2
Authority
JP
Japan
Prior art keywords
distance
monitoring
light
distance sensor
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002024604A
Other languages
English (en)
Other versions
JP2003227873A (ja
Inventor
一弘 味村
利治 武居
安弘 竹村
真人 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Osaka Cement Co Ltd
Original Assignee
Sumitomo Osaka Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Osaka Cement Co Ltd filed Critical Sumitomo Osaka Cement Co Ltd
Priority to JP2002024604A priority Critical patent/JP3816404B2/ja
Publication of JP2003227873A publication Critical patent/JP2003227873A/ja
Application granted granted Critical
Publication of JP3816404B2 publication Critical patent/JP3816404B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、監視システムに関し、特に対象領域内の物体や人物の動きの有無を監視するための監視システムに関するものである。
【0002】
【従来の技術】
病院の病室内あるいはトイレ内の患者のプライバシーを損なわずに、異常を知るための監視装置として、従来から、監視対象領域に輝点を投影してその画像を撮影し、撮影された画像中の輝点の基準位置からの位置変化によって対象領域の高さ変化を検出し、対象領域内の物体や人物の有無や動きの有無を監視する装置が提案されている。
【0003】
【発明が解決しようとする課題】
しかしながら以上のような従来の装置によれば、対象領域の監視は撮像された画像を処理しなければならないため、計算量が多く処理に時間がかかるだけでなく、複雑な装置を必要としていた。
【0004】
そこで本発明は、正確な対象領域内の監視を行えるだけでなく、単純で、かつ高速処理が可能な監視システムを提供することを目的としている。
【0005】
【課題を解決するための手段】
上記目的を達成するために、請求項1に係る発明による監視システム1は、例えば図1、図6(図13)、図14、図15、図17に示すように、監視対象物2までの距離を測定する複数の距離センサ11と;距離センサ11で時系列的に取得した距離情報を保存する距離情報保存部25と;距離情報保存部25に保存された距離情報に基づいて監視対象物2の動きの有無を判断する判断部22とを備え;距離センサ11は、監視対象物2にビーム光を照射する光照射手段31a(31b)と、監視対象物2で反射されるビーム光を結像する結像光学系37a(37b)を有し;判断部22は、距離情報に基づいて、複数の距離センサ11のうちの各距離センサ11に対応する監視対象エリア6ごとに、距離センサ11と監視対象物2との距離のうちの、監視対象エリア6に監視対象物2が存在しないときの前記ビーム光の反射平面である監視領域面3に対して垂直な高さ方向の距離H1及び監視領域面3に平行な奥行方向の距離L1の少なくとも一方を算出し、算出した高さ方向の距離H1及び奥行方向の距離L1の少なくとも一方を予め監視対象物2の姿勢と対応づけられた区分データに変換し、区分データを参照することにより監視対象物2の姿勢を判断するように構成されている。
このように構成すると、判断部は、距離情報に基づいて、複数の距離センサのうちの各距離センサに対応する監視エリアごとに、距離センサと監視対象物との距離のうちの、前記監視対象エリアに前記監視対象物が存在しないときの前記ビーム光の反射平面である監視領域面に対して垂直な高さ方向の距離及び監視領域面に平行な奥行方向の距離の少なくとも一方を算出し、算出した高さ方向の距離及び奥行方向の距離の少なくとも一方を予め監視対象物の姿勢と対応づけられた区分データに変換し、区分データを参照することにより監視対象物の姿勢を判断するように構成されているので、距離がそれほど正確でなくても状態の判断を行うことができると共に、簡易な装置で高速処理が可能となる。
【0006】
また、請求項2に記載の発明に係る監視システムシステムは、請求項1に記載の監視システムにおいて、例えば図6、図7に示すように、距離センサ11(例えば図15参照)は、結像光学系37aによる結像位置近傍に配置され前記反射されるビーム光を受光する、複数の受光領域38a、38bに分割された受光面38とを有し;さらに、各受光領域38a、38bからの信号を受信し、該受信した信号に基き各受光領域38a、38bに入射するビーム光の強度を相互に比較し、監視対象物2(例えば図15参照)までの距離情報に対応するビーム光結像位置情報を出力するように構成された位置情報出力装置39aを有している。
このように構成すると、距離センサ11は、複数の受光領域38a、38bに分割された受光面38を有しているので、例えば回路構成を単純化でき、安価で単純な監視システム1とすることができる。
【0007】
また、請求項3に記載の発明に係る監視システムシステムは、請求項1に記載の監視システムにおいて、例えば図13、図24に示すように、距離センサ11(例えば図15参照)は、結像光学系37bによる結像位置近傍に配置され監視対象物2(例えば図15参照)からのビーム光を受光する受光手段36とを有し;受光手段36上に結像されるビーム光スポット位置に基づいて、監視対象物2(例えば図15参照)までの距離情報に対応するスポット位置情報を出力するように構成された位置情報出力装置39bを有している。
【0008】
このように構成すると、距離センサ11は、受光手段36を有し、受光手段36上に結像されるビーム光スポット位置に基づいて、監視対象物2までの距離情報に対応するスポット位置情報を出力するので、安価で単純な監視システム1とすることができる。
【0009】
また請求項に記載のように、請求項1ないし請求項3のいずれか1項に記載の監視システム1では、距離情報保存部25は、距離センサ11で取得した距離情報を時系列で保存するよう構成され;判断部22は、距離センサ11で取得された距離情報と前記時系列で保存された直前の距離情報との距離情報差を演算し、該距離情報差と第1の所定の閾値とを比較して、前記距離情報差が前記第1の所定の閾値より大のとき監視対象物2に動きがあったと判断し、前記距離情報差が前記第1の所定の閾値より小のとき監視対象物2は静止していると判断するように構成される。
【0010】
このように構成すると、距離センサ11で取得された距離情報と時系列で保存された直前の距離情報との距離情報差を演算し、距離情報差と第1の所定の閾値とを比較して、距離情報差が第1の所定の閾値より大のとき監視対象物2に動きがあったと判断し、前記距離情報差が前記第1の所定の閾値より小のとき監視対象物2は静止していると判断するので、例えば距離情報に混入するノイズに強く、正確に監視対象物2の動きの有無の判断ができる。
【0011】
また、監視システム1は、距離センサ11を、複数備えるで、正確に監視対象物2の動きの有無の判断ができる。
【0012】
また請求項に記載のように、請求項に記載の監視システム1では、判断部22は、前記第1の所定の閾値との比較を前記複数の距離センサ11の各々について、一定の期間にわたって行ない、該一定の期間内に動きがあったと判断した回数と、静止していると判断した回数との回数差を求め、前記回数差が第2の所定の閾値よりも大なるセンサの監視対象点6に動きがあったと判断するように構成するとよい。
【0013】
このように構成すると、例えば距離センサ11からの信号にノイズが混入することにより、実際に動きが無い監視対象点6を動きがあったと誤判断をすることがなく、信頼性の高い監視システム1を提供できる。
【0014】
また請求項に記載のように、請求項に記載の監視システム1では、判断部22は、前記動きがあったと判断された監視対象点6の数と、静止していると判断された監視対象点6の数との差を求め、前記点の数の差に基づいて、監視対象物2が全体として動いているか、静止しているかを判断するように構成されている。
【0015】
このように構成すると、監視対象物2が全体として動いているか、静止しているかを判断するので、信頼性の高い監視システム1を提供できる。
【0016】
また上記の発明では、判断部22は、監視対象物2の存在する監視領域面3に対する距離センサ11の相対的な位置と、監視領域面3に対する距離センサ11の相対的な距離測定方向とに基づき、監視対象物2の監視領域面3からの高さを算出するように構成するとよい。
【0017】
さらに上記の発明では、例えば、判断部22は、前記高さに基づいて監視対象物2の姿勢を判断する。また、前記高さは、距離センサ11で時系列的に取得した複数の距離情報の平均値とするとよく、前記平均値は、ある一定の時間間隔毎に各時間間隔内に生じた距離情報の平均値、または、ある一定の個数の距離情報に関する移動平均値としてもよい。
【0018】
このように構成すると、判断部22は、監視対象物2の監視領域面3からの高さを算出し、前記高さに基づいて監視対象物2の姿勢を判断できるので、精度の高い監視システム1を提供できる。
【0019】
また上記の発明では、判断部22は、監視対象物2の存在する監視領域面3に対する距離センサ11の相対的な位置と、監視領域面3に対する距離センサ11の相対的な距離測定方向とに基づき、監視対象物2の距離センサ11からの監視領域面3に平行な方向の奥行を算出するように構成するとよい。
【0020】
また上記の発明では、典型的には、前記高さと前記奥行は、距離センサ11で時系列的に取得した複数の距離情報の平均値であり、前記平均値は、ある一定の時間間隔毎に各時間間隔内に生じた距離情報の平均値、または、ある一定の個数の距離情報に関する移動平均値である。
【0021】
また上記の発明では、判断部22は、前記高さと前記奥行との両方またはいずれか一方に基づいて、監視対象物2の姿勢を判断するとよい。
【0022】
このように構成すると、判断部22は、監視対象物2の監視領域面3からの高さ及び距離センサ11からの監視領域面3に平行な方向の奥行を算出し、前記高さと前記奥行との両方またはいずれか一方に基づいて監視対象物2の姿勢を判断できるので、精度の高い監視システム1を提供できる。
【0023】
また上記の発明では、監視対象点6は、監視対象物2の主な移動方向に対して直角な方向に2列以上配置するとよい。
【0024】
また、監視システム100は、例えば図1、図4、図6に示すように、監視したい監視対象点6に対応して設置された距離センサであって、前記距離センサは対応する監視対象点6までの距離を測定する距離センサ11と;距離センサ11で取得した距離情報と比較すべき基準距離情報を保存する基準距離保存部125と;距離センサ11から取得した距離情報と前記基準距離情報とを比較する距離比較手段122と;距離比較手段122による比較結果に基づいて、監視対象点6と距離センサ11との間に存在する監視対象物2を監視する監視部128とを備え;距離センサ11は、監視対象物2にビーム光を照射する光照射手段31aと、監視対象物2で反射されるビーム光を結像する結像光学系37bと、結像光学系37bによる結像位置近傍に配置され前記反射されるビーム光を受光する、複数の受光領域38a、38bに分割された受光面38とを有し;さらに、前記各受光領域からの信号を受信し、該受信した信号に基き前記各受光領域に入射するビーム光の強度を相互に比較し、監視対象物2までの距離情報に対応するビーム光結像位置情報を出力するように構成された位置情報出力装置39aを有しているように構成してもよい
【0025】
このように構成すると、距離センサ11と、基準距離保存部125と、距離比較手段122と、監視部128とを備えるので、距離センサ11で取得した距離情報と比較すべき基準距離情報を保存し、距離センサ11から取得した距離情報と前記基準距離情報とを比較して、この比較結果に基づいて、監視対象点6と距離センサ11との間に存在する監視対象物2を監視することで、高速処理が可能で、かつ安価である監視システム100とすることができる。また、距離センサ11は、ビーム光照射手段31aと、結像光学系37aと、複数の受光領域38a、38bに分割された受光面38とを有しているので、例えば回路構成を単純化でき、安価で単純な監視システム100とすることができる。
【0026】
また、上記の監視システム100は、距離センサ11を、複数備えると更によい。
【0027】
また上記の発明では、距離センサ11の距離測定方向は、鉛直方向に対して傾斜しているとよい。
【0028】
【発明の実施の形態】
以下、本発明の実施の形態について、図面を参照して説明する。なお、各図において互いに同一あるいは相当する部材には同一符号または類似符号を付し、重複した説明は省略する。
【0029】
図1は、本発明による第1の実施の形態である監視システム100の模式的斜視図である。図中監視対象物2が床面3上に存在している。XY軸を床面3内に置くように、直交座標系XYZがとられている。また床面3と垂直即ちYZ平面上に壁4が形成されている。監視対象物2は、本実施の形態では人物である。
【0030】
一方、図中壁4には、人物2の距離を測定するための複数の距離センサ11を含んで構成される筐体10が設置されており、筐体10には、複数の距離センサ11が、複数の監視対象点としての複数の監視対象エリア6(以下監視エリア6という)に対応して設置されている。また、距離センサ11の距離測定方向は、鉛直方向に対して傾斜しているとよい。また本実施の形態では、筐体10(距離センサ11)は、壁に設置しているが、天井が存在する場合は天井でもよく、設置場所は監視システムの目的や仕様等により適宜決めてよい。複数の距離センサ11による複数の監視エリア6の各測定距離は、測定距離パターンを形成し、対応する基準距離は、基準距離パターンを形成する。
【0031】
また、図2に示すように、例えば、監視システム100をトイレに設置する場合には、筐体10を天井に設置するとよい。また、図示では監視エリア6は、2×5配置されているが、設置する数は後述のように適宜決めてよい。
【0032】
図3の模式的平面図の監視エリア6の配置例を参照して、監視エリア6について説明する。図3(a)は、複数の監視エリアが隣合う監視エリアと重ならないように配置した例である。この場合、例えば図示のように、複数の監視エリアは、監視する場所である監視ゾーン60に、図中右列から監視エリア61、62、63、64、65、66、67、68、69(以下監視エリアを区別しない場合は単に監視エリア6という)が、お互いに重ならないように碁盤目状に配置されている。配置する数は、ここでは3行3列(3×3)であるが、監視する場所、人物2などの条件により適宜決めてよく、例えば2×1もしくは3×2、3×5としてもよい。このように複数の監視エリア6を配置すると、距離センサ11に、例えば光を照射することにより距離を測定する照射型センサを使用した場合でも、隣接する監視エリア6に対応する距離センサ11は、後述のように同時に照射しないように制御する必要がなく、監視システム100をより簡単な構成とすることができる。
【0033】
また図3(b)の模式的平面図の監視エリア6の配置例に示すように、隣合う監視エリア6が重なっていてもよい。このようにすると、監視ゾーン60の死角を少なくすることができるので、より精度の高い監視に有効である。このとき距離センサ11に、照射型センサを使用する場合には、重なり合う監視エリア6に対応する距離センサ11は、お互いに影響がないように、同時に照射しないように制御する必要がある。これは、複数の距離センサ11から同時に例えば照射光を照射した場合、本来受光しなければならない照射光に他の距離センサ11から照射された照射光が混入し、監視エリア6の距離の測定が困難になるためである。本図に示す場合の制御については後で詳しく説明する。また、距離センサ11を、後述のように投光するビーム光の波長をセンサ毎に異なるようにした場合には、隣合う対象点5が重なっていても同時に照射しないように制御する必要がない。また、距離センサ11に後述のバンドパスフィルタを備える場合には、隣合う対象点5が重なっていても同時に照射しないように制御する必要がない。
【0034】
図4を参照して、監視システム100の構成の一例を説明する。監視システム100は、複数の距離センサ11が設置された筐体10と、演算装置120とを含んで構成される。そして複数の距離センサ11は、演算装置120に接続されており、それぞれの距離センサ11からの距離情報を取得できるように構成されている。また距離情報は、それぞれの距離センサ11から時系列的に取得するように構成するとよい。演算装置120は、典型的にはパソコンやマイコンである。また、図中距離センサ11と演算装置120とは、別体として示してあるが、一体として構成してもよい。
【0035】
ここで、距離情報とは、例えば実際に距離を算出する前の距離センサ11からの出力値であるが、対象とする人物2までの距離そのものとしてもよい。また基準距離情報とは、例えば実際に基準距離を算出する前の距離センサ11からの出力値であるが、基準距離そのものとしてもよい。さらに基準距離とは、監視時点の過去の時点の距離であればよく、典型的には監視エリア6に人物2が存在しない状態のいわば背景の距離であるが、それに限らず、例えば周期的に距離を検知している場合の1コマ分だけ前の距離であってもよい。
【0036】
また典型的には、距離センサ11は筐体10に並列的に設置されるが、図5の模式図に示すように、筐体10にカーブをつけて設置してもよい。このように設置することで、小さな筐体10’でも広い監視ゾーン60を容易に確保することができる。また、前述のように距離センサ11に、照射型センサを使用する場合には、隣合う監視エリア6に対応する距離センサ11は、小さな筐体10’でもそれぞれの監視エリア6が重複しにくいので、容易に距離センサ11の相互の影響を無くすことができる。さらに、監視エリア6を重複させない場合には、後述のタイミングコントローラ123を備える必要がなく、監視システム100をより簡単な構成とすることができる。また、筐体10’は、後述の監視システム1に用いた場合も、同様な効果を有する。
【0037】
演算装置120は、制御部121を備えており、監視システム100全体を制御している。また複数の距離センサ11は制御部121に接続され、制御されている。また制御部121内には、複数の距離センサ11の各々から取得した距離情報と、前記各距離センサ11に対応する基準距離情報とを比較する距離比較手段である比較演算部122が備えられている。また制御部121には、比較演算部122による比較結果に基づいて、監視エリア6と距離センサ11との間に存在する人物2を監視する監視部128が備えられている。
【0038】
比較演算部122による比較結果は、典型的には時系列的に取得され、それに基づき人物2の移動、位置、姿勢等を、監視部128により判断できるように構成されている。即ち、基準距離情報と、ある時点の距離情報とを比較することにより、人物2の存在、その移動、その位置、姿勢等を判断することができるように構成されている。さらに、最終的な人物2の存在、その移動、その位置、姿勢等の判断は、複数の距離センサ11それぞれに対応する判断結果から総合的になされる。また人物2の移動は、人物2の位置の変化だけでなく、例えば人物2が立ったり座ったりするような変化も含むものとする。さらに、監視エリア6が重複する場合には、隣合う監視エリア6に対応する複数の距離センサ11が同時に作動することがないように制御する制御装置としてのタイミングコントローラ123を備えるようにする。またタイミングコントローラ123による制御については後で詳しく説明する。
【0039】
制御部121には、記憶部124が接続されている。記憶部124内には、複数の距離センサ11から取得した距離情報と比較すべき基準距離情報を保存する基準距離保存部125が備えられている。また記憶部124には算出された情報等のデータが記憶できる。
【0040】
また制御部121には、監視システム100を操作するための情報を入力する入力装置126、監視システム100で処理された結果を出力する出力装置127が接続されている。入力装置126は例えばタッチパネル、キーボードあるいはマウスであり、出力装置127は例えばディスプレイやプリンタあるいは警報装置である。本図では、入力装置126、出力装置127は演算装置120に外付けするものとして図示されているが、内蔵されていてもよい。
【0041】
使用する距離センサ11としては、照射型センサとして赤外線照射型の距離センサがある。以下赤外線照射型の距離センサについて図を参照して説明する。
【0042】
ここで、距離センサ11の実施例としての赤外線照射型の距離センサ30(以下赤外線距離センサ30という)について説明する。赤外線距離センサ30は、いわゆるアクティブ型光学センサである。また、赤外線距離センサ30には、複数の受光領域に分割されたフォトディテクタ(以下多分割PDという)を用いたものと、位置検出素子(以下PSDという)を用いたものがある。以下、多分割PDを用いたものを赤外線距離センサ30a、PSDを用いたものを赤外線距離センサ30bとして説明する。また、これらを特に区別しないときには単に赤外線距離センサ30という。
【0043】
まず図6のブロック図を参照して、多分割PDを用いた赤外線距離センサ30aについて説明する。赤外線距離センサ30aは、人物2にビーム光を照射する光照射手段としての赤外光照射部31aと、赤外線受光部32aと、赤外線距離センサ30a全体を制御するセンサ制御部33aを含んで構成されている。またセンサ制御部33aは、演算装置120の制御部121内(図4参照)に備えるようにしてもよい。
【0044】
赤外光照射部31aには、赤外LED34aと照射レンズ35aとが備えられており、赤外LED34aから照射された赤外光は照射レンズ35aを介して細い平行光束のビーム光として人物2に照射される。また赤外線受光部32aは、人物2で反射されるビーム光を結像する結像光学系としての受光レンズ37aと、受光レンズ37aによる結像位置近傍に配置され、人物2で反射されるビーム光を受光する複数の受光領域に分割された受光面としての多分割PD38を有している。ここでは、多分割PD38の分割数は2分割として説明する(以下これを2分割PD38という)。さらに、赤外線距離センサ30aは、各受光領域からの信号を受信し、この受信した信号に基づき各受光領域に入射するビーム光の強度を相互に比較し、人物2までの距離に対応する距離情報に対応するビーム光結像位置情報出力するように構成された位置情報出力装置としての位置情報出力部39aを有している。位置情報出力部39aは、センサ制御部33a内に備えられている。
【0045】
ここで図7、8を参照して、2分割PD38について説明する。図7に示すように、2分割PD38は、2つの受光領域38a、38b(以下これらを特に区別しないときは単に受光領域という)に分割され、基板38c上に並列に置かれている。また分割方向は、距離変化による結像ビームの移動方向(図中左右方向)におよそ垂直な方向とする。言いかえれば、分割された受光領域38a、38bが距離変化による結像ビームの移動方向に沿って並ぶように分割される。
【0046】
受光領域38a、38bは、人物2で反射して受光レンズ37aにより結像されたビーム光(以下結像ビームという)が受光領域38a、38b上にまたがって結像することで、それぞれの受光領域に電流が発生する。
【0047】
そして図8に示すように、受光領域38a、38bには、それぞれにI―V変換アンプ39dが接続されている。受光領域38a、38bでそれぞれに発生した電流の電流値は、それぞれI―V変換アンプ39dにより電圧値に変換され、比較回路39cに入力される。比較回路39cは、これらの比を取ることにより、ビーム光結像位置情報即ち距離情報を算出する。なお、I―V変換アンプ39d、比較回路39cは、共に位置情報出力部39a内に備えられている。また2分割PD38の場合には、2分割PD38の受光面積は、結像ビームの直径(結像ビーム径)よりも2分割PD38の受光面積が大きくなるように設定するとよい。このようにすることで、対象物の距離が変化することで結像ビーム径が大きくなっても、結像ビームが2分割PD38上から欠けてしまうことがなく、安定かつ正確に距離を測定できる。
【0048】
ここで、2分割PD38は、結像ビームの光量(強度)に比例して電流を発生するので、受光領域38a、38bから出力されI―V変換アンプ39dにより変換された電圧値は、基本的に受光領域38a、38bにそれぞれ受光した結像ビームの面積とみることができる。即ち、電圧値の比は、受光領域38a、38bにそれぞれ受光した結像ビームの面積比とみなせる。この面積比は、対象物の距離の変化により結像ビームが移動することで変化する。即ち面積比を結像ビームの位置相当値とみることができる。これにより、面積比即ち電圧値の比をビーム光結像位置情報即ち距離情報として用いることができる。
【0049】
ここで図9に、面積比と対象物距離の関係の一例を示す。また、ここでは、赤外線距離センサ30aは、床面3(図2参照)に対して光軸がおよそ垂直になるように設置している場合である。また、受光領域38a上の結像ビームを領域A、受光領域38bの結像ビームの領域Bとする。基線長は、照射レンズ35aと受光レンズ37aとの光軸間距離、ビーム光径は、照射レンズ35aより照射されるビーム光の直径、センサ設置高さは、受光レンズ37aから床面3までの距離、焦点距離は、受光レンズ37aの焦点距離、像距離は、受光レンズ37aから2分割PD38の結像面までの距離である。2分割PDは、受光領域が4mm×4mm×2個のものを用いる。
【0050】
また、以上では多分割PD38の分割数は2分割として説明したが、2分割以上としてもよい。また多分割PDは、分割されていないPDを並べて配置したものでもよい。
【0051】
図10、11に示すように、ここでは、多分割PD38の分割数を4分割として説明する(以下これを4分割PD38’という)。図10に示すように、この場合には、2分割と同様に、4分割PD38’は、4つの受光領域38d、38e、38f、38g(以下これらを特に区別しないときは単に受光領域という)に分割され、基板38c上に並列に置かれている。4分割PD38’は、人物2で反射して受光レンズ37aにより結像されたビーム光が4分割PD38’上に結像することで、それぞれの受光領域に電流が発生する。
【0052】
そして図11に示すように、受光領域38d、38e、38f、38gには、それぞれにI―V変換アンプ39dが接続されている。それぞれの受光領域に発生した電流の電流値は、それぞれI―V変換アンプ39dにより電圧値に変換され、比較回路39cに入力される。比較回路39cは、これらを比較することで、ビーム光結像位置情報即ち距離情報を算出する。なお、比較回路39cでの比較は、受光領域38d、38e、38f、38gのうち出力が大きい2つの受光領域の比を取ることにより、ビーム光結像位置情報を算出するようにするとよい。
【0053】
受光面38の分割数は、10分割以下とするのがよい。好ましくは4分割以下、最も好ましくは2分割である。分割数を制限することにより、I―V変換アンプ39d等の付属機器数を徒に増やすことなく、簡単な構造とすることができる。
【0054】
また図10に示すように、2分割より分割数の多い多分割PD38を用いた場合には、結像したビーム光が大きく動いて2つの受光領域からはずれるような場合、即ち測定している対象の距離が大きく変化するような場合でも、他の2つの受光領域によりビーム光結像位置情報を算出できる。
【0055】
さらに、2分割より分割数の多い多分割PD38の場合には、1つの受光領域の距離変化による結像ビームの移動方向(図中左右方向)の幅は、結像ビーム径よりも小さくなるように設定するとよい。これは、結像ビームが少なくとも2つの受光領域にまたがらずに1つの受光領域内に入ってしまうことで、結像ビームが移動しても電圧値の比が変化しない状況が発生しないようにするためである。即ち、このようにすることで、結像ビームが移動しても電圧値の比が変化しない状況を無くすことができ、安定かつ正確に距離を測定できる。また、受光レンズ37aにテレセントリック光学系のものを用いてもよい。この場合には、対象物の距離が変化しても結像ビーム径が一定であることで、結像ビームの移動だけで電圧値の比が変化するので、計算を単純化することができる。テレセントリック光学系とは、絞りが対物レンズの焦点の1つにおかれている望遠鏡光学系である。また、2分割PD38を用いる場合でも上記のように受光レンズ37aにテレセントリック光学系のものを用いて構成してもよい。
以下2分割PD38を用いる場合で説明する。
【0056】
図6に戻って、さらに赤外線距離センサ30aについて説明する。受光レンズ37aは、照射されたビーム光の波長帯域の光のみを透過させるコーティングが施されている。従って、外乱光の影響が少なく位置検出をすることができる。また以上ではビーム光は細い平行光束としたがある程度拡散した拡散光束であってもよい。拡散光束の場合は、2分割PD38によるビーム光結像位置情報の検出に差支えない程度の拡散があってもよい。
【0057】
また赤外線距離センサ30aは、赤外光照射部31aが投光するビーム光の波長をセンサ毎に異なるようにしてもよい。この場合には、併せて、前述の受光レンズ37aに施されたコーティングの透過波長帯域も、投光するビーム光に対応した透過波長帯域になるようにする。これにより、図3(b)で説明した隣合うビーム光が重なる場合であっても、隣のセンサのビーム光の影響を受けることが無く、同時に照射しないように制御する必要がないので監視装置を単純化できる。また赤外線距離センサ30aは、赤外LED34a(光源)を一定の周波数で点滅させ、赤外光受光部32aにその周波数のみの信号を通過させるバンドパスフィルタを備えるようにしてもよい。これにより、外乱光の影響を低減することができる。また、この変調周波数をセンサ毎に変えることにより、図3(b)で説明したビーム光が重なる場合でも隣のセンサのビーム光の影響を受けることが無くなる。これにより、ビーム光が重なる場合であっても同時に照射しないように制御する必要がなく監視システムを単純化できる。さらに、赤外LED34aの照射のタイミングに同期させて赤外光受光部32aのアンプの極性を切換える同期検波を行っても好適である。
【0058】
赤外線距離センサ30aは、照射するビーム光に、赤外線を用いることで、人間には見えず、不快感を与えることがない。また赤外線距離センサ30aは、後述のPSDを用いた赤外線距離センサ30bのPSD部分を単に2分割PD38に置き換えたものであってもよい。
【0059】
このように、赤外線距離センサ30aは、2分割PD38を用いることで、回路構成を単純化できるので、安価で、単純な監視システムとすることができる。また、特に分割数を2分割で構成することで、回路構成を大幅に単純化できるので、安価で、単純な監視システムとすることができる。
【0060】
赤外線距離センサ30aのセンサ制御部33aは、ビーム光結像位置情報を検出する際に、外乱光と区別するために、変調を行う。変調は、例えば周期的にビーム光の発光(照射)停止を繰り返し行なうような動作である。この場合、ビーム光の発光停止は、例えば光源を発光停止してもよいし、遮光板やスリットを回転させることにより、発光停止をするようにしてもよい。さらに変調は、上述に加え、外乱光の強さにより、ビーム光の出力も変化させるようにしてもよい。そしてセンサ制御部33aは、ビーム光を照射している時の2分割PD38の出力値からビーム光を照射していない時の2分割PD38の出力値を差し引いた出力値を算出する。またセンサ制御部33aは、信頼性を確保するために、このような動作を複数回行ない、その平均出力値をビーム光結像位置情報(以下測距信号という)とする。センサ制御部33aは、測距信号の値である測距信号値xを距離情報として演算装置120へ出力する。
【0061】
図12の模式図に示すように、対象とする人物2までの距離値Aは、この測距信号値xに基づいて、三角法を用いて次式で算出することができる。
A = f ×w/(x−b) ………(1)
fは、赤外光受光部32aの受光レンズ37aを単一レンズとしたときそのレンズの焦点距離、wは、赤外LED34aと2分割PD38との間の距離、言い換えれば、照射レンズ35aと受光レンズ37aの光軸間の距離(基線長)、bはPD38の受光素子の配置に依存するバイアス値を示す。またここでの焦点距離は、一般に用いられている組み合わせレンズを使用する場合は、その組み合わせレンズの焦点距離とする。上述のような距離Aの算出は、演算装置120の制御部121で行なわれる。
【0062】
以上では、赤外線距離センサ30aは、距離情報として測距信号値xを出力する場合について説明したが、距離情報として上述の方法で算出された距離値Aそのものを出力するように構成してもよい。
【0063】
次に図13のブロック図を参照して、PSDを用いた赤外線距離センサ30bについて説明する。赤外線距離センサ30bは、ビーム光を照射する光照射手段としての赤外光照射部31b、赤外光受光部32b、赤外線距離センサ30b全体を制御するセンサ制御部33bを含んで構成されている。またセンサ制御部33bは、演算装置120の制御部121内(図4参照)に備えるようにしてもよい。
【0064】
赤外光照射部31bには、赤外LED34bと照射レンズ35bとが備えられており、赤外LED34bから照射された赤外光は照射レンズ35bを介して細い平行光束のビーム光として人物2に照射される。赤外光受光部32bは、赤外光照射部31bにより人物2上に生成されるビーム光スポットを結像する結像光学系としての受光レンズ37bと、受光レンズ37bによる結像位置近傍に配置され、人物2からのビーム光を受光する受光手段としての1次元のPSD36とを有している。さらに、赤外線距離センサ30bは、PSD36上に結像されるビーム光スポット位置に基づいて、人物2までの距離情報に対応するスポット位置情報を出力するように構成された位置情報出力装置としての位置情報出力部39bを有している。位置情報出力部39bは、センサ制御部33b内に備えられている。
【0065】
受光レンズ37bは、照射された波長帯域の光のみを透過させるコーティングが施されている。従って、外乱光の影響が少なく位置検出をすることができる。また以上ではビーム光は細い平行光束としたがある程度拡散した拡散光束であってもよい。拡散光束の場合は、後述のPSD36による重心位置の補足に差支えない程度の拡散があってもよい。
【0066】
図24を参照して、PSD36についてさらに説明する。図24(a)は、模式的平面図であり、図24(b)は、模式的正面断面図である。図24(a)に示すように、PSD36は、結像ビーム光よりも大きい受光面積を有しており、また距離変化による結像ビーム光の移動方向(図中左右方向)に、結像ビーム光の移動により結像ビーム光がはみ出さない程度の長さを有している。
【0067】
また図24(b)に示すように、PSD36は、平板状のシリコンの結像ビーム光を受光する側の表面にP層36a、P層36aと反対側の表面にN層36b、そしてP層36aとN層36bとの中間にあるI層36cから構成されている。PSD36に結像した結像ビーム光は、光電に変換され、光電流としてP層36aの両端に付けられた電極36dからそれぞれ分割出力されるように構成されている。
【0068】
赤外線距離センサ30bは、PSD36の両端から出力される光電流の出力信号を位置情報出力部39bにより演算することによりスポット位置情報として結像ビーム光の重心位置を出力するので、後述のように、人物2までの距離を測定することができる。また、照射されるビーム光は、赤外線であるので人間には見えず、不快感を与えることがない。
【0069】
赤外線距離センサ30bのセンサ制御部33bは、PSD36により結像ビームの重心位置を検出する際に、外乱光と区別するために、変調を行う。変調は、前述の赤外線距離センサ30aで説明した変調と同様な動作である。センサ制御部33bは、信頼性を確保するために、変調動作を複数回行ない、その平均出力値をスポット位置情報である重心補足信号(以下測距信号という)とする。センサ制御部33は、測距信号の値である測距信号値xを距離情報として演算装置120へ出力する。また、対象とする人物2までの距離値Aは、図12で説明した方法と同様にして、この測距信号値xに基づいて、三角法を用いて算出することができる。上述のような距離値Aの算出は、演算装置120の制御部121で行なわれる。
【0070】
以上では、赤外線距離センサ30bは、距離情報として測距信号値xを出力する場合について説明したが、距離情報として距離値Aそのものを出力するように構成してもよい。
【0071】
このように、赤外線距離センサ30bは、PSD36を用いることで、単純に構成できるので、安価で、単純な監視装置とすることができる。
【0072】
各々の赤外線距離センサ30から出力される測距信号値xは、前述のように変調されているが、それでも僅かに外乱光の影響が残っており、変動をしている。この変動を吸収するために、時系列的に取得した測距信号値xを平均して、その時点のデータとする。このデータは、測距信号値xから算出した距離値Aの平均値でも良いし、後で説明する距離値Aから算出した高さH1の平均値である高さH2や奥行L1の平均値である奥行L2でも良い。平均のとり方は、色々と考えられるが、予め一定の時間間隔を定め、その間のデータを平均化してもよいし、予め、平均化する個数を定め、時系列的に移動平均値を算出する方法でもよい。前者の場合には、データ数が少なくて済み、大まかな状態把握に適する。後者の場合には、データ数は多少多くなるが、細かい挙動を追うことができる。
【0073】
以上のように、監視システム100の距離センサ11として、上述のいずれの距離センサを用いても、人物2の距離情報を取得できる。即ち人物2の距離を測定できる。
【0074】
図4を参照して、本実施の形態の監視システム100の作用を説明する。
監視システム100により複数の監視エリア6を含む監視ゾーン60が監視されている。監視システム100は、各距離センサ11により、対応する各監視エリア6の距離を測定し、その距離情報を各距離センサ11からの出力値として、時系列的に演算装置120の制御部121に入力している。制御部121は、比較演算部122により、この入力値を基準距離保存部125に保存された基準距離情報と比較し、監視部128によりその比較結果に基づいてより各監視エリアに存在する人物2を監視している。
【0075】
ここで、例えば監視ゾーン60の監視エリア61(図3参照)に人物2が進入してきた場合、進入してきた人物2の距離は、監視エリア61に対応する距離センサ11により測定され、その距離情報は制御部121に出力される。その距離情報を入力した制御部121は、比較演算部122により、人物2の位置情報である高さ、位置を算出する。この際に、比較演算部122は、人物2の床面3からの高さ及び距離センサ11からの床面3に平行な方向(図1ではX軸方向)の奥行を算出する。
【0076】
ここで図14の模式的側面図を参照して、人物2の高さ、位置を算出する方法の一例を説明する。床面3から高さHの壁4に設置された距離センサ11が、壁4から奥行L(X軸方向)の監視エリア6を監視しているとする。この監視エリア6に存在する人物2の距離センサ11からの距離の値をAとすると、人物2の高さH1と、奥行L1は、次式で求めることができる。
H1=AH/(H2+L2)1/2 ………(2)
L1=AL/(H2+L2)1/2 ………(3)
奥行Lに直交する床面3と平行方向(Y軸方向(図1参照))の位置は、算出した高さH1、奥行L1や距離センサ11の3次元空間内の距離測定方向により算出できる。また位置は、設定された複数の監視エリア6の位置からも大まかに捉えることができる。さらに、どの監視エリア6の距離を測定した距離センサ11かにより大まかに捉えることができる。このように、監視エリア6に存在する人物2の位置情報を算出することができる。さらに、例えば床面3に垂直な方向に距離センサ11を配置すれば、センサの取り付けた位置そのものを、位置とし、距離を高さとすることで、位置情報を簡単に取得することもできる。
【0077】
このようにして、同時又は逐次的に他のそれぞれの監視エリア6も位置情報を取得する。また、複数の距離センサ11に対応する監視エリア6が重複する場合は、以下で説明するように位置情報を取得する。
【0078】
ここで、図3(b)に示すように、複数の距離センサ11に対応する監視エリア6が重複する場合の作動の制御について説明する。この制御は、演算装置120の制御部121内のタイミングコントローラ123で行う。この場合には、1つの距離センサ11の距離の測定の後で、次の距離センサ11の距離の測定を行うように制御する。即ち複数の距離センサ11が同時に距離の測定をしないように制御する。このような動作が、備えられた全ての距離センサ11の距離の測定が行われるまで繰り返される。この一連の動作を1サイクルとする。1サイクルの時間Tが人物2の動きに対して十分に短ければ、人物2の平均移動速度や移動距離を算出することは容易である。
【0079】
また、上述のように1つずつ距離センサ11による距離の測定を行うのではなく、隣接する監視エリア6の距離の測定を同時に行わないように制御する(例えば同時に距離測定を行なう監視エリアを1つおきとする)ことで、複数の距離センサ11に同時に距離の測定を行わせることができる。このようにすれば、1サイクルの時間Tを大幅に短縮できる。
【0080】
また比較演算部122は、同一又は同一ではない他の監視エリア6で直前に算出されたこの人物2の位置情報、例えば1サイクル前の位置情報があれば、さらにその位置情報と比較し、この人物2の移動情報である移動距離と平均移動速度を算出する。例えば移動距離は、1サイクル前後のH1やL1のデータの差より、また、平均移動速度は、このデータの差を時間Tで除算した値となる。さらに、これにより得られた人物2の位置情報と移動情報は、記憶部124内の基準距離保存部125に基準距離情報として保存する。
【0081】
次に制御部121は、比較演算部122により算出された比較結果としての位置情報と移動情報から、監視部128により人物2の存在、その姿勢、位置、移動状態を判断する。またこの判断は、他の監視エリア6(例えば監視エリア61を見ている場合には、隣接する監視エリア62、64、65(図3参照))で算出された位置情報と移動情報からも判断される。例えば、人物2の移動がなく、かつ高さが低くなった場合は、この人物2が座ったと判断でき、また、人物2が低い高さで隣接する複数の監視エリア6に存在し、かつ移動が無い場合には、この人物2は倒れている状態にあると判断できる。このようにして監視システム100は、複数の監視エリア6を含む監視ゾーン60内の人物2の進入、存在と存在状態等を監視することができる。
【0082】
以上では、距離センサ11は、複数の場合で説明したが、1個であってもよく、その場合には、監視システム100を単純化でき、小型化できる。また監視システム100は、処理する距離情報が減少するので高速処理ができる。さらに、監視システム100は、2分割PDを用いた距離センサ11を備えているので、回路構成を単純化でき、安価で単純な監視システム100とすることができる。
【0083】
以上のように監視システム100は、監視エリア6にどの程度の大きさの人物2が進入し、どのような人物2の状態(どの位置で、立っている、座っている、倒れている)にあるか、また、その人物2は動いているか、また退出したかといった一連の動きを簡単な装置で追従することができる。この場合、基準距離からの差異を取得していくので、距離が比較的正確でなくても状態の判断に使うことはできる。従って、赤外線距離センサ30の1つの欠点である人物2に照明したビーム光がある程度欠けて誤測定になっても、一連の動きからの判断と複数の監視エリア6からの総合判断で人物2の状態の判定をすることができる。
【0084】
また監視ゾーン60が閉空間(トイレ、風呂、エレベーター内、オフィース内)においては、壁等で囲まれているので、人物2が不在の場合の床面3や壁4までの距離を基準距離として設定しておき、その状態からの変化を追うことで、人物2の状態を判断することができる。
【0085】
以上のような第1の実施の形態によれば、監視システム100は、人物2の状態を判断して、人物2が倒れたとか、不法侵入者が存在しているといった監視を非常に容易に行うことができる。しかも、心理的に違和感のあるカメラを用いた画像処理を使用していないので、トイレや風呂等での状態監視において非常に有効であり、さらに簡易な装置で高速処理が可能である。また、監視システム100は、赤外線距離センサ30aを用いた場合には、回路構成を単純化できるので、簡易な装置とすることができ、安価で単純な構成とすることができる。
【0086】
図15は、本発明による第2の実施の形態である監視システム1の模式的斜視図である。図中監視対象物2が監視領域面としての床面3上に存在している。XY軸を床面3内に置くように、直交座標系XYZがとられている。また床面3と垂直即ちYZ平面上に壁4が形成されている。監視対象物2は、本実施の形態では人物である。
【0087】
一方、図中壁4には、人物2の距離を測定するための複数の距離センサ11を含んで構成される筐体10が設置されており、筐体10には、複数の距離センサ11が、複数の監視対象点としての監視エリア6に対応して設置されている。監視エリア6は、人物2の主な移動方向に対して直角な方向に2列以上配置することが好ましい。また、筐体10は、人物2の主な移動方向即ち床面3に平行方向に対して直角な方向即ち壁4に平行方向に配置する。さらに距離センサ11は、筐体10に2列以上配置することが好ましい。
【0088】
また、図2に示すように、例えば、監視システム1をトイレに設置する場合には、筐体10を天井に設置するとよい。また、図示では監視エリア6は、2×5配置されているが、設置する数は後述のように適宜決めてよい。
【0089】
図16の模式的平面図の監視エリア6の配置例を参照して、監視エリア6について説明する。図16(a)に示すように、複数の監視エリアは、監視する場所である監視ゾーン60に、監視エリア61、62、63、64、65、66(以下監視エリアを区別しない場合は単に監視エリア6という)が、お互いに重ならないように碁盤目状に配置されている。監視エリア6の各々の配置は、筐体10から遠い列にある監視エリア6を監視エリア61、62、63とし、筐体10に近い列にある監視エリア6を監視エリア64、65、66とする。配置する数は、2列以上であり、本実施の形態では3行2列(以下3×2という)であるが、監視する場所、人物2などの条件により適宜決めてよく、例えば2×2もしくは3×3、3×4としてもよい。このように配置することで、各監視エリア6の後で説明する状態から人物2が筐体10に対して近づく状態か遠ざかる状態かを判断することが容易にできる。また、隣接する監視エリア6の行間距離P1、列間距離P2は、それぞれ対象物即ち人物2の最小幅より狭く設定するようにする。このように複数の監視エリア6を配置すると、監視ゾーン60内の死角を、実質的に少なくすることができるので、精度の高い監視を行なうことができる。
【0090】
また図16(b)の模式的平面図の監視エリア6の配置例に示すように、隣合う監視エリア6が重なっていてもよい。このようにすると、監視ゾーン60内の死角を少なくすることができるので、より精度の高い監視に有効である。この場合には、重なり合う監視エリア6に対応する距離センサ11は、お互いに影響がないように、同時に照射しないように制御する必要がある。この制御は、前述したタイミングコントローラ123による制御と同様に行ってよい。
【0091】
図17を参照して、監視システム1の構成の一例を説明する。監視システム1は、複数の距離センサ11が設置された筐体10と、演算装置20とを含んで構成される。演算装置20は、典型的にはパソコンやマイコンである。そして複数の距離センサ11は、演算装置20に接続されており、それぞれの距離センサ11から距離情報を取得できるように構成されている。距離センサ11からの距離情報の取得は、好ましくは10ms〜500ms毎に、さらに好ましくは50ms〜200ms毎に取得するできるように構成する。また距離情報は、それぞれの距離センサ11から時系列的に取得するように構成されている。距離情報とは、例えば実際に距離を算出する前の距離センサ11からの出力値であるが、対象とする人物2までの距離そのものとしてもよい。また、図中距離センサ11と演算装置20とは、別体として示してあるが、一体として構成してもよい。
【0092】
また距離センサ11は、本実施の形態では、図16で説明したように3×2に配置された監視エリア6に対応するように、筐体10に3×2に設置している。
【0093】
使用する距離センサ11としては、第1の実施の形態で説明した赤外線距離センサ30を用いる。
【0094】
各々の赤外線距離センサ30から出力される測距信号値xは、前述のように変調されているが、それでも僅かに外乱光の影響が残っており、変動をしている。この変動を吸収するために、時系列的に取得した測距信号値xを平均して、その時点のデータとする。このデータは、測距信号値xから算出した距離値Aの平均値でも良いし、図14で説明した距離値Aから算出した高さH1の平均値である高さH2や奥行L1の平均値である奥行L2でも良い。平均のとり方は、色々と考えられるが、予め一定の時間間隔を定め、その間のデータを平均化してもよいし、予め、平均化する個数を定め、時系列的に移動平均値を算出する方法でもよい。前者の場合には、データ数が少なくて済み、大まかな状態把握に適する。後者の場合には、データ数は多少多くなるが、細かい挙動を追うことができる。
【0095】
演算装置20は、制御部21を備えており、監視システム1全体を制御している。また複数の距離センサ11は制御部21に接続され、制御されている。制御部21には、記憶部24が接続されており、算出された情報等のデータが記憶できる。さらに記憶部24内には、距離センサ11で取得した測距信号値xを時系列で保存する距離情報保存部25が備えられている。
【0096】
また制御部21には、監視システム1を操作するための情報を入力する入力装置26、監視システム1で処理された結果を出力する出力装置27が接続されている。入力装置26は例えばタッチパネル、キーボードあるいはマウスであり、出力装置27は例えばディスプレイやプリンタあるいは警報装置である。本図では、入力装置26、出力装置27は演算装置20に外付けするものとして図示されているが、内蔵されていてもよい。
【0097】
さらに制御部21内には、複数の距離センサ11と、距離情報保存部25に保存された測距信号値xとに基づいて人物2の状態を判断する判断部22が備えられている。以下、判断部22の構成について説明する。
【0098】
判断部22は、距離センサ11で取得された測距信号値xと距離情報保存部25に保存された直前の測距信号値xとの距離情報差を演算する。そして判断部22は、この距離情報差と第1の所定の閾値とを比較して、距離情報差が第1の所定の閾値より大のとき人物2に動きがあったと判断し、第1の所定の閾値より小のとき人物2は静止していると判断するように構成されている。第1の所定の閾値については後で詳しく説明する。
【0099】
さらに判断部22は、上述の判断を複数の距離センサ11の各々について、一定の期間にわたって行なう。一定期間は、距離センサ11による距離の測定間隔が100ms(0.1s)とすると500ms(0.5s)程度とすることが好ましい。また、一定期間は、距離センサ11による距離の測定が5回程度行われる期間としてもよいし、システムの仕様や監視状況等に合わせて適宜決めるようにしてもよい。
【0100】
そして判断部22は、一定の期間内に動きがあったと判断した回数と、静止していると判断した回数との回数差を求め、回数差が第2の所定の閾値よりも大なる距離センサ11に対応する監視エリア6に動きがあったと判断するように構成されている。第2の所定の閾値は、例えば少なくとも動きあったと判断した回数が、静止していると判断した回数より多いときに、動きがあったと判断するように設定することが好ましい。このような場合は、第2の所定の閾値は1ということになる。
【0101】
さらに判断部22は、上述の判断で動きがあったと判断された監視エリア6の数と、静止していると判断された監視エリア6の数との差を求め、この差に基づいて、人物2が全体として動いているか、静止しているかを判断するように構成されている。この判断は、例えば動作状態と判断した監視エリア数が1つでもあれば、人物2が全体として動きがあったと判断するようにするとよい。また、動きあったと判断した監視エリア数が3つ以上あれば、人物2が全体として動きがあったと判断するようにしてもよい。
【0102】
また判断部22は、人物2の存在する床面3に対するそれぞれの距離センサ11の相対的な位置と、相対的な距離測定方向とに基づき、人物2の床面3からの高さ及び距離センサ11からの床面3に平行な方向(図15ではX軸方向)の奥行を算出するように構成されている。また高さと奥行は、複数の距離センサ11からそれぞれ一定の期間毎に取得される距離情報の平均値である。または、ある一定の個数の距離情報に関する移動平均値としてもよい。
【0103】
ここで、図18を参照して、また図16、図17を適宜参照して、人物2が静止状態にあるか動作状態にあるかの判断について説明する。図18は、この判断を一定の期間毎に表したものである。この判断は、制御部21内の判断部22で行なわれる。また、距離センサ11による距離の測定即ち測距信号値xの出力は、0.1s(100ms)毎に行う場合で説明する。またここでは、一定の期間を0.5s(500ms)即ち距離センサ11による距離の測定が5回行われる(測距信号値xが5回入力される)期間とする。さらに監視エリア6は、前に図16を参照して説明した配置とする。
【0104】
赤外線距離センサ30より入力した測距信号値xは、ノイズ例えば回路ノイズ、外乱光ノイズ等の混入により変動が発生する。このような測距信号値xの変動は、距離センサ11で測定される人物2の距離値Aにそのまま反映されるため、誤判断の原因となってしまう場合がある。従って以下のような方法で静止状態にあるか動き状態にあるかの判断を行う。
【0105】
まずは、測距信号値xのノイズによる変動値を、予め測定しておく。そして測定した変動値にさらにある余裕度をもった値を第1の所定の閾値として設定する。次に、判断部22は、距離センサ11より入力した測距信号値xと距離情報保存部25に保存された測距信号値xとを比較する。また、測距信号値xで比較を行うのは、前述の方法により測距信号値xから算出した距離値Aで比較するよりも、測距信号値xのノイズによる影響を軽減することができるためである。これは、距離センサ11から出力される測距信号値xと、算出した距離値Aとは線形関係ではなく、距離値Aは、測定する距離が遠くなるにつれてノイズによる変動の影響が大きくなる即ち距離の測定誤差が大きくなる傾向があるためである。
【0106】
この比較により判断部22は、距離情報保存部25に保存された測距信号値xと距離センサ11より入力した測距信号値xとの信号値差が第1の所定の閾値より大きいとき、この距離センサ11に対応する監視エリア6に動きがあった(動作状態)と判断する。また、判断部22は、距離情報保存部25に保存された測距信号値xと距離センサ11より入力した測距信号値xとの信号値差が第1の所定の閾値より小さいとき、この距離センサ11に対応する監視エリア6に動きが無かった(静止状態)と判断する。この判断は、それぞれの監視エリア6毎即ち距離センサ11毎に行われる。これにより、判断部22は、例えばランダム的に混入するノイズに対しても、誤判断を起こすことがない。
【0107】
そして判断部22は、このような判断を一定の期間行う。制御部22は、この一定の期間に動きあったと判断した回数と、静止していると判断した回数との回数差を求める。
【0108】
判断部22は、回数差が第2の所定の閾値より大きいとき、この一定の期間内にこの距離センサ11に対応する監視エリア6が動作状態と判断する。また、判断部22は、回数差が第2の所定の閾値より小さいとき、この一定の期間内にこの距離センサ11に対応する監視エリア6が静止状態と判断する。この判断は、それぞれの監視エリア6毎に行われる。ここでは、第2の所定の閾値は、動作状態と判断した回数が、静止状態と判断した回数より多いときに、動きがあったと判断するように設定している。
【0109】
これにより、判断部22は、例えば窓から差し込む日光のちらつき等によるショット的、突発的なノイズに対しても、誤判断を起こすことがない。これは、実際には静止状態にありながら、突発的なノイズにより、瞬間的に動作状態であると判断しても、一定の期間にわたって、動作状態と判断した回数と、静止状態と判断した回数とを比較しているので、静止状態と判断できるからである。
【0110】
さらに判断部22は、上述の判断で、動きあったと判断した監視エリアの数と、静止していると判断した監視エリアの数との監視エリアの数の差から、人物2が全体として動いているか、静止しているかを判断する。ここでは、この判断は、動作状態と判断した監視エリア数が1つでもあれば、人物2が全体として動きがあったと判断する。
【0111】
以上のように、判断部22は、人物2が静止状態にあるか動作状態にあるかを、一定の期間毎に判断する。また、このような方法で人物2が静止状態にあるか動作状態にあるかの判断を行うと、測距信号値xに混入しているノイズによる影響を軽減することができる。
【0112】
さらに、人物2の姿勢の状態を判断する方法について説明する。この判断は、制御部21内の判断部22で行なわれる。
【0113】
まず、制御部21は、距離センサ11より0.1s毎に取得した測距信号値xから、図12で説明した方法で、距離値Aを算出する。
図19に算出された距離値Aの例を示す。
【0114】
次に制御部21は、この距離値Aに基づき、図14で説明した方法で算出した高さH1、奥行L1を算出する。さらに制御部21は、高さH1、奥行L1の0.5s毎の平均値H2、L2を算出する。
図20、図21に算出された平均値H2、L2の例をそれぞれ示す。
【0115】
制御部21は、高さの平均値H2を幾つかの区分データに変換する。例えば、−400mm以下を区分0、−400〜200mmを区分1、200〜500mmを区分2、500mmから1000mmを区分3、1000mm以上を区分4とする。
【0116】
図22に高さの平均値H2を区分データに変換した結果例を示す。ここで、区分0は、例えば赤外線距離センサ30が受光したビーム光のビーム欠けにより、距離の測定が正常に行われなかった状態を示す。即ち監視エリア6に人物2と特定できない物体は存在するが、高さH1が特定できなかったことを示す。区分1は、基準高さ(例えば、床)から200mm以内で、通常は、物体あるいは人物2の存在していない状態を示す。区分2は、人物2が倒れた状態に近い状態を示す。また、区分3は、何かに寄りかかった状態に近い状態を示す。区分4は、立っている状態に近い状態を示す区分とする。
【0117】
図23に奥行の平均値L2を区分データに変換した結果例を示す。高さH2と同様に、奥行の平均値L2を幾つかの区分データに変換することで、人物2の存在する位置の距離センサ11からおよその奥行を知ることができる。奥行の区分は、例えば前述の高さの区分を比例配分したものでよい。
【0118】
判断部22は、以上で説明した高さと奥行の区分データと、人物2が静止状態にあるか動き状態にあるかの判断を加味して、人物2の状態を判断する。例えば、全体として静止しており、かつ全ての高さ区分1であれば、何もない状態。即ち、閉鎖空間であれば、空室状態を示している。また、静止状態であり高さの区分状態が2の状態が、予め定めた時間以上続けば、人物2が倒れていると判断する。また、区分4の状態であれば、立っている状態であると判断できる。
【0119】
さらに判断部22は、それぞれの監視エリア6で人物2が動いている状態か静止している状態かの判断結果と、高さの区分の変化より、人物2が、筐体10に対して、近づいてくる状態であるか、または、遠ざかっていく状態であるかを判断することができる。
【0120】
また判断部22は、人物2が倒れていたり、何かに寄りかかっている状態がある一定以上継続していれば、人物2に異常が発生した(例えば気分が悪くなった)と判断する。さらにその状態で、かつ静止している状態にあれば、人物2が危険な状態(例えば意識を失っている)と判断するなど、きめこまかい状態の判断をすることができる。これにより、例えば本システムの管理者は、いち早く、監視ゾーンの異変を知ることができることで、例えば急病人に対し適切な救急処置を行うことができる。また判断部22は、この判断により、例えば監視ゾーンに備えられたスピーカから警告を発したり、外部例えば消防署等に通報するようにしてもよい。このとき判断部22は、それぞれの監視エリア6の奥行の区分データから、倒れている場所の特定をすることができ、さらにきめこまかい状態の判断が可能であり、情報提供をすることができる。
【0121】
以上では、距離センサ11は、複数の場合で説明したが、1個であってもよく、その場合には、監視システム1を単純化でき、小型化できる。また監視システム1は、処理する距離情報が減少するので高速処理ができる。さらに、監視システム1は、2分割PDを用いた距離センサ11を備えているので、回路構成を単純化でき、安価で単純な監視システム1とすることができる。
【0122】
以上のように監視システム1は、監視エリア6にどの程度の大きさの人物2が進入し、その人物2はどのような状態(どの位置で、立っている、座っている、倒れている)にあるか、また、その人物2は動いているか、また退出したかといった一連の動きを簡単な装置で追従することができる。この場合、人物2の動きと、高さ、奥行の区分から状態を判断するので、距離がそれほど正確でなくても状態の判断を行うことができる。従って、赤外線距離センサ30の1つの欠点である人物2に照明したビーム光がある程度欠けて誤測定になっても、一連の動きからの判断と複数の監視エリア6からの総合判断で人物2の状態の判定をすることができる。
【0123】
また監視ゾーン60が閉空間(トイレ、風呂、エレベーター内、オフィース内)においては、壁等で囲まれているので、人物2が不在の場合の床面3や壁4までの距離を基準距離、即ち人物2が存在しない状態のいわば背景の距離として設定しておき、その状態からの変化を追うことで、人物2の状態を判断することができる。
【0124】
以上のような第2の実施の形態によれば、監視システム1は、人物2の状態を判断して、人物2が倒れたとか、不法侵入者が存在しているといった監視を非常に容易に行うことができる。しかも、心理的に違和感のあるカメラを用いた画像処理を使用していないので、トイレや風呂等での状態監視において非常に有効であり、さらに簡易な装置で高速処理が可能である。また、監視システム1は、赤外線距離センサ30aを用いた場合には、回路構成を単純化できるので、簡易な装置とすることができ、安価で単純な構成とすることができる。
【0125】
【発明の効果】
以上のように本発明によれば、監視対象物までの距離を測定する複数の距離センサと、前記距離センサで時系列的に取得した距離情報を保存する距離情報保存部と、前記距離情報保存部に保存された距離情報に基づいて前記監視対象物の動きの有無を判断する判断部とを備え、前記距離センサは、前記監視対象物にビーム光を照射する光照射手段と、前記監視対象物で反射されるビーム光を結像する結像光学系とを有し、判断部は、距離情報に基づいて、複数の距離センサのうちの各距離センサに対応する監視エリアごとに、距離センサと監視対象物との距離のうちの、前記監視対象エリアに前記監視対象物が存在しないときの前記ビーム光の反射平面である監視領域面に対して垂直な高さ方向の距離及び監視領域面に平行な奥行方向の距離の少なくとも一方を算出し、算出した高さ方向の距離及び奥行方向の距離の少なくとも一方を予め監視対象物の姿勢と対応づけられた区分データに変換し、区分データを参照することにより監視対象物の姿勢を判断するので、距離がそれほど正確でなくても状態の判断を行うことができると共に、簡易な装置で高速処理が可能な監視システムを提供することができる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態である監視システムの概要を示す模式的斜視図である。
【図2】本発明の第1の実施の形態である監視システムをトイレに設置した場合の概要を示す模式的斜視図である。
【図3】本発明の第1の実施の形態である監視エリアが重複しない配置例(a)と監視エリアが重複する配置例(b)を説明する模式的平面図である。
【図4】本発明の第1の実施の形態で用いる監視システムの構成例を示すブロック図である。
【図5】本発明の第1の実施の形態である距離センサを、カーブをつけて設置する場合を説明する模式的側面図である。
【図6】本発明の実施の形態で用いる2分割PDを使用した赤外線距離センサの構成例を示すブロック図である。
【図7】図6の場合における、2個のPDを用いた場合を説明する模式図である。
【図8】図7の場合における、2個のPDを用いた場合を説明する概念図である。
【図9】本発明の実施の形態で用いる2分割PDを使用した赤外線距離センサを用いた場合の面積比と対象物距離との関係の一例を示す図である。
【図10】本発明の実施の形態で用いる4分割PDを説明する模式図である。
【図11】図10の場合における、4分割PDを説明する概念図である。
【図12】本発明の実施の形態で、監視対象物の距離を算出する方法を説明する模式図である。
【図13】本発明の実施の形態で用いるPSDを使用した赤外線距離センサの構成例を示すブロック図である。
【図14】本発明の実施の形態で、監視対象物の距離から監視対象物の高さと奥行を算出する方法を説明する模式的側面図である。
【図15】本発明の第2の実施の形態である監視システムの概要を示す模式的斜視図である。
【図16】本発明の第2の実施の形態である監視エリアの配置例(a)と監視エリアが重複する配置例(b)を説明する模式的平面図である。
【図17】本発明の第2の実施の形態で用いる監視システムの構成例を示すブロック図である。
【図18】本発明の第2の実施の形態で、判断部による判断結果を示す図である。
【図19】図18の場合における、距離センサで取得した距離情報から算出した距離値を示す図である。
【図20】図19の場合における、距離センサで取得した距離情報から算出した高さの平均値を示す図である。
【図21】図19の場合における、距離センサで取得した距離情報から算出した奥行の平均値を示す図である。
【図22】図20の場合における、高さの区分を示す図である。
【図23】図21の場合における、奥行の区分を示す図である。
【図24】図13の場合における、PSDについて説明する(a)模式的平面図、(b)模式的正面断面図である。
【符号の説明】
1、100 監視システム
2 人物
3 床面
4 壁
6 監視対象エリア
10 筐体
11 距離センサ
20、120 演算装置
21、121 制御部
22 判断部
24、124 記憶部
25 距離情報保存部
26、126 入力装置
27、127 出力装置
30 赤外線距離センサ
30a 2分割PDを用いた赤外線距離センサ
30b PSDを用いた赤外線距離センサ
31a、31b 赤外光照射部
32a、32b 赤外光受光部
33a、33b センサ制御部
36 PSD(位置検出素子)
37a、37b 受光レンズ
38 2分割PD(フォトディテクタ)
60 監視ゾーン
122 比較演算部
123 タイミングコントローラ
125 基準距離保存部
128 監視部

Claims (6)

  1. 監視対象物までの距離を測定する複数の距離センサと;
    前記距離センサで時系列的に取得した距離情報を保存する距離情報保存部と;
    前記距離情報保存部に保存された距離情報に基づいて前記監視対象物の動きの有無を判断する判断部とを備え;
    前記距離センサは、前記監視対象物にビーム光を照射する光照射手段と、前記監視対象物で反射されるビーム光を結像する結像光学系とを有し;
    前記判断部は、前記距離情報に基づいて、前記複数の距離センサのうちの各距離センサに対応する監視対象エリアごとに、前記距離センサと前記監視対象物との距離のうちの、前記監視対象エリアに前記監視対象物が存在しないときの前記ビーム光の反射平面である監視領域面に対して垂直な高さ方向の距離及び前記監視領域面に平行な奥行方向の距離の少なくとも一方を算出し、算出した前記高さ方向の距離及び前記奥行方向の距離の少なくとも一方を予め前記監視対象物の姿勢と対応づけられた区分データに変換し、前記区分データを参照することにより前記監視対象物の姿勢を判断するように構成された;
    監視システム。
  2. 前記距離センサは、前記結像光学系による結像位置近傍に配置され前記反射されるビーム光を受光する、複数の受光領域に分割された受光面とを有し;さらに、前記各受光領域からの信号を受信し、該受信した信号に基き前記各受光領域に入射するビーム光の強度を相互に比較し、前記監視対象物までの距離情報に対応するビーム光結像位置情報を出力するように構成された位置情報出力装置を有している;
    請求項1に記載の監視システム。
  3. 前記距離センサは、前記結像光学系による結像位置近傍に配置され前記監視対象物からのビーム光を受光する受光手段とを有し;該受光手段上に結像されるビーム光スポット位置に基づいて、前記監視対象物までの距離情報に対応するスポット位置情報を出力するように構成された位置情報出力装置を有している;
    請求項1に記載の監視システム。
  4. 前記距離情報保存部は、前記距離センサで取得した距離情報を時系列で保存するよう構成され;
    前記判断部は、前記距離センサで取得された距離情報と前記時系列で保存された直前の距離情報との距離情報差を演算し、該距離情報差と第1の所定の閾値とを比較して、前記距離情報差が前記第1の所定の閾値より大のとき前記監視対象物に動きがあったと判断し、前記距離情報差が前記第1の所定の閾値より小のとき前記監視対象物は静止していると判断するように構成された;
    請求項1ないし請求項3のいずれか1項に記載の監視システム。
  5. 前記判断部は、前記第1の所定の閾値との比較を前記複数の距離センサの各々について、一定の期間にわたって行ない、該一定の期間内に動きがあったと判断した回数と、静止していると判断した回数との回数差を求め、前記回数差が第2の所定の閾値よりも大なるセンサの監視対象点に動きがあったと判断するように構成された;
    請求項に記載の監視システム。
  6. 前記判断部は、前記動きがあったと判断された監視対象点の数と、静止していると判断された監視対象点の数との差を求め、前記点の数の差に基づいて、前記監視対象物が全体として動いているか、静止しているかを判断するように構成された;
    請求項に記載の監視システム。
JP2002024604A 2002-01-31 2002-01-31 監視システム Expired - Fee Related JP3816404B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002024604A JP3816404B2 (ja) 2002-01-31 2002-01-31 監視システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002024604A JP3816404B2 (ja) 2002-01-31 2002-01-31 監視システム

Publications (2)

Publication Number Publication Date
JP2003227873A JP2003227873A (ja) 2003-08-15
JP3816404B2 true JP3816404B2 (ja) 2006-08-30

Family

ID=27747003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002024604A Expired - Fee Related JP3816404B2 (ja) 2002-01-31 2002-01-31 監視システム

Country Status (1)

Country Link
JP (1) JP3816404B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107402389B (zh) * 2016-05-18 2021-02-05 电装波动株式会社 运算处理装置、运算处理方法及存储有计算机程序的介质

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100646836B1 (ko) * 2004-02-28 2006-11-17 주식회사 세스코 쥐 감지 및 모니터링 시스템
JP5037482B2 (ja) * 2008-12-22 2012-09-26 シャープ株式会社 人体存在検知装置及び人体存在検知方法
WO2012093323A1 (en) * 2011-01-04 2012-07-12 Koninklijke Philips Electronics N.V. A presence detection system and a lighting system.
JP5377689B2 (ja) 2011-09-21 2013-12-25 斎藤 光正 定在波レーダー内蔵型led照明器具
JP5841093B2 (ja) * 2013-03-26 2016-01-13 Necパーソナルコンピュータ株式会社 情報処理装置
JP6359828B2 (ja) * 2013-12-20 2018-07-18 株式会社メガチップス 照明システム及び制御装置
JP6587599B2 (ja) * 2016-12-02 2019-10-09 オムロンオートモーティブエレクトロニクス株式会社 物体検出装置
US10393866B1 (en) * 2018-03-26 2019-08-27 Cognitive Systems Corp. Detecting presence based on wireless signal analysis
CN108444604A (zh) * 2018-05-04 2018-08-24 深圳钶钽智能技术有限公司 一种空间分区探测装置、系统及方法
CN108445549A (zh) * 2018-05-04 2018-08-24 深圳钶钽智能技术有限公司 一种空间分区探测系统及方法
US11597104B2 (en) * 2019-07-31 2023-03-07 X Development Llc Mobile robot sensor configuration

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107402389B (zh) * 2016-05-18 2021-02-05 电装波动株式会社 运算处理装置、运算处理方法及存储有计算机程序的介质

Also Published As

Publication number Publication date
JP2003227873A (ja) 2003-08-15

Similar Documents

Publication Publication Date Title
JP4058286B2 (ja) 監視装置
JP3816404B2 (ja) 監視システム
EP3652703B1 (en) Visual, depth and micro-vibration data extraction using a unified imaging device
US8569679B2 (en) System and circuit including multiple photo detectors and at least one optical barrier
CA2558589C (en) Access monitoring device
US5850290A (en) Three-dimensional scanner utilizing moving frame with detectors
US7428468B2 (en) Monitoring apparatus
JP4668684B2 (ja) 監視装置及びソフトウエアプログラム
JP4127545B2 (ja) 画像処理装置
JP5753509B2 (ja) 被測定物情報取得装置
JP4576416B2 (ja) 監視装置
JP3819292B2 (ja) 人物状態判別装置
JP3939224B2 (ja) 領域監視装置
JP2003088512A (ja) 監視装置
JP4738888B2 (ja) 三次元位置測定装置及びソフトウエアプログラム
JP2003225210A (ja) 監視装置
JP4790148B2 (ja) 監視システム
JP3979238B2 (ja) 空間内監視装置
JPH08338880A (ja) 熱物体測定装置、個人視聴率調査システム、及び距離検出器
JP3935220B2 (ja) 調整可能な1次ビーム絞りを有するx線装置
JP2005253608A (ja) 状態解析装置
JP4189229B2 (ja) 動き検出装置
JP2005005912A (ja) 監視装置
JP2004093376A (ja) 高さ計測装置及び監視装置
JP4230287B2 (ja) 動き検出装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060607

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090616

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100616

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110616

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110616

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120616

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120616

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130616

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140616

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees