JP3810676B2 - Tube ultrasonic inspection equipment - Google Patents

Tube ultrasonic inspection equipment Download PDF

Info

Publication number
JP3810676B2
JP3810676B2 JP2001372584A JP2001372584A JP3810676B2 JP 3810676 B2 JP3810676 B2 JP 3810676B2 JP 2001372584 A JP2001372584 A JP 2001372584A JP 2001372584 A JP2001372584 A JP 2001372584A JP 3810676 B2 JP3810676 B2 JP 3810676B2
Authority
JP
Japan
Prior art keywords
tube
probe
axis
pair
ultrasonic inspection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001372584A
Other languages
Japanese (ja)
Other versions
JP2003172732A (en
Inventor
行雄 野間崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2001372584A priority Critical patent/JP3810676B2/en
Publication of JP2003172732A publication Critical patent/JP2003172732A/en
Application granted granted Critical
Publication of JP3810676B2 publication Critical patent/JP3810676B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/025Change of phase or condition
    • G01N2291/0258Structural degradation, e.g. fatigue of composites, ageing of oils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、流体を利用して通信ケーブル先端に取り付けた探触子を被検管内に挿入して、被検管の内側から超音波検査を実施する管内挿入式超音波検査装置に係わり、特に、曲がり部を有する長尺管内へ探触子付き通信ケーブルを円滑に挿入するための受圧具および牽引具と、曲管部でも探触子の調芯を好適に行うことができる管の超音波検査装置に関する。
【0002】
【従来の技術】
ボイラなどで用いられる熱交換器管は長時間使用することによって腐食減肉や割れが発生することがあるので定期的に肉厚測定や探傷検査を行い、その健全性を確認する必要がある。しかし、前記熱交換器管は狭隘かつ複雑な様態で配置されているので、熱交換器管の外側からこれらの非破壊検査を行うことは困難である。そこで従来は管内挿入式超音波検査装置を用いて、熱交換器管の内側から超音波検査が行われている。
【0003】
図6に示す従来の管内挿入式超音波検査装置を用いるシステムでは、熱交換器管1内に挿入される案内子101、該案内子101と連結された探触子102、探触子102を両端から支持し、熱交換器管1の中芯に調芯する支持具103及び該支持具103に接続され、両端を一対の止め具104、104で固定された多数の受圧具105、各受圧具105を接続する通信ケーブル107などを具備している。さらに、従来の管内挿入式超音波検査装置は、一端が探触子102に、他端が超音波送受信装置106に接続され、相互の間の信号伝達を行う通信ケーブル107、この通信ケーブル107を熱交換器管1の内部に送り出したり、あるいは巻き込んだりするケーブル巻き取り装置108、通信ケーブル107の全長に取り付けている多数の受圧具105に水圧を加えるために用いる水槽109、水槽109内の水を加圧するポンプ110、ポンプ110で発生する加圧水の流れ方向を切り替える三方弁111a、111bとによって構成されている。
【0004】
このように構成された管内挿入式超音波検査装置を用いて熱交換器管1の内側から超音波検査を行う場合は、先ず、熱交換器管1の一端にホース112aを介してケーブル巻き取り装置108を接続する。次に熱交換器管1の他端にホース112bを介して三方弁111a、111bと接続する。そして、ポンプ110からの圧力水がケーブル巻き取り装置108に向かって流れるように三方弁111a、111bを切り替えて、流体流路を形成する。その後、ポンプ110を起動し、圧力水を循環させ、多数の受圧具105に抗力を発生させてケーブル巻き取り装置108に巻き取っていた通信ケーブル107を熱交換器管1の内部に挿入しながら先端に取り付けた探触子102で熱交換器管1の内側から超音波検査を行っている。
【0005】
また、熱交換器管1の超音波検査が終わると三方弁111a、111bを切り替え、加圧水の流れ方向を反転させて、受圧具105に逆方向の抗力を発生させて通信ケーブル107を熱交換器管1の内部から引出しケーブル巻き取り装置108に収納して一連の超音波検査を終了するものであった。
【0006】
【発明が解決しようとする課題】
従来、この種の超音波検査装置で問題になっていたのは、止め具104が露出した部分で流体に乱れが生じて受圧具105に作用する抗力が低下し、熱交換器管1が長くなると全長にわたって通信ケーブル107が挿入できなくなることであった。
【0007】
また、探触子102は超音波を送受信する振動子113(図7)の取付部で管軸芯に調芯することが必須の条件となるが、図7と図8に示すように熱交換器管1に小曲率の曲がり部がある場合、探触子102は支持具103の支点では前記管の曲がり部の中心に調芯できるものの、振動子113の取付部で芯ずれが生じ、信頼性の高い検査が不可能であった。さらに曲がり部では支持具103と熱交換器管1の接触摩擦抵抗が大きくなり、探触子102が管内を通過し得ない問題があった。
【0008】
そこで、本発明の課題は、上記従来技術の問題点を解決し、曲がり部を有する長い被検管に対しても、管内からの超音波検査が好適に実施可能な検査装置を提供することである。
【0009】
【課題を解決するための手段】
前記本発明の課題を解決するために、本発明は次のような構成を採用する。すなわち、流体が流れる管内に流体の流れを利用して挿入される管の超音波検査装置であって、中心部が管(1)の軸芯上に位置する一以上の超音波探触子(4)と、該探触子(4)を挟んで前記管(1)の軸方向に対向配置され、中心部が管(1)の軸芯上に位置し、管軸方向に摺動する一対のスライドリング(5)、(5)と、一端が一方のスライドリング(5)に他端が他方のスライドリング(5)にそれぞれ取り付けられ、前記探触子(4)を囲んで管(1)の軸芯を中心として管(1)の径方向に等間隔に配置され、常時管(1)の内面に当接する複数の弾性ワイヤ(6)と、前記一対のスライドリング(5)、(5)の外側で、該一対のスライドリング(5)、(5)に接して管(1)の軸芯上に位置し、前記スライドリング(5)、(5)を前記探触子(4)の中心部であり、かつ、管(1)の軸芯方向に向けて押圧する一対のバネ(7)、(7)とから成る籠式支持具(A)と、前記バネ(7)、(7)の外側で管(1)の径方向に向けて管内壁に圧着し、中心部が管(1)の軸芯上に位置する一対のブラシ式支持具(B)と、該一対のブラシ式支持具(B)の流体流れの前方側管軸中心部に接続した溝付きの牽引具(10)と、一対のブラシ式支持具(B)の流体流れの後方側の管軸中心部に接続した複数個縦列接続された受圧具(3)と、該複数の受圧具(3)とブラシ支持具(B)と籠式支持具(A)と探触子(4)を管径方向の中心部である管軸芯上でそれぞれ接続し、かつ、常に管(1)の軸芯上を通るようにブラシ式支持具(B)により支持される通信ケーブル(107)と、該通信ケーブル(107)の先端に接続して探触子(4)と通電される超音波送受信装置(106)とを備えた管の超音波検査装置である。
【0010】
前記牽引具(10)は管(1)内を流れる流体の流れ方向に対して傾斜した流路を形成する溝(10a)を備えていると、流体の流れに対する抗力が発生し易くなる。
【0011】
また、超音波探触子()は超音波振動子を備え、受圧具(3)は、所定の間隔で通信ケーブル(107)に圧着固定された止め金具を包み込むように接着固定され、管(1)内を流れる流体が止め金具に直接接触しないように構成されている。
【0012】
【作用】
本発明による受圧具は、受圧具に内包された止め金具によって通信ケーブルに取り付けられているので管内流体は層流状態を維持でき、乱れることがない。
【0013】
籠式支持具を形成するスライドリングの周囲に配置した各弾性ワイヤの最大外径部分が振動子の中心線上で熱交換器管内面に当たり探触子を調芯するとともに、ブラシ式支持具が熱交換器管内面にあたり探触子を、探触子の両端から調芯しているので曲がり部においても振動子は芯ずれすることがない。
【0014】
また、探触子は管内流体から効率よく抗力を得ることができる牽引具により牽引されているので支持具と熱交換器管の接触摩擦抵抗が大きくなる曲がり部でも通過できる。
【0015】
また、探触子は超音波を送受信する振動子を備えており、該振動子と超音波送受信装置とが通信ケーブルで接続されているので、複雑な形状の管内でも超音波検査が好適に実施可能となる。
【0016】
【発明の実施の形態】
本発明の実施の形態を図面と共に説明する。
図1〜図4に示す実施例において、概ね球形をした受圧具3は、所定の間隔で通信ケーブル107に圧着固定された止め金具2を包み込むように接着固定され、熱交換器管1内を流れる流体が止め金具2に直接接触しないように構成されている。このように構成された受圧具3は熱交換器管1の内部を循環する流体の層流から抗力を得て、先端に探触子4を付けた通信ケーブル107を熱交換器管1の内部に挿入する。
【0017】
また、受圧具3は摩擦抵抗および比重が小さな材料から構成され、2つの半球を接着させて球状にした構造からなっているので管1内への挿入抵抗を小さくすることができるとともに、例え前記半球同士の接着面が剥がれても通信ケーブル107から外れて飛散することはない。
【0018】
一方、止め金具2はアルミ合金材等を用い通信ケーブル107に圧着固定されているので通信ケーブル107を構成する多芯の同軸ケーブルがばらけることがない。
【0019】
図2は熱交換器管1の曲がり部内で探触子4が調芯されている状況を示している。超音波検査装置は振動子113を内部に収納した籠式支持具Aと該籠式支持具Aの両端部に設けたブラシ式支持具Bを備えている。
【0020】
籠式支持具Aは探触子4の軸方向に対向配置され、軸芯方向に摺動するスライドリング5、熱交換器管1内の径方向に探触子4を挟んで対向配置されたスライドリング5間の周囲に等間隔で配置された弾性ワイヤ6、熱交換器管1の軸方向に探触子4を挟んで対向配置されたスライドリング5を探触子4の中心に向かって押す圧縮コイルバネ7で構成されている。
【0021】
籠式支持具Aのスライドリング5は圧縮コイルバネ7によって探触子4の軸方向の中心部に向けて均等な力で押されているので管内の径方向に等間隔で配置された弾性ワイヤ6を押し広げ、熱交換器管1の曲がりの最大径部分が振動子113の軸の中心線に一致する。したがって、図3の熱交換器管1の断面図に示すように熱交換器管1の曲がり部においても振動子113の配置位置を熱交換器管1の中心に調芯できる。
【0022】
なお、振動子113から発信される超音波の一部は前面にある弾性ワイヤ6で一部反射され、ノイズとなるが弾性ワイヤ6は細く、また断面が円形であるため反射エネルギーは有用な信号エネルギーより20dB以上小さく、検査の障害にならないことを確認した。
【0023】
次にブラシ式支持具Bは連結リング8の周囲にナイロン繊維部9を植え込んで構成され、探触子4を管1の軸方向両端から支持している。このように構成されたナイロン繊維部9の径は熱交換器管1の内径より若干大きくなっており、弾力で探触子4を熱交換器管1の中心に調芯している。ナイロン繊維部9の弾力は、ナイロン繊維の太さ、長さ、数を調整することによって任意に設定できる。
【0024】
図4には牽引具10部分の側面図(図4(a))と図4(a)のA−A線断面図(図4(b))を示す。牽引具10は熱交換器管1の軸芯に対して角度θだけ傾斜した溝10aを外周囲に具備している。この溝10aの傾斜角θが管1の軸芯に対して45度のときに牽引具10には管1内の流体に起因する抗力が効率よく発生し、探触子4を管内流体の流れ方向に引っ張ることができる。ここで、管内流体による牽引力はフレキシブルシャフト11で連結する牽引具10の数を調整することによって任意に設定できる。
【0025】
本発明の他の実施例を図5に示す。これは探触子4を2個連結させ高密度で検査する例である。2個の探触子4、4の間と2個連結させ探触子4の端にブラシ式支持具Bを設けた実施例であり、その他の構成は前記実施例と同じである。
【0026】
曲がった熱交換器管1の内部でも籠式支持具Aとブラシ式支持具Bは前記の調芯作用により2つの振動子113、113を熱交換器管1の中心に調芯させることができる。
【0027】
なお、振動子113を3個以上連結した場合でもなんら問題なく振動子を熱交換器管1の中心に調芯する。
【0028】
【発明の効果】
以上説明したように本発明によれば、熱交換器管内面との摩擦抵抗が小さく、かつ高い抗力が発生する受圧具によって長い熱交換器管でも全長にわたり通信ケーブルを円滑に挿入可能となる。また、熱交換器管の曲がり部においても籠式支持具とブラシ式支持具で探触子を支持し、振動子を熱交換器管の中心に調芯できるので高精度検査が可能となる。さらに流体から高効率で抗力が得られる牽引具によって探触子を牽引しているので熱交換器管の曲がり部においても通過が可能となる。
【図面の簡単な説明】
【図1】 本発明の一実施例に係わる熱交換器管内に配置される超音波検査装置の受圧具の側断面図である。
【図2】 上記実施例に係わる超音波検査装置の探触子が熱交換器管の曲がり部で支持される様子を説明する側断面図である。
【図3】 図2のC−C線断面矢視図であり、振動子が熱交換器管の中心に調芯されている様子を説明する図である。
【図4】 図1の熱交換器管内に配置される超音波検査装置の牽引具の側面図(図4(a))と図4(a)のA−A線断面図(図4(b))である。
【図5】 本発明の他の実施例に係わる超音波検査装置の探触子が熱交換器管の曲がり部で支持される様子を説明する側面図である。
【図6】 従来の管内挿入式超音波検査装置の全体構成図(図6(a))と管内に配置された超音波検査装置の側面図(図6(b))である。
【図7】 従来の管内挿入式超音波検査装置の探触子が熱交換器管の曲がり部で支持される様子を説明する側面図である。
【図8】 図7のA−A線矢視図であり、振動子が熱交換器管の中心からずれている様子を説明する図である。
【符号の説明】
1 熱交換器管 2 止め金具
3 受圧具 4 探触子
5 スライドリング 6 弾性ワイヤ
7 圧縮コイルバネ 8 連結リング
9 ナイロン繊維部 10 牽引具
10a 溝 11 フレキシブルシャフト
101 案内子 102 探触子
103 支持具 104 止め具
105 受圧具 106 超音波送受信装置
107 通信ケーブル 108 ケーブル巻き取り装置
109 水槽 110 ポンプ
111a、111b 三方弁 112a、112b ホース
113 振動子
A 籠式支持具 B ブラシ式支持具
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an in-pipe insertion type ultrasonic inspection apparatus that performs ultrasonic inspection from the inside of a test tube by inserting a probe attached to the tip of a communication cable using a fluid into the test tube. , A pressure receiving tool and a traction tool for smoothly inserting a communication cable with a probe into a long tube having a bent portion, and an ultrasonic wave of a tube capable of suitably aligning the probe even in the bent tube portion It relates to an inspection device.
[0002]
[Prior art]
Since heat exchanger tubes used in boilers and the like may cause corrosion thinning and cracking when used for a long time, it is necessary to periodically measure the thickness and detect flaws to confirm their soundness. However, since the heat exchanger tubes are arranged in a narrow and complicated manner, it is difficult to perform these nondestructive inspections from the outside of the heat exchanger tubes. Therefore, conventionally, ultrasonic inspection is performed from the inside of the heat exchanger tube using an in-tube insertion type ultrasonic inspection apparatus.
[0003]
In the system using the conventional tube insertion type ultrasonic inspection apparatus shown in FIG. 6, a guide 101 inserted into the heat exchanger tube 1, a probe 102 connected to the guide 101, and a probe 102 are provided. A support 103 that is supported from both ends and that is aligned with the center of the heat exchanger tube 1 and a number of pressure receivers 105 that are connected to the support 103 and fixed at both ends by a pair of stoppers 104, 104. A communication cable 107 for connecting the tool 105 is provided. Further, the conventional intra-pipe ultrasonic inspection apparatus has a communication cable 107 having one end connected to the probe 102 and the other end connected to the ultrasonic transmission / reception apparatus 106 to transmit signals between them. A water tank 109 used to apply water pressure to a number of pressure receiving devices 105 attached to the entire length of the cable take-up device 108 and the communication cable 107 that are fed into or wound into the heat exchanger tube 1, and water in the water tank 109 And a three-way valve 111a, 111b for switching the flow direction of the pressurized water generated by the pump 110.
[0004]
When performing ultrasonic inspection from the inside of the heat exchanger tube 1 using the tube insertion type ultrasonic inspection apparatus configured as described above, first, a cable is wound around one end of the heat exchanger tube 1 via the hose 112a. Connect the device 108. Next, the other end of the heat exchanger tube 1 is connected to the three-way valves 111a and 111b via the hose 112b. Then, the three-way valves 111a and 111b are switched so that the pressure water from the pump 110 flows toward the cable winding device 108 to form a fluid flow path. Thereafter, the pump 110 is started, pressure water is circulated, drag is generated in a number of pressure receivers 105 and the communication cable 107 wound around the cable winding device 108 is inserted into the heat exchanger tube 1. An ultrasonic inspection is performed from the inside of the heat exchanger tube 1 with the probe 102 attached to the tip.
[0005]
When the ultrasonic inspection of the heat exchanger tube 1 is completed, the three-way valves 111a and 111b are switched, the flow direction of the pressurized water is reversed, and a drag force in the reverse direction is generated on the pressure receiving tool 105 to connect the communication cable 107 to the heat exchanger. The drawn-out cable take-up device 108 was taken out from the inside of the tube 1 to complete a series of ultrasonic inspections.
[0006]
[Problems to be solved by the invention]
Conventionally, the problem with this type of ultrasonic inspection apparatus is that the fluid acting in the part where the stopper 104 is exposed is disturbed and the drag acting on the pressure receiver 105 is reduced, and the heat exchanger tube 1 is long. Then, the communication cable 107 can not be inserted over the entire length.
[0007]
In addition, it is an essential condition that the probe 102 is aligned with the tube axis at the attachment portion of the transducer 113 (FIG. 7) that transmits and receives ultrasonic waves, but heat exchange is performed as shown in FIGS. 7 and 8. When the instrument tube 1 has a bent portion with a small curvature, the probe 102 can be centered at the center of the bent portion of the tube at the fulcrum of the support 103, but the center of the probe 113 is misaligned. High quality inspection was impossible. Further, the contact friction resistance between the support 103 and the heat exchanger tube 1 is increased at the bent portion, and there is a problem that the probe 102 cannot pass through the tube.
[0008]
Then, the subject of this invention solves the problem of the said prior art, and provides the test | inspection apparatus which can implement the ultrasonic test | inspection from a pipe | tube suitably also to a long test pipe | tube which has a bending part. is there.
[0009]
[Means for Solving the Problems]
In order to solve the problems of the present invention, the present invention adopts the following configuration. That is, it is an ultrasonic inspection apparatus for a tube that is inserted into a tube through which a fluid flows by using the flow of the fluid, and includes one or more ultrasonic probes whose central portions are located on the axis of the tube (1) ( 4) and a pair which is opposed to each other in the axial direction of the tube (1 ) with the probe (4) interposed therebetween, and whose central portion is located on the axis of the tube (1) and slides in the tube axis direction. Slide ring (5), (5), one end is attached to one slide ring (5) and the other end is attached to the other slide ring (5), and the probe (4) is surrounded by a tube (1 ) And a plurality of elastic wires (6) arranged at equal intervals in the radial direction of the tube (1) around the axial center of the tube (1), and always abutting against the inner surface of the tube (1), and the pair of slide rings (5), ( 5) on the outer side of the pair of slide rings (5), (5) and positioned on the axis of the tube (1), the slide ring ( ), (5) and the center of the probe (4), and a pair of springs for pressing the axial direction of the tube (1) (7), a support cage type consisting (7) ingredients and (a), a pair of towards the radial direction of the tube (1) outside the side and pressed against the inner wall, the central portion is positioned on the axis of the tube (1) of the spring (7), (7) A brush-type support tool (B), a grooved traction tool (10) connected to the center portion of the front-side tube axis of the fluid flow of the pair of brush-type support tools (B), and a pair of brush-type support tools ( B) a plurality of cascade-connected pressure receiving tools (3) connected to the central portion of the tube axis on the rear side of the fluid flow, the plurality of pressure receiving tools (3), a brush type support tool (B), and a saddle type support tool (A) and the probe (4) are respectively connected on the tube axis that is the central portion in the radial direction of the tube , and the brush-type support (B) is always passed on the axis of the tube (1). Ru is supported by An ultrasonic inspection apparatus for a tube comprising a communication cable (107) and a probe (4) connected to the tip of the communication cable (107) and an ultrasonic transmission / reception apparatus (106) to be energized.
[0010]
When the traction tool (10) includes a groove (10a) that forms a flow path that is inclined with respect to the flow direction of the fluid flowing in the pipe (1), resistance to the fluid flow is likely to be generated.
[0011]
The ultrasonic probe ( 4 ) includes an ultrasonic transducer, and the pressure receiver (3) is bonded and fixed so as to wrap the fastener ( 2 ) that is fixed to the communication cable (107) at a predetermined interval. The fluid flowing in the pipe (1) is configured not to directly contact the stopper ( 2 ) .
[0012]
[Action]
Since the pressure receiving device according to the present invention is attached to the communication cable by a stopper included in the pressure receiving device, the fluid in the pipe can maintain a laminar flow state and is not disturbed.
[0013]
The maximum outer diameter part of each elastic wire placed around the slide ring forming the saddle type support device hits the inner surface of the heat exchanger tube on the center line of the vibrator, aligns the probe, and the brush type support device Since the probe is aligned with the inner surface of the exchanger tube from both ends of the probe, the vibrator is not misaligned even at the bent portion.
[0014]
Further, since the probe is pulled by a traction tool that can efficiently obtain a drag from the fluid in the pipe, it can pass through a bent portion where the contact friction resistance between the support tool and the heat exchanger pipe increases.
[0015]
In addition, the probe includes a transducer for transmitting and receiving ultrasonic waves, and the transducer and the ultrasonic transmission / reception device are connected by a communication cable. Therefore, ultrasonic inspection is suitably performed even in a complex-shaped tube. It becomes possible.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described with reference to the drawings.
In the embodiment shown in FIGS. 1 to 4, the generally spherical pressure receiving device 3 is bonded and fixed so as to wrap the stopper 2 fixed by crimping to the communication cable 107 at a predetermined interval. The flowing fluid is configured not to contact the stopper 2 directly. The pressure receiving device 3 configured as described above obtains a drag from the laminar flow of the fluid circulating inside the heat exchanger tube 1 and connects the communication cable 107 with the probe 4 at the tip to the inside of the heat exchanger tube 1. Insert into.
[0017]
Further, the pressure receiving member 3 is constructed frictional resistance and specific gravity of a small material, it is possible to adhere the two hemispheres to reduce the insertion resistance to so consist structure spherically the tube 1, For example Even if the bonding surfaces of the hemispheres are peeled off, they will not come off the communication cable 107 and scatter.
[0018]
On the other hand, since the fastener 2 is crimped and fixed to the communication cable 107 using an aluminum alloy material or the like, the multi-core coaxial cable constituting the communication cable 107 does not come apart.
[0019]
FIG. 2 shows a situation in which the probe 4 is aligned in the bent portion of the heat exchanger tube 1. The ultrasonic inspection apparatus includes a scissors-type support A in which the vibrator 113 is housed, and a brush-type support B provided at both ends of the scissors-type support A.
[0020]
The saddle-type support A is arranged opposite to the probe 4 in the axial direction, and is arranged opposite to the slide ring 5 that slides in the axial direction and the probe 4 in the radial direction in the heat exchanger tube 1. The elastic wires 6 arranged at equal intervals around the slide ring 5 and the slide ring 5 arranged facing the probe 4 in the axial direction of the heat exchanger tube 1 toward the center of the probe 4. The compression coil spring 7 is pressed.
[0021]
The slide ring 5 of the saddle-type support A is pressed by the compression coil spring 7 toward the central portion in the axial direction of the probe 4 with an equal force, so that the elastic wires 6 arranged at equal intervals in the radial direction in the tube. And the maximum diameter portion of the bend of the heat exchanger tube 1 coincides with the center line of the axis of the vibrator 113. Therefore, as shown in the sectional view of the heat exchanger tube 1 in FIG. 3, the arrangement position of the vibrator 113 can be aligned with the center of the heat exchanger tube 1 even in the bent portion of the heat exchanger tube 1.
[0022]
A part of the ultrasonic wave transmitted from the vibrator 113 is partially reflected by the elastic wire 6 on the front surface and becomes noise, but the elastic wire 6 is thin and the cross section is circular, so that the reflected energy is a useful signal. It was confirmed that it was 20 dB or more smaller than the energy and did not hinder the inspection.
[0023]
Next, the brush-type support B is configured by implanting a nylon fiber portion 9 around the connection ring 8, and supports the probe 4 from both ends in the axial direction of the tube 1. The diameter of the nylon fiber portion 9 configured as described above is slightly larger than the inner diameter of the heat exchanger tube 1, and the probe 4 is aligned with the center of the heat exchanger tube 1 by elasticity. The elasticity of the nylon fiber portion 9 can be arbitrarily set by adjusting the thickness, length, and number of nylon fibers.
[0024]
FIG. 4 shows a side view of the traction tool 10 (FIG. 4A) and a cross-sectional view taken along the line AA of FIG. 4A (FIG. 4B). The traction tool 10 includes a groove 10 a inclined at an angle θ with respect to the axis of the heat exchanger tube 1 on the outer periphery. When the inclination angle θ of the groove 10 a is 45 degrees with respect to the axis of the tube 1, the drag due to the fluid in the tube 1 is efficiently generated in the traction tool 10, and the probe 4 flows through the probe 4. Can be pulled in the direction. Here, the traction force due to the in-pipe fluid can be arbitrarily set by adjusting the number of traction tools 10 connected by the flexible shaft 11.
[0025]
Another embodiment of the present invention is shown in FIG. This is an example in which two probes 4 are connected and inspected at a high density. This is an embodiment in which two probes 4 and 4 are connected to each other and a brush-type support B is provided at the end of the probe 4, and the other configurations are the same as those in the previous embodiment.
[0026]
Even inside the bent heat exchanger tube 1, the saddle-type support A and the brush-type support B can align the two vibrators 113 and 113 at the center of the heat exchanger tube 1 by the above-mentioned alignment operation. .
[0027]
Even when three or more vibrators 113 are connected, the vibrator is aligned with the center of the heat exchanger tube 1 without any problem.
[0028]
【The invention's effect】
As described above, according to the present invention, it is possible to smoothly insert a communication cable over the entire length even with a long heat exchanger tube by a pressure receiving tool that has a small frictional resistance with the inner surface of the heat exchanger tube and generates a high drag force. Further, the probe can be supported by the saddle-type support and the brush-type support at the bent portion of the heat exchanger tube, and the vibrator can be aligned with the center of the heat exchanger tube, thereby enabling high-precision inspection. Furthermore, since the probe is pulled by a traction tool that can obtain drag from the fluid with high efficiency, it can also pass through the bent portion of the heat exchanger tube.
[Brief description of the drawings]
FIG. 1 is a side sectional view of a pressure receiving tool of an ultrasonic inspection apparatus arranged in a heat exchanger tube according to an embodiment of the present invention.
FIG. 2 is a side sectional view for explaining a state in which the probe of the ultrasonic inspection apparatus according to the embodiment is supported by a bent portion of a heat exchanger tube.
3 is a cross-sectional view taken along the line CC in FIG. 2, and is a diagram illustrating a state in which a vibrator is aligned with the center of a heat exchanger tube. FIG.
4 is a side view (FIG. 4 (a)) of the traction tool of the ultrasonic inspection apparatus disposed in the heat exchanger tube of FIG. 1 and a cross-sectional view taken along line AA in FIG. 4 (a). )).
FIG. 5 is a side view for explaining a state in which a probe of an ultrasonic inspection apparatus according to another embodiment of the present invention is supported by a bent portion of a heat exchanger tube.
FIG. 6 is an overall configuration diagram (FIG. 6A) of a conventional in-tube ultrasonic inspection apparatus and a side view of the ultrasonic inspection apparatus disposed in the tube (FIG. 6B).
FIG. 7 is a side view for explaining a state in which a probe of a conventional in-tube ultrasonic inspection apparatus is supported by a bent portion of a heat exchanger tube.
8 is a view taken along the line AA in FIG. 7, and is a diagram for explaining a state in which the vibrator is displaced from the center of the heat exchanger tube. FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Heat exchanger pipe | tube 2 Stop metal fitting 3 Pressure receiving tool 4 Probe 5 Slide ring 6 Elastic wire 7 Compression coil spring 8 Connection ring 9 Nylon fiber part 10 Pulling tool 10a Groove 11 Flexible shaft 101 Guide element 102 Probe 103 Support tool 104 Stopper 105 Pressure receiver 106 Ultrasonic transmitter / receiver 107 Communication cable 108 Cable take-up device 109 Water tank 110 Pump 111a, 111b Three-way valve 112a, 112b Hose 113 Vibrator A Scissor-type support B Brush-type support

Claims (4)

流体が流れる管内に流体の流れを利用して挿入される管の超音波検査装置であって、
中心部が管の軸芯上に位置する一以上の超音波探触子と、
該探触子を挟んで前記管の軸方向に対向配置され、中心部が管の軸芯上に位置し、管軸方向に摺動する一対のスライドリングと、一端が一方のスライドリングに他端が他方のスライドリングにそれぞれ取り付けられ、前記探触子を囲んで管の軸芯を中心として管の径方向に等間隔に配置され、常時管の内面に当接する複数の弾性ワイヤと、前記一対のスライドリングの外側で、該一対のスライドリングに接して管の軸芯上に位置し、前記スライドリングを前記探触子の中心部であり、かつ、管の軸芯方向に向けて押圧する一対のバネとから成る籠式支持具と、
前記バネの外側で管の径方向に向けて管内壁に圧着し、中心部が管の軸芯上に位置する一対のブラシ式支持具と、
該一対のブラシ式支持具の流体流れの前方側管軸中心部に接続した溝付きの牽引具と、
一対のブラシ式支持具の流体流れの後方側の管軸中心部に接続した複数個縦列接続された受圧具と、
該複数の受圧具とブラシ支持具と籠式支持具と探触子を管径方向の中心部である管軸芯上でそれぞれ接続し、かつ、常に管の軸芯上を通るようにブラシ式支持具により支持される通信ケーブルと、
該通信ケーブルの先端に接続して探触子と通電される超音波送受信装置とを備えたことを特徴とする管の超音波検査装置。
An ultrasonic inspection apparatus for a pipe inserted using a fluid flow into a pipe through which the fluid flows,
One or more ultrasound probes whose center is located on the axis of the tube ;
A pair of slide rings that are disposed opposite to each other in the axial direction of the tube with the probe interposed therebetween, the center portion is located on the axial center of the tube, and slide in the axial direction of the tube, and one slide ring on the other end A plurality of elastic wires each having an end attached to the other slide ring, surrounding the probe, arranged at equal intervals in the radial direction of the tube around the axis of the tube, and constantly contacting the inner surface of the tube ; Outside the pair of slide rings, positioned on the axis of the tube in contact with the pair of slide rings, pressing the slide ring toward the center of the probe and toward the axis of the tube A scissors-type support composed of a pair of springs,
A pair of brush support which is crimped into the tube wall, the central portion is positioned on the axis of the tube toward the radial direction of the tube outside the side of the spring,
A grooved traction tool connected to the center of the front pipe axis of the fluid flow of the pair of brush-type support tools;
A plurality of pressure-receiving devices connected in cascade connected to the central portion of the tube axis on the rear side of the fluid flow of the pair of brush-type support devices;
The plurality of pressure receivers, brush- type supports, saddle-type supports, and probes are respectively connected on the tube axis that is the central portion in the radial direction of the tube , and the brush always passes on the axis of the tube. a communication cable that will be supported by the equation support,
An ultrasonic inspection apparatus for a tube, comprising: a probe connected to a tip of the communication cable; and an ultrasonic transmission / reception apparatus that is energized.
牽引具は管内を流れる流体の流れ方向に対して傾斜した流路を形成する溝を備えたことを特徴とする請求項1記載の管の超音波検査装置。 2. The ultrasonic inspection apparatus for a pipe according to claim 1, wherein the traction tool includes a groove that forms a flow path inclined with respect to a flow direction of the fluid flowing in the pipe. 探触子は超音波を送受信する振動子を備えたことを特徴とする請求項1記載の管の超音波検査装置。 2. The ultrasonic inspection apparatus for a tube according to claim 1, wherein the probe includes a transducer for transmitting and receiving ultrasonic waves. 受圧具は、所定の間隔で通信ケーブルに圧着固定された止め金具を包み込むように接着固定され、管内を流れる流体が止め金具に直接接触しないように構成されていることを特徴とする請求項1記載の管の超音波検査装置。 2. The pressure receiving tool is configured to be bonded and fixed so as to wrap a stopper that is crimped and fixed to a communication cable at a predetermined interval, and is configured so that a fluid flowing in the pipe does not directly contact the stopper. An ultrasonic inspection apparatus for the tube described.
JP2001372584A 2001-12-06 2001-12-06 Tube ultrasonic inspection equipment Expired - Fee Related JP3810676B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001372584A JP3810676B2 (en) 2001-12-06 2001-12-06 Tube ultrasonic inspection equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001372584A JP3810676B2 (en) 2001-12-06 2001-12-06 Tube ultrasonic inspection equipment

Publications (2)

Publication Number Publication Date
JP2003172732A JP2003172732A (en) 2003-06-20
JP3810676B2 true JP3810676B2 (en) 2006-08-16

Family

ID=19181449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001372584A Expired - Fee Related JP3810676B2 (en) 2001-12-06 2001-12-06 Tube ultrasonic inspection equipment

Country Status (1)

Country Link
JP (1) JP3810676B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103063748A (en) * 2012-12-26 2013-04-24 中国石油天然气集团公司 Ultrasonic scanning apparatus for cracks on steel induction heat bend

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6552844B2 (en) * 2015-03-06 2019-07-31 三菱日立パワーシステムズ環境ソリューション株式会社 Inspection system
KR101796530B1 (en) 2017-04-26 2017-11-14 주식회사 아거스 Housing assembly for ultrasonic measuring apparatus
JP7577181B1 (en) 2023-10-26 2024-11-01 Mhiソリューションテクノロジーズ株式会社 Pipe Inspection Probe

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6114370U (en) * 1984-06-30 1986-01-28 三菱重工業株式会社 Pipe-inserted ultrasonic flaw detection device
JPH0334694Y2 (en) * 1985-08-22 1991-07-23
JPS63152557U (en) * 1987-03-27 1988-10-06
JP2587077Y2 (en) * 1991-05-13 1998-12-14 三菱重工業株式会社 Ultrasonic flaw detector for pipes
JP3040641B2 (en) * 1993-08-04 2000-05-15 三菱重工業株式会社 In-tube ultrasonic probe
JPH08285830A (en) * 1995-04-14 1996-11-01 Power Reactor & Nuclear Fuel Dev Corp Float for carrying cable
JPH09184827A (en) * 1995-12-28 1997-07-15 Mitsubishi Heavy Ind Ltd Ultrasonic probe apparatus of type inserted in pipe

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103063748A (en) * 2012-12-26 2013-04-24 中国石油天然气集团公司 Ultrasonic scanning apparatus for cracks on steel induction heat bend
CN103063748B (en) * 2012-12-26 2015-02-25 中国石油天然气集团公司 Ultrasonic scanning apparatus for cracks on steel induction heat bend

Also Published As

Publication number Publication date
JP2003172732A (en) 2003-06-20

Similar Documents

Publication Publication Date Title
TWI338757B (en) Boiler tube inspection probe with centering mechanism and method of operating the same
US8714030B1 (en) Non-invasive tranducers for ultrasonic transit time flow meters
US5174164A (en) Flexible cable
WO1980001842A1 (en) Improvements in or relating to ultrasonic pipe inspection apparatus
CN105738474B (en) One kind is towards the needle-shaped formula ultrasonic guided wave detection device of twisted wire structural damage and method
JPS6168559A (en) Ultrasonic inspection method and device
JP3810676B2 (en) Tube ultrasonic inspection equipment
RU2004110033A (en) DIAGNOSTIC DEVICE FOR PIPELINES
CN108318583A (en) Device for TOFD and the integrated detection polyolefin pipe butt-fusion welded joint of phased array
US20150285768A1 (en) Apparatus and method for inspection of tubes in a boiler
JP4772830B2 (en) Ultrasonic wall thickness measuring device for tubes
CN112997047B (en) Ultrasonic probe and method for measuring thickness of pipe to be inspected using same
JP5121214B2 (en) Tube group thinning inspection device and inspection method
KR102448580B1 (en) PAUT Multi-scanner for Free size Pipe Inspection
JP4241529B2 (en) Ultrasonic inspection method and ultrasonic inspection apparatus
EP3314232A1 (en) Adjustable wide bandwidth guidedwave (gw) probe for tube and pipe inspection system
JPH0749336A (en) Tube internal insertion type ultrasonic probe
JPS59143956A (en) Ultrasonic measuring apparatus
JP2013170845A (en) Tube insertion type ultrasonic flaw detector
JP5373218B1 (en) Ultrasonic flow meter
JPS59126946A (en) Ultrasonic probe to be inserted into pipe
US11221312B2 (en) Adhesive bond test resonance array
JP7551563B2 (en) Ultrasonic Inspection Equipment
CN205844263U (en) A kind of towards twisted wire structural damage needle-like formula ultrasonic guided wave detection device
JPS59155709A (en) Ultrasonic wave measuring equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060524

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090602

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100602

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100602

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110602

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110602

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120602

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees