JP3810752B2 - Vapor growth apparatus and vapor growth method - Google Patents

Vapor growth apparatus and vapor growth method Download PDF

Info

Publication number
JP3810752B2
JP3810752B2 JP2003085221A JP2003085221A JP3810752B2 JP 3810752 B2 JP3810752 B2 JP 3810752B2 JP 2003085221 A JP2003085221 A JP 2003085221A JP 2003085221 A JP2003085221 A JP 2003085221A JP 3810752 B2 JP3810752 B2 JP 3810752B2
Authority
JP
Japan
Prior art keywords
vapor phase
heater
phase growth
wafer
reflector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003085221A
Other languages
Japanese (ja)
Other versions
JP2003264156A (en
Inventor
雅彦 市島
栄一 外谷
忠 大橋
真幸 島田
慎一 三谷
恭章 本多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nuflare Technology Inc
Original Assignee
Nuflare Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nuflare Technology Inc filed Critical Nuflare Technology Inc
Priority to JP2003085221A priority Critical patent/JP3810752B2/en
Publication of JP2003264156A publication Critical patent/JP2003264156A/en
Application granted granted Critical
Publication of JP3810752B2 publication Critical patent/JP3810752B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、反応室の内部で半導体ウエハをウエハ保持板で持し、上記ウエハ保持板に持されたウエハの下方にヒータを設け、加熱状態でウエハの表面に気相成長させる気相成長装置および気相成長方法に関する。
【0002】
【従来の技術】
従来から使用されている気相成長装置が、例えば特開平5−152207号に示されている。それは、ウエハ保持部材で支持し、該ウエハ保持部材の下方に配置する発熱体により加熱して、ウエハ表面に気相成長膜を形成する気相成長装置である。例えば、ベースの下面に上方に向かって伸びる中空の円筒体が取付けられ、その上端に発熱体支えが取付けられている。更に、その上方には皿状の反射板が配置され、その内部に発熱体を収容すると共に上端に均熱板が取付けられている。また、上記中空の円筒体の周囲を囲むように中空回転軸が設けられ、その上端には上記反射板の周囲を囲み上端が均熱板の上方に位置する皿状の支持体が取付けられ、この上端にはリング状のウエハ保持板が嵌着されている。そのウエハ保持板の内周側にはザグリが形成され、この内にウエハが配置される。
【0003】
そして、この気相成長装置においては、反応室内は50〜400Torrの減圧雰囲気が形成され、ガス導入口からジクロルシラン等の原料ガスと水素等のキャリアガスが多量に導入され、気相成長が行われる。この際には、ウエハは1150℃程度で加熱されている。
【0004】
【発明が解決しようする課題】
従来の気相成長装置には、ヒーターの下側に皿状のMo製反射板が設けられていたが、ヒーターに対し不純物汚染を引き起こし、ヒーターの寿命を大幅に低下してしまう欠点があった。一方、反射板がSUSや石英で形成されているときは、加熱処理後にHNO3 −HF水溶液で洗浄できない。なぜなら、HNO3 −HF水溶液によって反射板の表面が侵蝕されてしまうからである。
【0005】
本発明の目的は、加熱処理後にも、反射効率が従来ほど低下せず、しかも必要に応じてHNO3 −HF水溶液で洗浄して表面を元の平滑な状態に戻して反射効率を改善できる反射板を使用する気相成長装置および気相成長方法を提供することである。
【0006】
【課題を解決するための手段】
本発明は、前述の請求項1〜3に記載の気相成長装置と請求項4〜5に記載の気相成長方法を要旨とする。
【0007】
【発明の効果】
本発明においては、反射板はガラス状カ−ボンで形成する。反射板が、ガラス状カーボンで形成されていると、その表面が平滑な状態(いわゆる「つるつる」の状態)になっていて、反射効率が良好である。とくに、反射板の表面粗さをRa0.001〜0.05μmにしたとき、反射効率が顕著となる。
【0008】
加熱処理によって反射板の表面が平滑な状態でなくなって反射効率が低下したとしても、ガラス状カーボンで形成されているので、簡単にHNO3 −HF水溶液で表面を洗浄できる。その結果、反射板の表面は再度良好な平滑状態となる。
【発明の実施の態様】
本発明に使用するガラス状カーボンは、外観がガラス状の硬質炭素であり、例えば熱硬化性樹脂の固相炭素化によって生成することができる。好ましいガラス状カーボンはカサ密度が1.50〜1.60g/cm3 であり、カサ密度が1.50g/cm3 未満であると、反射板として気孔が多くなり反射効率が悪くなる。一方、1.60g/cm3 を越えると硬質炭素でなくなり、パーティクルが発生し易くウエハの歩留りを悪化させる。曲げ強度が100MPa以上であり、100MPa未満であると、数百枚のウエハの処理中に反射板が撓んで割れてくる。さらに、固有抵抗が4000〜4400μΩcmであり、開気孔率が0.1%以下であり、ショア硬度が100以上であり、熱伝導率は5〜10W/m・Kが反射板として好ましい。
【0009】
ガラス状カーボン製の反射板の製造方法の一例を述べる。まず、原料となる樹脂(例えばフラン系樹脂やフェノール系樹脂等)を所定の形状に成形し、しかる後に非酸化性雰囲気において950℃で焼成することによって樹脂をガラス状カーボンにすることができる。さらに具体的に述べると、フラン系樹脂に重合促進剤を0.1部添加しながら重合させ、型に鋳込成形する。これを100℃以下で加熱硬化後、一時加工する。その後、非酸化性雰囲気において約1000℃の一次焼成と約2000℃の二次焼成を行い、二次加工後、ダイヤモンドポリッシングで鏡面に研磨する。これをハロゲン系ガス雰囲気の2000℃以上で純化処理する。
【0010】
反射板は、反射効率の観点から、少くともヒータに対向する方の表面をRa0.001〜0.05μmの表面粗さにするのが好ましい。Ra0.001μm未満であると、反射効率に有意差が見られなくなり、かつ、加工コストが数十倍となってしまう。Ra0.05μmを超えると、加熱処理後の反射板の表面粗さが低下し反射効率が著しく低下する。
【0011】
【実施例】
以下に図面を参照して本発明の実施例を説明する。
【0012】
図1において、ベース10の下面には上方に向かって伸びる中空円筒体11が取付けられ、その上端にヒータ支え12が取付けられている。ヒータ支え12には絶縁棒13、反射板14及び絶縁棒15を介してヒータ16が取付けられている。反射板14は、前述のガラス状カーボンで形成されており、図1から明白なように、円板状の底部と、その外周に一体に形成された円筒状の側部からなり、浅い容器の形を有している。中空円筒体11の下端はフタ18によって閉じられ、中空円筒体11の内部にはフタ18を貫通してヒータ16に接続された給電用配線17が設けられている。ヒータ16は1000℃以上の高温に急速加熱できる。
【0013】
中空円筒体11の周囲を囲むように中空回転軸20が設けられ、中空回転軸20はベアリング21により中空円筒体11とは無関係に回転自在にベース10に取付けられている。中空回転軸20はプーリ22が取付けられ、ベルト23を介して、図示しないモータにより回転駆動されるようになっている。
【0014】
中空回転軸20の上端は、一部のみを示すベルジャ24によってベース10の上面上方に形成される反応室25内に伸び、その上端にはキー26を介して炭素製の支持円盤27が固着されている。支持円盤27には、石英ガラス、炭素又はセラミックス製の支持リング28が支持円盤27と一体的に回転可能に取付けられている。
【0015】
支持リング28は、ヒータ支え12、反射板14及びヒータ16の外周を囲んで、ヒータ16より上方へ伸びている。
【0016】
支持リング28の上端には段部31が形成され、段部31にリング状のウエハ保持板32が嵌着され、ウエハ保持体32の上面内周寄りに形成された段部33内にウエハWを保持するようになっている。ウエハ保持体32に支持されたウエハWは、ヒータ16と所定の間隔を有するように置かれる。
【0017】
支持リング28の外周には所定の隙間をもって円筒状の保温筒40が同心状に配置されている。保温筒40は石英ガラスまたはガラス状カーボンで形成する。
次いで前述の気相成長装置の動作を説明する。
【0018】
ヒータ16に給電し、加熱を行うと共に、中空回転軸20を回転させ、ウエハ保持体32及びウエハWを回転させる。ウエハWとウエハ保持体32はヒータ16によって加熱される。
【0019】
ウエハ保持体32は、間隔を所定値に保つようにウエハWを支持すると共に、ヒータ16によって加熱され、ウエハWの外周を加熱して該外周の温度低下を抑え、ウエハWの中心から外周までの全域にわたり、均一な温度分布とする役目を有している。
【0020】
ウエハWを所定の気相成長温度たとえば1000℃以上に急速加熱したところで、反応ガスを図1において上方からウエハWに向けて流下させることにより気相成長を施こす。このときウエハWの表面だけでなく、ウエハ保持体32の表面にも気相成長膜が形成される。反射板の材質として、等方性炭素とガラス状カーボンとを比較したところ、等方性炭素の場合は、ダクトが発生し、ウエハ1枚目で使用を中止せざるをえなかった。ガラス状カーボンの反射板を使用したところ、ウエハが少なくとも千枚後でも使用可能であった。
【0021】
特に、800〜1150℃まで90秒の高速昇温が可能な気相成長装置において、本発明のガラス状カーボン製反射板を使用すると、気相成長膜厚の歩留りが向上する。
【図面の簡単な説明】
【図1】 本発明の実施例を示す概略断面図。
【符号の説明】
14 反射板
40 保温筒
[0001]
BACKGROUND OF THE INVENTION
The present invention, a semiconductor wafer in the reaction chamber was retained by the wafer holding plate, the heater is provided below the wafer which is retained in the wafer holding plate, the gas phase is grown in vapor phase on the surface of the wafer in a heated state The present invention relates to a growth apparatus and a vapor phase growth method .
[0002]
[Prior art]
A conventionally used vapor phase growth apparatus is disclosed in, for example, Japanese Patent Laid-Open No. 5-152207. It is a vapor phase growth apparatus that is supported by a wafer holding member and heated by a heating element disposed below the wafer holding member to form a vapor growth film on the wafer surface. For example, a hollow cylindrical body extending upward is attached to the lower surface of the base, and a heating element support is attached to the upper end thereof. In addition, a dish-shaped reflector is disposed above, and a heating element is accommodated therein, and a soaking plate is attached to the upper end. Further, a hollow rotary shaft is provided so as to surround the hollow cylindrical body, and a dish-like support body is attached to the upper end of the hollow rotating body so as to surround the reflector and the upper end is positioned above the heat equalizing plate. A ring-shaped wafer holding plate is fitted to the upper end. A counterbore is formed on the inner peripheral side of the wafer holding plate, and the wafer is placed therein.
[0003]
In this vapor phase growth apparatus, a reduced pressure atmosphere of 50 to 400 Torr is formed in the reaction chamber, and a large amount of a source gas such as dichlorosilane and a carrier gas such as hydrogen is introduced from a gas introduction port to perform vapor phase growth. . At this time, the wafer is heated at about 1150 ° C.
[0004]
[Problems to be solved by the invention]
The conventional vapor phase growth apparatus was provided with a dish-shaped Mo reflector on the lower side of the heater. However, there was a drawback that the heater was contaminated and the life of the heater was greatly reduced. . On the other hand, when the reflecting plate is made of SUS or quartz, it cannot be washed with an HNO 3 —HF aqueous solution after the heat treatment. This is because the surface of the reflector is eroded by the HNO 3 —HF aqueous solution.
[0005]
The object of the present invention is that the reflection efficiency does not decrease as low as before even after the heat treatment, and the reflection efficiency can be improved by cleaning the surface with an aqueous HNO 3 —HF solution as necessary to return the surface to the original smooth state. To provide a vapor phase growth apparatus and a vapor phase growth method using a plate.
[0006]
[Means for Solving the Problems]
The gist of the present invention is the vapor phase growth apparatus according to claims 1 to 3 and the vapor phase growth method according to claims 4 to 5 .
[0007]
【The invention's effect】
In the present invention, the reflecting plate is formed of glassy carbon. When the reflecting plate is made of glassy carbon, the surface is in a smooth state (so-called “smooth” state) and the reflection efficiency is good. In particular, when the surface roughness of the reflecting plate is Ra 0.001 to 0.05 μm, the reflection efficiency becomes remarkable.
[0008]
Even when the surface of the reflecting plate is not smooth due to the heat treatment and the reflection efficiency is lowered, the surface can be easily cleaned with an aqueous HNO 3 —HF solution because it is formed of glassy carbon. As a result, the surface of the reflector is again in a good smooth state.
BEST MODE FOR CARRYING OUT THE INVENTION
The vitreous carbon used in the present invention is hard carbon having an external appearance, and can be produced, for example, by solid-phase carbonization of a thermosetting resin. Preferred glassy carbon has a bulk density of 1.50 to 1.60 g / cm 3 , and if the bulk density is less than 1.50 g / cm 3 , the number of pores as a reflector increases and the reflection efficiency deteriorates. On the other hand, if it exceeds 1.60 g / cm 3 , it is no longer hard carbon, and particles are likely to be generated, which deteriorates the yield of the wafer. When the bending strength is 100 MPa or more and less than 100 MPa, the reflector is bent and cracked during processing of several hundred wafers. Further, the specific resistance is 4000 to 4400 μΩcm, the open porosity is 0.1% or less, the Shore hardness is 100 or more, and the thermal conductivity is preferably 5 to 10 W / m · K as the reflector.
[0009]
An example of a method for producing a glassy carbon reflector will be described. First, a resin (for example, a furan resin or a phenol resin) as a raw material is formed into a predetermined shape, and then fired at 950 ° C. in a non-oxidizing atmosphere, whereby the resin can be made into glassy carbon. More specifically, it is polymerized while adding 0.1 part of a polymerization accelerator to a furan resin, and cast into a mold. This is temporarily processed after heat curing at 100 ° C. or lower. Thereafter, primary firing at about 1000 ° C. and secondary firing at about 2000 ° C. are performed in a non-oxidizing atmosphere. After secondary processing, the surface is polished to a mirror surface by diamond polishing. This is purified at 2000 ° C. or higher in a halogen-based gas atmosphere.
[0010]
The reflecting plate preferably has a surface roughness Ra of 0.001 to 0.05 μm at least on the surface facing the heater from the viewpoint of reflection efficiency. If it is less than Ra 0.001 μm, a significant difference in reflection efficiency will not be seen, and the processing cost will be several tens of times. If it exceeds Ra 0.05 μm, the surface roughness of the reflector after the heat treatment is lowered, and the reflection efficiency is remarkably lowered.
[0011]
【Example】
Embodiments of the present invention will be described below with reference to the drawings.
[0012]
In FIG. 1, a hollow cylindrical body 11 extending upward is attached to the lower surface of a base 10, and a heater support 12 is attached to the upper end thereof. A heater 16 is attached to the heater support 12 via an insulating rod 13, a reflector 14 and an insulating rod 15. The reflection plate 14 is made of the above-mentioned glassy carbon, and as is apparent from FIG. 1, is composed of a disc-shaped bottom portion and a cylindrical side portion integrally formed on the outer periphery thereof. It has a shape. The lower end of the hollow cylindrical body 11 is closed by a lid 18, and a power supply wiring 17 that passes through the lid 18 and is connected to the heater 16 is provided inside the hollow cylindrical body 11. The heater 16 can be rapidly heated to a high temperature of 1000 ° C. or higher.
[0013]
A hollow rotary shaft 20 is provided so as to surround the hollow cylindrical body 11, and the hollow rotary shaft 20 is rotatably attached to the base 10 by a bearing 21 regardless of the hollow cylindrical body 11. The hollow rotary shaft 20 is attached with a pulley 22 and is driven to rotate by a motor (not shown) via a belt 23.
[0014]
The upper end of the hollow rotating shaft 20 extends into a reaction chamber 25 formed above the upper surface of the base 10 by a bell jar 24 showing only a part, and a carbon support disk 27 is fixed to the upper end of the hollow rotating shaft 20 via a key 26. ing. A support ring 28 made of quartz glass, carbon or ceramics is attached to the support disk 27 so as to be integrally rotatable with the support disk 27.
[0015]
The support ring 28 surrounds the outer periphery of the heater support 12, the reflecting plate 14, and the heater 16, and extends upward from the heater 16.
[0016]
A step 31 is formed at the upper end of the support ring 28, a ring-shaped wafer holding plate 32 is fitted into the step 31, and the wafer W is placed in a step 33 formed near the inner periphery of the upper surface of the wafer holder 32. Is supposed to hold. The wafer W supported by the wafer holder 32 is placed so as to have a predetermined distance from the heater 16.
[0017]
On the outer periphery of the support ring 28, a cylindrical heat insulating cylinder 40 is disposed concentrically with a predetermined gap. The heat insulating cylinder 40 is made of quartz glass or glassy carbon.
Next, the operation of the above vapor phase growth apparatus will be described.
[0018]
Power is supplied to the heater 16 to heat it, and the hollow rotating shaft 20 is rotated to rotate the wafer holder 32 and the wafer W. The wafer W and the wafer holder 32 are heated by the heater 16.
[0019]
The wafer holder 32 supports the wafer W so as to keep the interval at a predetermined value, and is heated by the heater 16 to heat the outer periphery of the wafer W to suppress the temperature decrease of the outer periphery, and from the center of the wafer W to the outer periphery. It has the role which makes uniform temperature distribution over the whole area.
[0020]
When the wafer W is rapidly heated to a predetermined vapor growth temperature, for example, 1000 ° C. or more, vapor deposition is performed by causing the reaction gas to flow from the upper side toward the wafer W in FIG. At this time, a vapor phase growth film is formed not only on the surface of the wafer W but also on the surface of the wafer holder 32. When isotropic carbon was compared with glassy carbon as the material of the reflector, a duct was generated in the case of isotropic carbon, and the use of the first wafer had to be stopped. When a glassy carbon reflector was used, it could be used even after at least 1000 wafers.
[0021]
In particular, when the glassy carbon reflector of the present invention is used in a vapor phase growth apparatus capable of high-temperature heating for 90 seconds from 800 to 1150 ° C., the yield of the vapor phase growth film thickness is improved.
[Brief description of the drawings]
FIG. 1 is a schematic sectional view showing an embodiment of the present invention.
[Explanation of symbols]
14 Reflector 40 Thermal insulation cylinder

Claims (5)

反応室と、この反応室内に設けられウエハを保持するための保持体と、この保持体の下方に設けられたヒータと、このヒータの下方に設けられ当該ヒータの熱を反射させるための反射板とを備えた気相成長装置において、
前記反射板をカサ密度が1.50乃至1.60g / cm のガラス状ガーボンで形成したことを特徴とする気相成長装置。
A reaction chamber, a holder provided in the reaction chamber for holding the wafer, a heater provided below the holder, and a reflector provided below the heater for reflecting the heat of the heater In a vapor phase growth apparatus equipped with
A vapor phase growth apparatus characterized in that the reflecting plate is formed of glassy garbon having a bulk density of 1.50 to 1.60 g / cm 3 .
前記反射板の少なくとも前記ヒータと対向する側の表面の表面粗さがRThe surface roughness of at least the surface of the reflector facing the heater is R aa 0.001乃至0.05μmに形成されていることを特徴とする請求項1に記載の気相成長装置。2. The vapor phase growth apparatus according to claim 1, wherein the vapor phase growth apparatus is formed to have a thickness of 0.001 to 0.05 μm. 前記反射板の曲げ強度が100Mpa以上、固有抵抗が4000乃至4400μΩcm、開気孔率が0.1%以下、ショア硬度が100以上、熱伝導率が5乃至10WThe reflector has a bending strength of 100 Mpa or more, a specific resistance of 4000 to 4400 μΩcm, an open porosity of 0.1% or less, a Shore hardness of 100 or more, and a thermal conductivity of 5 to 10 W. // m・kに設定されていることを特徴とする請求項1に記載の気相成長装置。2. The vapor phase growth apparatus according to claim 1, wherein the vapor phase growth apparatus is set to m · k. ガス導入口が形成された反応室と、この反応室内に設けられウエハを保持するための保持体と、この保持体の下方に設けられたヒータと、このヒータの下方に設けられ当該ヒータの熱を反射させるための反射板とを備え、前記反射板をカサ密度が1.50乃至1.60gA reaction chamber in which a gas inlet is formed; a holder provided in the reaction chamber for holding a wafer; a heater provided below the holder; and a heat of the heater provided below the heater. And a reflector density of the reflector is 1.50 to 1.60 g. // cmcm 3 のガラス状ガーボンで形成した気相成長装置を用い、前記保持体にウエハを載置した後に、前記ヒータで前記ウエハを加熱すると共に、前記反射板で前記ヒータの熱を前記ウエハ側に向けて反射して加熱しながら前記ガス導入口から原料ガスを導入して前記ウエハの表面に気相成長させることを特徴とする気相成長方法。After the wafer is placed on the holding body, the wafer is heated by the heater, and the heat of the heater is directed toward the wafer by the reflector. A vapor phase growth method characterized in that a source gas is introduced from the gas introduction port while being reflected and heated to cause vapor phase growth on the surface of the wafer. 請求項4に記載の気相成長方法において、前記反射板をHNO5. The vapor phase growth method according to claim 4, wherein the reflector is made of HNO. 3 ―HF水溶液で洗浄することを特徴とする気相成長方法。A vapor phase growth method characterized by washing with an HF aqueous solution.
JP2003085221A 1995-06-15 2003-03-26 Vapor growth apparatus and vapor growth method Expired - Lifetime JP3810752B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003085221A JP3810752B2 (en) 1995-06-15 2003-03-26 Vapor growth apparatus and vapor growth method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7-171609 1995-06-15
JP17160995 1995-06-15
JP2003085221A JP3810752B2 (en) 1995-06-15 2003-03-26 Vapor growth apparatus and vapor growth method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP15629596A Division JP3694985B2 (en) 1995-06-15 1996-05-29 Vapor growth equipment

Publications (2)

Publication Number Publication Date
JP2003264156A JP2003264156A (en) 2003-09-19
JP3810752B2 true JP3810752B2 (en) 2006-08-16

Family

ID=29217507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003085221A Expired - Lifetime JP3810752B2 (en) 1995-06-15 2003-03-26 Vapor growth apparatus and vapor growth method

Country Status (1)

Country Link
JP (1) JP3810752B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100811389B1 (en) * 2006-03-24 2008-03-07 가부시키가이샤 뉴플레어 테크놀로지 Semiconductor manufacturing equipment and heater
CN112176312A (en) * 2019-07-02 2021-01-05 中国科学院苏州纳米技术与纳米仿生研究所 Method for simply preparing glass carbon film

Also Published As

Publication number Publication date
JP2003264156A (en) 2003-09-19

Similar Documents

Publication Publication Date Title
EP1796149B1 (en) Quartz jig and semiconductor manufacturing equipment
JP3984820B2 (en) Vertical vacuum CVD equipment
KR100251877B1 (en) Chemical vapor deposition apparatus
JPS61191015A (en) Semiconductor vapor growth and equipment thereof
JP3694985B2 (en) Vapor growth equipment
JP2003166059A (en) Film-forming apparatus and film-forming method
JP2001181846A (en) Cvd system
JP4374786B2 (en) CVD apparatus and thin film manufacturing method
JP3317781B2 (en) Method of manufacturing susceptor for heat treatment of semiconductor wafer
JP2005056984A (en) Apparatus and method for vapor phase growth
JP3810752B2 (en) Vapor growth apparatus and vapor growth method
JPH05152207A (en) Vapor growth method
TWI729926B (en) Manufacturing method for silicon carbide ingot and system for manufacturing silicon carbide ingot
JP3693739B2 (en) High frequency induction furnace
KR19980033091A (en) Manufacturing method of electrode plate for plasma processing apparatus
JP3110978B2 (en) Heating element for vapor phase growth equipment
JP2004014892A (en) High-temperature heating apparatus
JPH097955A (en) Electric resistance type vitreous carbon heater for heat treating semiconductor
JP3547810B2 (en) Wafer mounting boat and vapor phase growth apparatus using the same
JPH092895A (en) Susceptor made of glassy carbon
JPH0570287A (en) Heating equipment for wafer for vapor phase growth
JPH097956A (en) Electric resistance heater for heat treating semiconductor
JPH09209152A (en) Substrate treating device
JP2001313260A (en) Disc-like heater and apparatus for processing wafer
JP2004335591A (en) Cvd device, semiconductor device, and method of manufacturing the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20051110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060405

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060524

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100602

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100602

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110602

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120602

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130602

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term