JP3813016B2 - Differential conversion circuit - Google Patents

Differential conversion circuit Download PDF

Info

Publication number
JP3813016B2
JP3813016B2 JP06754898A JP6754898A JP3813016B2 JP 3813016 B2 JP3813016 B2 JP 3813016B2 JP 06754898 A JP06754898 A JP 06754898A JP 6754898 A JP6754898 A JP 6754898A JP 3813016 B2 JP3813016 B2 JP 3813016B2
Authority
JP
Japan
Prior art keywords
signal
circuit
differential conversion
reference voltage
signal processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06754898A
Other languages
Japanese (ja)
Other versions
JPH11266127A (en
Inventor
邦裕 小宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP06754898A priority Critical patent/JP3813016B2/en
Publication of JPH11266127A publication Critical patent/JPH11266127A/en
Application granted granted Critical
Publication of JP3813016B2 publication Critical patent/JP3813016B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は入力信号を処理して差動信号に変換する差動変換回路に関する。
【0002】
【従来の技術】
与えられるアナログの入力信号に対して、印加されている直流成分を除去する処理とフィルター処理等の他の所定の処理を施し、処理後の信号とそれを反転した信号を出力する差動変換回路がある。このような差動変換回路の例を図6に示す。
【0003】
この差動変換回路9は、カップリングコンデンサ10、増幅器11aおよびバッファ11bより成るローパスフィルター11、ならびに差動変換増幅器20を備えており、カップリングコンデンサ10とローパスフィルター11は信号処理回路30を構成している。信号処理回路30は、処理対象である入力信号VINと図外の基準電圧源からの基準電圧VREFを与えられ、カップリングコンデンサ10によって入力信号VINの直流成分を除き、これに基準電圧VREFを加えることにより、入力信号VINの交流成分を有し直流成分が基準電圧VREFの信号を生成する。また、この信号のうち所定の周波数のものだけを透過させて、中間信号VAとして出力する。
【0004】
差動変換増幅器20は、信号処理回路30の出力信号VAと基準電圧源からの基準電圧VREFを与えられて、信号VAから基準電圧VREFを引いた差信号と基準電圧VREFから信号VAを引いた差信号を生成し、これら2つの差信号を所定の率で増幅して、非反転信号VOUT1および反転信号VOUT2として出力する。非反転信号VOUT1および反転信号VOUT2は、振動の方向が逆で振幅が同じ差動信号となる。
【0005】
【発明が解決しようとする課題】
ところが、基準電圧には他の回路が発生するノイズや外部から飛来するノイズが乗ることがある。基準電圧のノイズは信号処理回路の出力信号のノイズとなって現れるが、そのノイズの大きさは信号処理回路での処理に応じて増大または減少し、差動変換回路に与えられる信号と基準電圧のノイズは必ずしも同じ大きさにならない。また、信号処理回路で遅延が生じるときは、ノイズが差動変換回路に入力される時期がずれる。このため、差動変換回路で両信号の差を取る処理を行ってもノイズが除去されず、非反転信号と反転信号の双方にノイズが現れることになる。
【0006】
また、信号処理回路が複雑な場合、その内部で干渉が生じて、信号処理回路の出力信号にノイズが発生することがある。このときも、非反転信号と反転信号にノイズが生じる。
【0007】
さらに、信号処理回路が動作を開始してから安定するまでにはある程度の時間を要し、その出力信号の直流成分が基準電圧に達するまでには時間がかかる。その間、差動変換増幅器に与えられる信号の直流成分と基準電圧には差が生じることになり、また、その差が変化するから、非反転信号と反転信号は入力信号を正しく表し得ない。このため、電力供給の開始や待機状態の終了から少なくとも信号処理回路の動作が安定するまでは、差動変換回路が出力する差動信号を利用することはできない。
【0008】
本発明は、上記問題点に鑑みてなされたもので、ノイズのない差動信号を出力するとともに、動作開始後短時間で利用可能な差動信号を出力する差動変換回路を提供することを目的とする。
【0009】
【課題を解決するための手段】
上記目的を達成するために、本発明の差動変換回路は、第1入力端子と第2入力端子を備え、前記第1入力端子の信号から前記第2入力端子の信号を引いた第1の差信号;または前記第2入力端子の信号から前記第1入力端子の信号を引いた第2の差信号;を生成して、前記第1の差信号または前記第2の差信号を所定の率で増幅して出力する差動変換増幅器と、入力信号と基準電圧を与えられ、前記基準電圧を直流成分とする処理と;N個(N≧2とする)のフィルター回路から成るフィルター部により所定の周波数の成分を通過させる処理と;を含む所定の処理を前記入力信号に施して中間信号を生成し、該中間信号を前記第1入力端子に与える信号処理回路と、前記基準電圧を前記第2入力端子に与える伝達回路と、を備えた差動変換回路において、前記伝達回路は、前記フィルター部において1個からN−1個までの任意の数のフィルター回路を省略したものと同一または等価な回路から成る構成とする。
【0010】
差動変換増幅器に与える基準電圧を経由させるために備えられた回路は、信号処理回路の一部と同じかあるいは等価であり、その対応部位と同様に基準電圧に作用する。したがって、与えられる基準電圧にノイズがあった場合でも、そのノイズは差動変換増幅器に与えられる中間信号と基準電圧の双方に同様に現れることになり、その結果、第1および第2の差信号にノイズが現れることが抑えられる。また、上記回路は、内部で信号処理回路の対応部位と同様に干渉して、対応部位が中間信号にもたらすノイズと同様のノイズを基準電圧にもたらす。したがって、信号処理回路内の干渉に起因するノイズも、第1および第2の差信号に現れ難い。
【0011】
さらに、上記回路は動作開始後、信号処理回路と同様に時間をかけて安定するから、差動変換増幅器に与えられる基準電圧は中間信号の直流成分と同じように上昇していき、信号処理回路が安定する前でも、中間信号の直流成分と基準電圧に差は生じない。したがって、第1および第2の差信号は差動変換回路の動作開始直後から入力信号を正しく表すことになり、早期に利用することができる。
【0012】
【発明の実施の形態】
以下、本発明の差動変換回路の実施の形態について図面を参照して説明する。第1の実施形態の差動変換回路1の構成を図1に示す。差動変換回路1は、カップリングコンデンサ10、増幅器11aおよびバッファ11bより成るローパスフィルター11、ならびに差動変換増幅器20を備えている。これらは、図6に示した差動変換回路9の各要素と同じ構成であり、同様に機能する。
【0013】
すなわち、カップリングコンデンサ10およびローパスフィルター11より成る信号処理回路30は、処理対象である入力信号VINと図外の基準電圧源からの基準電圧VREFを与えられ、入力信号VINから印加されている直流成分を除去し、これに新たな直流成分として基準電圧VREFを加えた後、所定の周波数の成分だけを透過させて中間信号VAを生成する。また、差動変換増幅器20は、信号VAから基準電圧VREFを引いた差信号と基準電圧VREFから信号VAを引いた差信号とを生成し、これらの差信号を所定の率で増幅して、非反転信号VOUT1および反転信号VOUT2として出力する。
【0014】
差動変換回路1には、このほか、増幅器11a’およびバッファ11b’から成る回路11’が備えられている。回路11’は基準電圧源からの基準電圧VREFを差動変換増幅器20に伝達するための伝達回路31を成す。伝達回路31には入力信号VINは与えられない。増幅器11a’およびバッファ11b’はそれぞれ増幅器11aおよびバッファ11bと同一のものであり、したがって、伝達回路31は基準電圧VREFに対して信号処理回路30と同様に作用する。
【0015】
伝達回路31のバッファ11b’の出力端子は差動変換増幅器20の基準電圧入力端子に接続されており、差動変換増幅器20には伝達回路31の作用を受けた後の基準電圧VREF’が与えられる。信号VAの反転をはじめとする差動変換増幅器20の処理は、全てこの基準電圧VREF’に基づいて行われる。
【0016】
基準電圧源から供給される基準電圧VREFにノイズが発生したとき、そのノイズは信号処理回路30と伝達回路31の双方に入力される。基準電圧VREFのノイズは信号処理回路30が出力する信号VAのノイズとして現れるが、それと略同一のノイズが伝達回路31から出力される基準電圧VREF’にも略同一時期に現れる。これらのノイズは差動変換増幅器20で差信号を生成する際に相殺されて、非反転信号VOUT1と反転信号VOUT2のいずれにもノイズは現れない。
【0017】
また、信号処理回路30の内部で干渉が発生した場合、構成が同じ伝達回路31にも同様の干渉が発生する。したがって、信号処理回路30の干渉により生じる信号VAのノイズと略同一のノイズが、伝達回路31から出力される基準電圧VREF’にも現れて、両者が差動変換増幅器20に入力される。よって、差動変換増幅器20でノイズは相殺され、非反転信号VOUT1と反転信号VOUT2のいずれにもノイズは現れない。
【0018】
差動変換回路1に電力の供給を開始した後、信号処理回路30が安定して動作するようになるまでに多少の時間を要し、この間、信号処理回路30の出力信号VAの直流成分は次第に上昇していく。伝達回路31は、信号処理回路30と同様の構成であるから、動作が安定するまでに同じ時間を要し、その間に電圧回路31が出力する基準電圧VREF’も信号VAの直流成分と同じように次第に上昇していく。
【0019】
したがって、差動変換増幅器20に与えられる信号VAの直流成分と基準電圧VREF’は、差動変換回路1に電力の供給を開始した直後から同じになる。その結果、非反転信号VOUT1と反転信号VOUT2は、信号処理回路30が安定して動作する前から入力信号VINを正しく表すものとなり、信号処理回路30の動作が安定する前であっても利用することができる。
【0020】
なお、伝達回路31にカップリングコンデンサ10を備えないのは、伝達回路31には処理対象の入力信号VINを与えないからである。伝達回路31を信号処理回路30と全く同じ構成とし、そのコンデンサを入力信号VINを供給する信号線に接続しないようにしても構わない。
【0021】
第2の実施形態の差動変換回路2の構成を図2に示す。本実施形態の差動変換回路2は、カップリングコンデンサ10および5段のフィルター回路より成る信号処理回路40、ならびに差動変換増幅器20を備えている。信号処理回路40は、入力信号VINと図外の基準電圧源からの基準電圧VREFを与えられ、入力信号VINより直流成分を除去し、新たな直流成分として基準電圧VREFを加える。また、バンドパスフィルターとして機能し、所定の帯域の周波数成分だけを透過させて中間信号VAを生成する。
【0022】
第1段のフィルター回路は増幅器12aおよびバッファ12bより成り、第2段のフィルター回路は増幅器13a、バッファ13bおよびコンデンサ13cより成る。これらはバンドパスフィルター部12を形成している。第3のフィルター回路は増幅器14a、バッファ14bおよびコンデンサ14cより成り、1次ローパスフィルター部14を形成している。第4段のフィルター回路は増幅器15a、バッファ15bおよびコンデンサ15cより成り、第5段のフィルター回路は増幅器16a、バッファ16bおよびコンデンサ16cより成る。これらは2次ローパスフィルター部15を形成している。
【0023】
差動変換回路2には、信号処理回路40からカップリングコンデンサ10を除いたものと同一の構成の回路41が備えられている。回路41は基準電圧源からの基準電圧VREFを差動変換増幅器20に伝達するためのものであり、入力信号VINは与えられない。伝達回路41の構成要素は、信号処理回路40の対応する構成要素の符号にプライム(’)を付した符号で表す。伝達回路41は、基準電圧VREFに対して信号処理回路40と同様に作用して、その作用を受けた後の基準電圧VREF’を出力する。この基準電圧VREF’は差動変換増幅器20の基準電圧入力端子に与えられる。
【0024】
差動変換増幅器20は、信号VAの反転をはじめとする全ての処理を基準電圧VREF’に基づいて行う。したがって、基準電圧源から供給される基準電圧VREFに変動があった場合や信号処理回路40内で干渉が生じた場合でも、第1の実施形態の差動変換回路1と同様に、差動変換回路2が出力する非反転信号VOUT1と反転信号VOUT2にノイズは現れない。また、動作開始直後から非反転信号VOUT1と反転信号VOUT2を利用することができる。
【0025】
上記2つの実施形態の差動変換回路1、2では、差動変換増幅器20に基準電圧を伝達する伝達回路31、41の構成要素として、信号処理回路30、40の構成要素と同一のものを用いたが、伝達回路の構成要素は、特性が等価であれば、必ずしも信号処理回路の構成要素と同一でなくてもよい。また、伝達回路が信号処理回路の全体と同一または等価である必要はなく、信号処理回路の一部と同一または等価な要素で伝達回路を構成してもよい。
【0026】
信号処理回路の一部のみを伝達回路として備えた第3、第4、第5の実施形態の差動変換回路3、4、5の構成をそれぞれ図3、4、5に示す。差動変換回路3、4、5の信号処理回路40は第2の実施形態のものと同じである。
【0027】
差動変換回路3の伝達回路42は、信号処理回路40のバンドパスフィルター部12すなわち第1段と第2段のフィルター回路と同一の回路12’より成り、差動変換回路4の伝達回路43は、信号処理回路40の2次ローパスフィルター部15すなわち第4段と第5段のフィルター回路と同一の回路15’より成る。また、差動変換回路5の伝達回路44は、信号処理回路40の2次ローパスフィルター部15の後段である第5段のフィルター回路と同一の回路16’より成る。
【0028】
このように、伝達回路42、43、44を信号処理回路40の一部と同一または等価な要素で構成すると、差動変換増幅器20が出力する非反転信号VOUT1と反転信号VOUT2のノイズを、差動変換回路1、2と同程度まで除去することはできない。しかしながら、従来の差動変換回路に比べて、非反転信号VOUT1と反転信号VOUT2のノイズを軽減することは可能であり、また、動作開始後の非反転信号VOUT1と反転信号VOUT2を利用できない期間を短縮することができる。
【0029】
以上説明したように、信号処理回路の全体または一部と同一または等価な回路を経由して基準電圧を差動変換増幅器に与えることにより、差動変換回路が出力する差動信号にノイズが現れるのを防止または抑制することが可能になる。このような差動変換回路を備えた装置では、電力供給を開始した時や待機状態から動作を再開させた時の装置各部の動作が不安定な期間でも、差動信号が速やかに安定して、早期に差動信号を利用することができる。また、信号処理回路に高度な干渉防止策を施す必要もない。
【0030】
なお、信号処理回路のどの部位を伝達回路として備えるかは、信号処理回路の規模や特性に応じて定める。信号処理回路が小規模のときは、その全体と同一または等価な伝達回路とするとよい。また、信号処理回路に特に遅延や干渉の生じ易い部位があるときは、少なくともその部位を含む伝達回路とすることか好ましい。本発明の差動変換回路は、磁気記録装置をはじめ、アナログ信号を処理するあらゆる装置に適用することができる。
【0031】
【発明の効果】
本発明の差動変換回路は、基準電圧にノイズが発生した場合でも、また、信号処理回路の干渉によりノイズが発生した場合でも、出力する差動信号にそれらのノイズが現れるのを抑えることができる。さらに、動作開始後短時間で利用可能な差動信号を出力することができる。
【図面の簡単な説明】
【図1】 第1の実施形態の差動変換回路の構成を示す図。
【図2】 第2の実施形態の差動変換回路の構成を示す図。
【図3】 第3の実施形態の差動変換回路の構成を示す図。
【図4】 第4の実施形態の差動変換回路の構成を示す図。
【図5】 第5の実施形態の差動変換回路の構成を示す図。
【図6】 従来の差動変換回路の構成を示す図。
【符号の説明】
1、2、3、4、5 差動変換回路
10 カップリングコンデンサ
20 差動変換増幅器
30 信号処理回路
31 伝達回路
40 信号処理回路
41、42、43、44 伝達回路
11 ローパスフィルター
11a、11a’ 増幅器
11b 11b’ バッファ
12 バンドパスフィルター部
14、15 ローパスフィルター部
12a、12a’ 増幅器
12b、12b’ バッファ
13a、13a’ 増幅器
13b、13b’ バッファ
13c、13c’ コンデンサ
14a、14a’ 増幅器
14b、14b’ バッファ
14c、14c’ コンデンサ
15a、15a’ 増幅器
15b、15b’ バッファ
15c、15c’ コンデンサ
16a、16a’ 増幅器
16b、16b’ バッファ
16c、16c’ コンデンサ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a differential conversion circuit that processes an input signal and converts it into a differential signal.
[0002]
[Prior art]
A differential conversion circuit that performs processing to remove the applied DC component and other predetermined processing such as filtering on the given analog input signal, and outputs the processed signal and its inverted signal There is. An example of such a differential conversion circuit is shown in FIG.
[0003]
The differential conversion circuit 9 includes a low-pass filter 11 including a coupling capacitor 10, an amplifier 11a and a buffer 11b, and a differential conversion amplifier 20. The coupling capacitor 10 and the low-pass filter 11 constitute a signal processing circuit 30. is doing. The signal processing circuit 30 is supplied with an input signal VIN to be processed and a reference voltage VREF from a reference voltage source (not shown), removes the direct current component of the input signal VIN by the coupling capacitor 10, and adds the reference voltage VREF thereto. As a result, a signal having an AC component of the input signal VIN and a DC component of the reference voltage VREF is generated. Further, only the signal having a predetermined frequency is transmitted and output as an intermediate signal VA.
[0004]
The differential conversion amplifier 20 is supplied with the output signal VA of the signal processing circuit 30 and the reference voltage VREF from the reference voltage source, and subtracts the signal VA from the difference signal obtained by subtracting the reference voltage VREF from the signal VA and the reference voltage VREF. A difference signal is generated, the two difference signals are amplified at a predetermined rate, and output as a non-inverted signal VOUT1 and an inverted signal VOUT2. The non-inverted signal VOUT1 and the inverted signal VOUT2 are differential signals having the same direction of vibration and the same amplitude.
[0005]
[Problems to be solved by the invention]
However, the reference voltage may carry noise generated by other circuits or noise flying from the outside. The noise of the reference voltage appears as noise of the output signal of the signal processing circuit, but the magnitude of the noise increases or decreases according to the processing in the signal processing circuit, and the signal and reference voltage supplied to the differential conversion circuit The noise is not always the same. Further, when a delay occurs in the signal processing circuit, the time when noise is input to the differential conversion circuit is shifted. For this reason, even if the process which takes the difference between both signals in the differential conversion circuit is performed, noise is not removed, and noise appears in both the non-inverted signal and the inverted signal.
[0006]
Further, when the signal processing circuit is complicated, interference may occur inside the signal processing circuit, and noise may be generated in the output signal of the signal processing circuit. Also at this time, noise occurs in the non-inverted signal and the inverted signal.
[0007]
Furthermore, it takes a certain amount of time for the signal processing circuit to start and stabilize, and it takes time for the DC component of the output signal to reach the reference voltage. In the meantime, there is a difference between the DC component of the signal applied to the differential conversion amplifier and the reference voltage, and since the difference changes, the non-inverted signal and the inverted signal cannot correctly represent the input signal. For this reason, the differential signal output from the differential conversion circuit cannot be used until the operation of the signal processing circuit is stabilized at least after the start of power supply or the end of the standby state.
[0008]
The present invention has been made in view of the above problems, and provides a differential conversion circuit that outputs a differential signal without noise and outputs a usable differential signal in a short time after the operation is started. Objective.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, a differential conversion circuit according to the present invention includes a first input terminal and a second input terminal, wherein a first input terminal signal is subtracted from a first input terminal signal. A difference signal; or a second difference signal obtained by subtracting the signal at the first input terminal from the signal at the second input terminal; and generating the first difference signal or the second difference signal at a predetermined rate. And a differential conversion amplifier that amplifies and outputs the signal, a process in which an input signal and a reference voltage are given, and the reference voltage is used as a DC component; and a filter unit including N (N ≧ 2) filter circuits. A signal processing circuit that applies an intermediate signal to the input signal by performing a predetermined process including a process of passing a frequency component of the input signal to the first input terminal, and the reference voltage to the first input terminal. A differential circuit having a transmission circuit for feeding to two input terminals In road, the transmission circuit has a structure consisting of any of omitting the number of filter circuits identical or equivalent circuit from one at the filter portion to the N-1.
[0010]
The circuit provided for passing the reference voltage supplied to the differential conversion amplifier is the same as or equivalent to a part of the signal processing circuit, and acts on the reference voltage in the same manner as the corresponding part. Accordingly, even if there is noise in the applied reference voltage, the noise will appear in both the intermediate signal and the reference voltage applied to the differential conversion amplifier, and as a result, the first and second difference signals Noise can be suppressed. In addition, the circuit interferes in the same way as the corresponding part of the signal processing circuit, and causes noise similar to the noise that the corresponding part brings to the intermediate signal to the reference voltage. Therefore, noise due to interference in the signal processing circuit is also difficult to appear in the first and second difference signals.
[0011]
Further, since the above circuit stabilizes over time in the same way as the signal processing circuit after the operation starts, the reference voltage applied to the differential conversion amplifier rises in the same manner as the DC component of the intermediate signal, and the signal processing circuit Even before stabilization, no difference occurs between the DC component of the intermediate signal and the reference voltage. Therefore, the first and second difference signals correctly represent the input signal immediately after the operation of the differential conversion circuit starts, and can be used early.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of a differential conversion circuit of the present invention will be described with reference to the drawings. FIG. 1 shows the configuration of the differential conversion circuit 1 of the first embodiment. The differential conversion circuit 1 includes a low-pass filter 11 including a coupling capacitor 10, an amplifier 11a and a buffer 11b, and a differential conversion amplifier 20. These have the same configuration as each element of the differential conversion circuit 9 shown in FIG. 6 and function similarly.
[0013]
That is, the signal processing circuit 30 including the coupling capacitor 10 and the low-pass filter 11 is supplied with the input signal VIN to be processed and the reference voltage VREF from a reference voltage source (not shown), and is applied with the direct current applied from the input signal VIN. After removing the components and adding the reference voltage VREF as a new DC component thereto, only the components of a predetermined frequency are transmitted to generate the intermediate signal VA. The differential conversion amplifier 20 generates a difference signal obtained by subtracting the reference voltage VREF from the signal VA and a difference signal obtained by subtracting the signal VA from the reference voltage VREF, and amplifies these difference signals at a predetermined rate. The non-inverted signal VOUT1 and the inverted signal VOUT2 are output.
[0014]
In addition, the differential conversion circuit 1 includes a circuit 11 ′ including an amplifier 11a ′ and a buffer 11b ′. The circuit 11 ′ forms a transmission circuit 31 for transmitting the reference voltage VREF from the reference voltage source to the differential conversion amplifier 20. The transmission circuit 31 is not supplied with the input signal VIN. The amplifier 11a ′ and the buffer 11b ′ are the same as the amplifier 11a and the buffer 11b, respectively. Therefore, the transmission circuit 31 acts on the reference voltage VREF in the same manner as the signal processing circuit 30.
[0015]
The output terminal of the buffer 11b ′ of the transmission circuit 31 is connected to the reference voltage input terminal of the differential conversion amplifier 20. The differential conversion amplifier 20 is supplied with the reference voltage VREF ′ after receiving the action of the transmission circuit 31. It is done. All processing of the differential conversion amplifier 20 including the inversion of the signal VA is performed based on the reference voltage VREF ′.
[0016]
When noise occurs in the reference voltage VREF supplied from the reference voltage source, the noise is input to both the signal processing circuit 30 and the transmission circuit 31. The noise of the reference voltage VREF appears as the noise of the signal VA output from the signal processing circuit 30, but substantially the same noise appears in the reference voltage VREF ′ output from the transmission circuit 31 at substantially the same time. These noises are canceled when the differential conversion amplifier 20 generates the difference signal, and no noise appears in either the non-inverted signal VOUT1 or the inverted signal VOUT2.
[0017]
Further, when interference occurs inside the signal processing circuit 30, the same interference also occurs in the transmission circuit 31 having the same configuration. Therefore, substantially the same noise as the noise of the signal VA generated by the interference of the signal processing circuit 30 appears in the reference voltage VREF ′ output from the transmission circuit 31 and both are input to the differential conversion amplifier 20. Therefore, the noise is canceled by the differential conversion amplifier 20, and no noise appears in either the non-inverted signal VOUT1 or the inverted signal VOUT2.
[0018]
After the supply of power to the differential conversion circuit 1 is started, it takes some time for the signal processing circuit 30 to operate stably. During this time, the DC component of the output signal VA of the signal processing circuit 30 is It gradually rises. Since the transmission circuit 31 has the same configuration as that of the signal processing circuit 30, it takes the same time until the operation is stabilized, and the reference voltage VREF ′ output from the voltage circuit 31 during that time is the same as the DC component of the signal VA. It will gradually rise.
[0019]
Therefore, the DC component of the signal VA and the reference voltage VREF ′ supplied to the differential conversion amplifier 20 are the same immediately after the supply of power to the differential conversion circuit 1 is started. As a result, the non-inverted signal VOUT1 and the inverted signal VOUT2 correctly represent the input signal VIN before the signal processing circuit 30 operates stably, and are used even before the operation of the signal processing circuit 30 is stabilized. be able to.
[0020]
The reason why the coupling circuit 10 is not provided in the transmission circuit 31 is that the input signal VIN to be processed is not given to the transmission circuit 31. The transmission circuit 31 may have the same configuration as the signal processing circuit 30, and the capacitor may not be connected to the signal line that supplies the input signal VIN.
[0021]
FIG. 2 shows the configuration of the differential conversion circuit 2 according to the second embodiment. The differential conversion circuit 2 of this embodiment includes a signal processing circuit 40 including a coupling capacitor 10 and a five-stage filter circuit, and a differential conversion amplifier 20. The signal processing circuit 40 receives an input signal VIN and a reference voltage VREF from a reference voltage source (not shown), removes a DC component from the input signal VIN, and adds a reference voltage VREF as a new DC component. Also, it functions as a band pass filter, and generates an intermediate signal VA by transmitting only frequency components in a predetermined band.
[0022]
The first-stage filter circuit includes an amplifier 12a and a buffer 12b, and the second-stage filter circuit includes an amplifier 13a, a buffer 13b, and a capacitor 13c. These form a band-pass filter portion 12. The third filter circuit includes an amplifier 14a, a buffer 14b, and a capacitor 14c, and forms a primary low-pass filter unit 14. The fourth stage filter circuit includes an amplifier 15a, a buffer 15b, and a capacitor 15c, and the fifth stage filter circuit includes an amplifier 16a, a buffer 16b, and a capacitor 16c. These form a secondary low-pass filter section 15.
[0023]
The differential conversion circuit 2 includes a circuit 41 having the same configuration as that obtained by removing the coupling capacitor 10 from the signal processing circuit 40. The circuit 41 is for transmitting the reference voltage VREF from the reference voltage source to the differential conversion amplifier 20, and does not receive the input signal VIN. The constituent elements of the transmission circuit 41 are represented by reference numerals obtained by adding prime (′) to the reference numerals of the corresponding constituent elements of the signal processing circuit 40. The transmission circuit 41 acts on the reference voltage VREF in the same manner as the signal processing circuit 40, and outputs the reference voltage VREF ′ after receiving the action. This reference voltage VREF ′ is applied to the reference voltage input terminal of the differential conversion amplifier 20.
[0024]
The differential conversion amplifier 20 performs all processes including inversion of the signal VA based on the reference voltage VREF ′. Therefore, even when the reference voltage VREF supplied from the reference voltage source varies or when interference occurs in the signal processing circuit 40, the differential conversion is performed in the same manner as the differential conversion circuit 1 of the first embodiment. Noise does not appear in the non-inverted signal VOUT1 and the inverted signal VOUT2 output from the circuit 2. Further, the non-inverted signal VOUT1 and the inverted signal VOUT2 can be used immediately after the operation starts.
[0025]
In the differential conversion circuits 1 and 2 of the above two embodiments, the same components as those of the signal processing circuits 30 and 40 are used as the components of the transmission circuits 31 and 41 that transmit the reference voltage to the differential conversion amplifier 20. Although used, the components of the transmission circuit are not necessarily the same as the components of the signal processing circuit as long as the characteristics are equivalent. Further, the transmission circuit does not have to be the same or equivalent to the entire signal processing circuit, and the transmission circuit may be composed of elements that are the same or equivalent to a part of the signal processing circuit.
[0026]
The configurations of the differential conversion circuits 3, 4, and 5 of the third, fourth, and fifth embodiments having only a part of the signal processing circuit as a transmission circuit are shown in FIGS. The signal processing circuit 40 of the differential conversion circuits 3, 4, and 5 is the same as that of the second embodiment.
[0027]
The transmission circuit 42 of the differential conversion circuit 3 includes the band-pass filter unit 12 of the signal processing circuit 40, that is, the same circuit 12 ′ as the first stage and second stage filter circuits, and the transmission circuit 43 of the differential conversion circuit 4. Consists of a second-order low-pass filter unit 15 of the signal processing circuit 40, that is, the same circuit 15 ′ as the fourth-stage and fifth-stage filter circuits. Further, the transmission circuit 44 of the differential conversion circuit 5 includes a circuit 16 ′ that is the same as the fifth-stage filter circuit that is the subsequent stage of the secondary low-pass filter unit 15 of the signal processing circuit 40.
[0028]
As described above, when the transmission circuits 42, 43, and 44 are configured by the same or equivalent elements as a part of the signal processing circuit 40, the noise between the non-inverted signal VOUT1 and the inverted signal VOUT2 output from the differential conversion amplifier 20 is changed. It cannot be removed to the same extent as the dynamic conversion circuits 1 and 2. However, the noise of the non-inverted signal VOUT1 and the inverted signal VOUT2 can be reduced as compared with the conventional differential conversion circuit, and the non-inverted signal VOUT1 and the inverted signal VOUT2 cannot be used after the operation is started. It can be shortened.
[0029]
As described above, when the reference voltage is applied to the differential conversion amplifier via the same or equivalent circuit as the whole or a part of the signal processing circuit, noise appears in the differential signal output from the differential conversion circuit. Can be prevented or suppressed. In a device equipped with such a differential conversion circuit, even when the operation of each part of the device is unstable when the power supply is started or when the operation is resumed from the standby state, the differential signal is stabilized quickly. The differential signal can be used early. In addition, it is not necessary to apply advanced interference prevention measures to the signal processing circuit.
[0030]
Note that which part of the signal processing circuit is provided as a transmission circuit is determined according to the scale and characteristics of the signal processing circuit. When the signal processing circuit is small, it may be a transmission circuit that is the same or equivalent to the entire circuit. In addition, when there is a part that easily causes delay or interference in the signal processing circuit, it is preferable to use a transmission circuit including at least the part. The differential conversion circuit of the present invention can be applied to any device that processes analog signals, including a magnetic recording device.
[0031]
【The invention's effect】
The differential conversion circuit of the present invention can suppress the appearance of noise in the output differential signal even when noise occurs in the reference voltage or noise occurs due to interference of the signal processing circuit. it can. Furthermore, a usable differential signal can be output in a short time after the operation starts.
[Brief description of the drawings]
FIG. 1 is a diagram showing a configuration of a differential conversion circuit according to a first embodiment.
FIG. 2 is a diagram showing a configuration of a differential conversion circuit according to a second embodiment.
FIG. 3 is a diagram illustrating a configuration of a differential conversion circuit according to a third embodiment.
FIG. 4 is a diagram showing a configuration of a differential conversion circuit according to a fourth embodiment.
FIG. 5 is a diagram showing a configuration of a differential conversion circuit according to a fifth embodiment.
FIG. 6 is a diagram showing a configuration of a conventional differential conversion circuit.
[Explanation of symbols]
1, 2, 3, 4, 5 Differential conversion circuit 10 Coupling capacitor 20 Differential conversion amplifier 30 Signal processing circuit 31 Transmission circuit 40 Signal processing circuits 41, 42, 43, 44 Transmission circuit 11 Low-pass filter 11a, 11a 'Amplifier 11b 11b 'buffer 12 band-pass filter unit 14, 15 low-pass filter unit 12a, 12a' amplifier 12b, 12b 'buffer 13a, 13a' amplifier 13b, 13b 'buffer 13c, 13c' capacitor 14a, 14a 'amplifier 14b, 14b' buffer 14c, 14c 'capacitors 15a, 15a' amplifiers 15b, 15b 'buffers 15c, 15c' capacitors 16a, 16a 'amplifiers 16b, 16b' buffers 16c, 16c 'capacitors

Claims (1)

第1入力端子と第2入力端子を備え、前記第1入力端子の信号から前記第2入力端子の信号を引いた第1の差信号;または前記第2入力端子の信号から前記第1入力端子の信号を引いた第2の差信号;を生成して、前記第1の差信号または前記第2の差信号を所定の率で増幅して出力する差動変換増幅器と、
入力信号と基準電圧を与えられ、前記基準電圧を直流成分とする処理と;N個(N≧2とする)のフィルター回路から成るフィルター部により所定の周波数の成分を通過させる処理と;を含む所定の処理を前記入力信号に施して中間信号を生成し、該中間信号を前記第1入力端子に与える信号処理回路と、
前記基準電圧を前記第2入力端子に与える伝達回路と、を備えた差動変換回路において、
前記伝達回路は、前記フィルター部において1個からN−1個までの任意の数のフィルター回路を省略したものと同一または等価な回路から成ることを特徴とする差動変換回路。
A first difference signal comprising a first input terminal and a second input terminal, wherein the signal of the second input terminal is subtracted from the signal of the first input terminal; or the signal of the second input terminal; A differential conversion amplifier that generates a second difference signal obtained by subtracting the first difference signal; and amplifies and outputs the first difference signal or the second difference signal at a predetermined rate;
A process of receiving an input signal and a reference voltage and using the reference voltage as a DC component; and a process of passing a component of a predetermined frequency by a filter unit including N (N ≧ 2) filter circuits. A signal processing circuit that applies predetermined processing to the input signal to generate an intermediate signal, and applies the intermediate signal to the first input terminal;
A differential conversion circuit comprising: a transmission circuit that applies the reference voltage to the second input terminal;
2. The differential conversion circuit according to claim 1, wherein the transmission circuit is composed of a circuit that is the same as or equivalent to a filter unit in which an arbitrary number of filter circuits from 1 to N-1 are omitted .
JP06754898A 1998-03-18 1998-03-18 Differential conversion circuit Expired - Fee Related JP3813016B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06754898A JP3813016B2 (en) 1998-03-18 1998-03-18 Differential conversion circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06754898A JP3813016B2 (en) 1998-03-18 1998-03-18 Differential conversion circuit

Publications (2)

Publication Number Publication Date
JPH11266127A JPH11266127A (en) 1999-09-28
JP3813016B2 true JP3813016B2 (en) 2006-08-23

Family

ID=13348139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06754898A Expired - Fee Related JP3813016B2 (en) 1998-03-18 1998-03-18 Differential conversion circuit

Country Status (1)

Country Link
JP (1) JP3813016B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002033653A (en) 2000-07-17 2002-01-31 Mitsubishi Electric Corp Signal level conversion circuit and semiconductor device provided with the same
JP2010206237A (en) * 2009-02-27 2010-09-16 Panasonic Corp Amplification device and sensor module

Also Published As

Publication number Publication date
JPH11266127A (en) 1999-09-28

Similar Documents

Publication Publication Date Title
US20070146065A1 (en) Chopper amplifier circuit and semiconductor device
JP3292167B2 (en) Differential input interface
JP3177388B2 (en) Wireless front-end device
JP3813016B2 (en) Differential conversion circuit
JP4026665B1 (en) Low-pass filter and voltage-current conversion circuit used therefor
JP3824867B2 (en) Analog signal processor
JPWO2018116825A1 (en) Single-phase differential conversion circuit, signal processing method thereof, and receiver
JP2004128796A (en) Signal amplification circuit
JP5027510B2 (en) Balanced output circuit and electronic device using the same
JPS59207A (en) Differential amplifying circuit
JP2004128958A (en) Class d amplifier
JP3344546B2 (en) Delta-sigma modulation circuit
JPH01246912A (en) Low-pass filter
JP4112295B2 (en) Method and apparatus for amplifying an input signal having a DC component and an AC component
JP2009278564A (en) Amplifier circuit
JP2011082728A (en) Converter and noise reduction circuit
TWI253258B (en) Loading circuit capable of canceling dc offset and mixer using the same
JP2716398B2 (en) Filter circuit
KR101128451B1 (en) Input signal amplifying device
JPS615700A (en) Low band noise eliminating circuit
JPH05308245A (en) High pass filter for impulse
JP2016127483A (en) Class d amplifier circuit
JP2000106509A (en) Compensation device
JP3969960B2 (en) Video output circuit
JPH0759106A (en) Active filter and color contour emphasis circuit using the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060530

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees