JPH08285830A - Float for carrying cable - Google Patents

Float for carrying cable

Info

Publication number
JPH08285830A
JPH08285830A JP7089362A JP8936295A JPH08285830A JP H08285830 A JPH08285830 A JP H08285830A JP 7089362 A JP7089362 A JP 7089362A JP 8936295 A JP8936295 A JP 8936295A JP H08285830 A JPH08285830 A JP H08285830A
Authority
JP
Japan
Prior art keywords
float
roller
flaw detection
detection probe
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7089362A
Other languages
Japanese (ja)
Inventor
Keiichi Nagai
永井桂一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Doryokuro Kakunenryo Kaihatsu Jigyodan
Power Reactor and Nuclear Fuel Development Corp
Original Assignee
Doryokuro Kakunenryo Kaihatsu Jigyodan
Power Reactor and Nuclear Fuel Development Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Doryokuro Kakunenryo Kaihatsu Jigyodan, Power Reactor and Nuclear Fuel Development Corp filed Critical Doryokuro Kakunenryo Kaihatsu Jigyodan
Priority to JP7089362A priority Critical patent/JPH08285830A/en
Priority to FR9604617A priority patent/FR2733030B1/en
Publication of JPH08285830A publication Critical patent/JPH08285830A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/002Component parts or details of steam boilers specially adapted for nuclear steam generators, e.g. maintenance, repairing or inspecting equipment not otherwise provided for
    • F22B37/003Maintenance, repairing or inspecting equipment positioned in or via the headers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L55/00Devices or appurtenances for use in, or in connection with, pipes or pipe systems
    • F16L55/26Pigs or moles, i.e. devices movable in a pipe or conduit with or without self-contained propulsion means
    • F16L55/28Constructional aspects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/269Various geometry objects
    • G01N2291/2695Bottles, containers

Abstract

PURPOSE: To reduce the contact friction of an object, to be inspected, with a float for a carrying cable and to enhance the insertion property of a probe by a method wherein a roller is attached to the float and the roller is brought into contact with the inside wall of a fine tube. CONSTITUTION: Floats 3 are used as pressure receiving bodies when a flaw detection probe such as an eddy-current flaw detection probe, an ultrasonic flaw detection probe or the like is inserted into a slender tube by a gas pressure or a liquid pressure such as a water pressure or the like, and they are attached to a carrying cable 2 at equal intervals. Rollers 4 which are rugby ball-shaped and which are made of superhigh polymer polyethylene are installed at four places on the circumference of every float 3. Every roller 4 shaves a part of a float wall, and it is turned while a shaft 5 composed of a stainless steel pin is used as a fulcrum. As the shape of every roller, a spherical shape, a cylindrical shape or the like may be used. When the carrier-frequency cable 2 is inserted into an object to be inspected, the outermost circumference of every roller 4 comes into contact with the inner wall of the object to be inspected, and the roller is turned so as to relax its friction with the object to be inspected. Thereby, the flaw detection probe can be inserted easily into the whole length of a spiral slender tube which is long and which has a bent tube part.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、原子力プラントの各種
熱交換器の伝熱管、石油・化学プラントの各種小口径配
管等の検査に用いる渦電流探傷プローブ、超音波探傷プ
ローブ、レーザー内径計測プローブ、また、細管内の目
視検査に用いる小型CCDカメラやファイバースコープ
等を挿入するための搬送ケーブル用フロートに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an eddy current flaw detection probe, an ultrasonic flaw detection probe, a laser inner diameter measurement probe used for inspecting heat transfer tubes of various heat exchangers of nuclear power plants, various small diameter pipes of petroleum and chemical plants. Also, the present invention relates to a float for a carrier cable for inserting a small CCD camera, a fiberscope or the like used for visual inspection in a narrow tube.

【0002】[0002]

【従来の技術】従来、渦電流や超音波を利用して曲管部
(最小曲げR160)を有する長尺(約100m)細管
(伝熱管)の検査を行う場合、探傷プローブを管内へ送
り込むために、ケーブルに等間隔で球形のフロート(受
圧体)を設け、これを機械的に押し込むと同時にガス圧
又は水圧をフロートに与え、この時発生する圧力差によ
って搬送ケーブルを駆動(推進)し、探傷プローブを挿
入している。図3はこのような流体圧送システムの概略
図で、この例では蒸気発生器10の伝熱管11の検査を
行っている。このシステムを例にとって説明すると、伝
熱管の一端が接続されている管板位置決め装置12にプ
ローブ挿入装置20から管22を延ばして接続し、プロ
ーブ挿入装置20のケーブル収納タンク20a内で把持
した搬送ケーブル2をモータの回転によって管22内へ
機械的に送り込み、同時に、収納タンク20aに対して
ガス給配ユニット21より窒素ガスを加圧して圧送す
る。圧送されたガスは、管22を通して伝熱管11のヘ
リカルコイル部11a、ベント部11b、下降管部11
cを通って流れ、管板位置決め装置13から排気され
る。図では便宜上、排気するようにしたが、実際には排
気せずにガス給配ユニット21へ回収する。搬送ケーブ
ル2の前部には探傷プローブ1が取付けられ、また、搬
送ケーブル2には等間隔でフロート3が取付けられてい
る。図4に示すように、ガスが流れてフロートの前後に
圧力差が生じ、この圧力差がある一定値以上になるとフ
ロートが動きだすことになり、その結果、搬送ケーブル
全体が動いて探傷プローブが挿入される。
2. Description of the Related Art Conventionally, when a long (about 100 m) thin tube (heat transfer tube) having a bent tube portion (minimum bend R160) is inspected by using eddy current or ultrasonic waves, a flaw detection probe is fed into the tube. On the cable, spherical floats (pressure receiving bodies) are provided at equal intervals on the cable, and at the same time mechanically pushing this, gas pressure or water pressure is applied to the float, and the carrier cable is driven (propulsed) by the pressure difference generated at this time, A flaw detection probe is inserted. FIG. 3 is a schematic diagram of such a fluid pressure feeding system. In this example, the heat transfer tube 11 of the steam generator 10 is inspected. This system will be described as an example. A tube 22 is extended from the probe insertion device 20 and connected to the tube plate positioning device 12 to which one end of the heat transfer tube is connected, and the conveyance is performed by grasping in the cable storage tank 20a of the probe insertion device 20. The cable 2 is mechanically sent into the pipe 22 by the rotation of the motor, and at the same time, the gas supply unit 21 pressurizes and sends nitrogen gas to the storage tank 20a under pressure. The gas fed under pressure passes through the pipe 22 and the helical coil portion 11a, the vent portion 11b, and the descending pipe portion 11 of the heat transfer pipe 11.
It flows through c and is exhausted from the tube sheet positioning device 13. In the figure, the gas is expelled for the sake of convenience, but the gas is not actually exhausted but is recovered in the gas supply / distribution unit 21. The flaw detection probe 1 is attached to the front portion of the transport cable 2, and the floats 3 are attached to the transport cable 2 at equal intervals. As shown in Fig. 4, gas flows and a pressure difference is generated before and after the float. When the pressure difference exceeds a certain value, the float starts to move. As a result, the entire carrier cable moves and the flaw detection probe is inserted. To be done.

【0003】探傷プローブ1を引き出す場合は、ガス給
配ユニット21の送り出し口を管板位置決め装置13
に、吸引口を収納タンク20aにそれぞれ接続して伝熱
管11に対して逆方向にガスを圧送し、プローブ挿入装
置20のモータで搬送ケーブルを巻き戻す。
When the flaw detection probe 1 is pulled out, the delivery port of the gas distribution unit 21 is connected to the tube sheet positioning device 13
Then, the suction ports are connected to the storage tanks 20a, respectively, and gas is pressure-fed in the opposite direction to the heat transfer tube 11, and the transport cable is rewound by the motor of the probe insertion device 20.

【0004】なお、フロートとプローブの搬送ケーブル
への取付けは、図5に示すように、フロート及びプロー
ブの中心に貫通孔を開け、その部分にケーブル2を通
し、接着材及びくさび3aで固定している。
As shown in FIG. 5, the float and the probe are attached to the carrier cable by forming a through hole in the center of the float and the probe, passing the cable 2 through the hole, and fixing them with an adhesive and a wedge 3a. ing.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、被検体
が長尺かつ曲管部を有し、さらに螺旋形状である複雑形
状な細管の場合には、細管内への挿入距離が増すにした
がって被検体内壁に接する搬送ケーブルフロートの数が
増し、それと同時に被検体内壁との摩擦が大きくなり、
プローブの挿入推力が低下し、管内でプローブが停止し
てしまうという問題がある。
However, in the case where the subject is a long thin tube having a curved tube portion and a complex thin tube having a spiral shape, the subject is tested as the insertion distance into the thin tube increases. The number of carrier cable floats in contact with the inner wall increases, and at the same time, the friction with the inner wall of the subject increases,
There is a problem that the insertion thrust of the probe decreases and the probe stops inside the tube.

【0006】本発明はかかる事情に鑑みてなされたもの
で、被検体と搬送ケーブルフロートとの接触摩擦を極力
軽減させ、管内全長においてスムーズな挿入推力を得て
プローブの挿入性向上を図ることができる搬送ケーブル
用フロートを提供することを目的とする。
The present invention has been made in view of the above circumstances, and it is possible to improve the insertability of the probe by minimizing the contact friction between the subject and the transport cable float and obtaining a smooth insertion thrust force over the entire tube length. It is an object of the present invention to provide a float for a carrier cable that can be used.

【0007】[0007]

【課題を解決するための手段】本発明は、複数のフロー
トが設けられたケーブルに探傷プローブを取り付け、該
ケーブルを流体圧で長尺細管内へ挿入して細管内を探傷
する装置において、前記フロートにローラを取り付け、
該ローラを細管内壁に接触させるようにして細管内壁と
フロートとの摩擦抵抗を低減させたことを特徴とする。
また、本発明は、ローラは回転楕円体形状、球形または
円筒形であることを特徴とする。
SUMMARY OF THE INVENTION The present invention provides an apparatus for mounting a flaw detection probe on a cable provided with a plurality of floats and inserting the cable into a long thin tube by fluid pressure to detect flaws in the thin tube. Attach the roller to the float,
The roller is brought into contact with the inner wall of the thin tube to reduce the frictional resistance between the inner wall of the thin tube and the float.
Further, the present invention is characterized in that the roller has a spheroidal shape, a spherical shape, or a cylindrical shape.

【0008】[0008]

【作用】本発明は、探傷プローブ及び球形フロートを取
り付けた搬送ケーブルを流体圧で管内に挿入して検査す
る装置において、球形フロートに、ラグビーボール形、
球形、円筒形等のローラーを取付け、このローラと管内
壁とを接触させることにより接触抵抗を緩和させるもの
であり、これにより、これまで比較的困難とされてきた
長尺かつ曲管部を有する螺旋形状の細管内全長に、探傷
プローブを容易に挿入することが可能となる。
The present invention is an apparatus for inspecting by inserting a carrier cable having a flaw detection probe and a spherical float into a pipe by fluid pressure, in which a spherical float, a rugby ball shape,
A spherical or cylindrical roller is attached, and the contact resistance is relaxed by contacting this roller with the inner wall of the pipe, which makes it relatively long and has a curved pipe portion. The flaw detection probe can be easily inserted into the entire length of the spiral thin tube.

【0009】[0009]

【実施例】以下、図面を参照して本発明の実施例を説明
する。図1は本発明の搬送ケーブルの全体図、図2は本
発明の搬送ケーブル用フロートの説明図である。図中、
1は探傷プローブ、2は搬送ケーブル、3はフロート、
4はラグビーボール形ローラー、5はローラー回転軸を
示している。図1において、搬送ケーブル用フロート3
は、渦電流探傷、超音波探傷等の探傷プローブ1をガス
圧又は水圧等の流体圧によって細管内へ挿入する際の受
圧体になるものであり、探傷プローブ1に接続されてい
る搬送ケーブル2に等間隔(約100mmピッチ)で取
付けてある。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is an overall view of a carrier cable of the present invention, and FIG. 2 is an explanatory view of a carrier cable float of the present invention. In the figure,
1 is a flaw detection probe, 2 is a carrier cable, 3 is a float,
Reference numeral 4 indicates a rugby ball type roller, and 5 indicates a roller rotation axis. In FIG. 1, the float 3 for the carrier cable
Is a pressure receiving body when the flaw detection probe 1 for eddy current flaw detection, ultrasonic flaw detection or the like is inserted into the thin tube by fluid pressure such as gas pressure or water pressure, and is a carrier cable 2 connected to the flaw detection probe 1. They are attached at equal intervals (about 100 mm pitch).

【0010】図2(a)(縦断面図)、図2(b)(横
断面図)に示すように、球形フロート3の円周4箇所に
はラグビーボール形で、超高分子ポリエチレン製のロー
ラー4が設けられている。各ローラ4はフロート壁の一
部を削り取り、ステンレス製のピンからなる回転軸5を
ローラ中心部に通して固定しており、この軸を支点に回
転する。このときピンは軸受けの役割も果している。な
お、ローラー4をラグビーボール状とし、周方向4箇所
に配置することにより、被検体との接触面積を広範囲に
することができる。もちろん、ローラー形状としてはラ
グビーボール状に限らず、球形、円筒形等であってもよ
い。
As shown in FIG. 2 (a) (longitudinal section) and FIG. 2 (b) (horizontal section), spherical float 3 has a rugby ball shape on four circumferences and is made of ultra-high molecular polyethylene. A roller 4 is provided. Each roller 4 is formed by scraping off a part of the float wall and fixing a rotating shaft 5 made of a stainless steel pin through the center of the roller, and rotating around this shaft as a fulcrum. At this time, the pin also functions as a bearing. By forming the roller 4 in a rugby ball shape and arranging the roller 4 at four locations in the circumferential direction, the contact area with the subject can be widened. Of course, the roller shape is not limited to the rugby ball shape, but may be a spherical shape, a cylindrical shape, or the like.

【0011】このようなフロートを取付けた搬送ケーブ
ルを被検体内に挿入した場合、ラグビーボール形ローラ
ー4の最外周が被検体内壁に接触して回転し、被検体と
の摩擦を緩和させることができる。
When a transport cable with such a float attached is inserted into a subject, the outermost circumference of the rugby ball type roller 4 contacts the inner wall of the subject and rotates, so that the friction with the subject can be alleviated. it can.

【0012】こうして被検体内壁との摩擦による挿入推
力低下の問題が解決され、これまで比較的困難とされて
きた長尺且つ曲管部を有する螺旋形状の細管内全長に、
探傷プローブを容易に挿入することが可能になった。
In this way, the problem of a decrease in insertion thrust due to friction with the inner wall of the subject is solved, and it has become relatively difficult until now to provide a full length in a spiral thin tube having a curved tube portion.
It has become possible to easily insert a flaw detection probe.

【0013】[0013]

【発明の効果】以上のように本発明によれば、以下のよ
うな効果が奏せられる。 被検体(細管)内への探傷プローブ挿入時に発生する
搬送ケーブルフロートと被検体内壁との接触摩擦が軽減
できる様になった。 長尺(約100m)且つ曲管部(最小曲げR160)
を有する螺旋形状の被検体(細管)内全長に、探傷プロ
ーブをスムーズ且つ容易に挿入することが可能になっ
た。
As described above, according to the present invention, the following effects can be obtained. It has become possible to reduce the contact friction between the carrier cable float and the inner wall of the subject, which occurs when the flaw detection probe is inserted into the subject (capillary tube). Long (about 100 m) and curved pipe (minimum bending R160)
It has become possible to smoothly and easily insert the flaw detection probe into the entire length of the inside of the spiral-shaped object (capillary tube) having the.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の搬送ケーブルの全体図である。FIG. 1 is an overall view of a carrier cable of the present invention.

【図2】 本発明の搬送ケーブル用フロートの説明図で
ある。
FIG. 2 is an explanatory diagram of a carrier cable float of the present invention.

【図3】 流体圧送システムの概略図である。FIG. 3 is a schematic diagram of a fluid pumping system.

【図4】 フロートの作用を説明する図である。FIG. 4 is a diagram for explaining the action of the float.

【図5】 フロート・プローブのケーブルへの取付けを
示す図である。
FIG. 5 illustrates attachment of a float probe to a cable.

【符号の説明】[Explanation of symbols]

1…探傷プローブ、2…搬送ケーブル、3…フロート、
4…ラグビーボール形ローラー、5…ローラー回転軸。
1 ... flaw detection probe, 2 ... carrier cable, 3 ... float,
4 ... Rugby ball type roller, 5 ... Roller rotation axis.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 複数のフロートが設けられたケーブルに
探傷プローブを取り付け、該ケーブルを流体圧で長尺細
管内へ挿入して細管内を探傷する装置において、前記フ
ロートにローラを取り付け、該ローラを細管内壁に接触
させるようにして細管内壁とフロートとの摩擦抵抗を低
減させたことを特徴とする搬送ケーブル用フロート。
1. In a device for attaching a flaw detection probe to a cable provided with a plurality of floats, and inserting the cable into a long thin tube by fluid pressure to detect flaws in the thin tube, a roller is attached to the float and the roller is attached. A float for a carrier cable, characterized in that the frictional resistance between the inner wall of the thin tube and the float is reduced by contacting the inner wall of the thin tube.
【請求項2】 請求項1記載のフロートにおいて、前記
ローラは回転楕円体形状、球形または円筒形であること
を特徴とする搬送ケーブル用フロート。
2. The float according to claim 1, wherein the roller has a spheroidal shape, a spherical shape, or a cylindrical shape.
JP7089362A 1995-04-14 1995-04-14 Float for carrying cable Pending JPH08285830A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP7089362A JPH08285830A (en) 1995-04-14 1995-04-14 Float for carrying cable
FR9604617A FR2733030B1 (en) 1995-04-14 1996-04-12 FLOATS FOR CARRIER CABLES

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7089362A JPH08285830A (en) 1995-04-14 1995-04-14 Float for carrying cable

Publications (1)

Publication Number Publication Date
JPH08285830A true JPH08285830A (en) 1996-11-01

Family

ID=13968604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7089362A Pending JPH08285830A (en) 1995-04-14 1995-04-14 Float for carrying cable

Country Status (2)

Country Link
JP (1) JPH08285830A (en)
FR (1) FR2733030B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003172732A (en) * 2001-12-06 2003-06-20 Babcock Hitachi Kk Ultrasonic inspection device for pipe
KR101160662B1 (en) * 2010-08-30 2012-06-28 한국원자력연구원 Sensor guiding apparatus for the inspection of inner part of helical type tube
CN108426174A (en) * 2018-06-14 2018-08-21 浙江鼎测地理信息技术有限公司 A kind of detection method of underground piping
JP2019191065A (en) * 2018-04-27 2019-10-31 三菱日立パワーシステムズ株式会社 Flaw inspection method of pipe member and flaw inspection system of the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU3151101A (en) * 1999-12-29 2001-07-16 Dbs Beschichtung Und Systemetechnik Gmbh Coating device with evenly guided feed pipe
WO2007136380A1 (en) * 2006-05-23 2007-11-29 Baker Hughes Incorporated Fiber optic installation method
WO2015199549A1 (en) * 2014-06-24 2015-12-30 Dybvik Tor Mathias Method for hydraulic deployment of pipeline communication and monitoring system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB889995A (en) * 1958-07-22 1962-02-21 Power Aux Ies Ltd Improvements in or relating to flexible conduits
NL8104112A (en) * 1981-09-04 1983-04-05 Neratoom Apparatus and method for moving an electrical cable and a measuring unit connected thereto uniformly in the interior of a pipe circuit section.
FR2582777A1 (en) * 1985-05-30 1986-12-05 Couderq Yves Articulated machine for the inspection of pipes
US4848168A (en) * 1987-04-13 1989-07-18 Bridgestone Corporation Traveling device moving along elongated member

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003172732A (en) * 2001-12-06 2003-06-20 Babcock Hitachi Kk Ultrasonic inspection device for pipe
KR101160662B1 (en) * 2010-08-30 2012-06-28 한국원자력연구원 Sensor guiding apparatus for the inspection of inner part of helical type tube
JP2019191065A (en) * 2018-04-27 2019-10-31 三菱日立パワーシステムズ株式会社 Flaw inspection method of pipe member and flaw inspection system of the same
WO2019207916A1 (en) * 2018-04-27 2019-10-31 三菱日立パワーシステムズ株式会社 Pipe member flaw inspecting method, and pipe member flaw inspecting system
CN108426174A (en) * 2018-06-14 2018-08-21 浙江鼎测地理信息技术有限公司 A kind of detection method of underground piping
CN108426174B (en) * 2018-06-14 2019-12-27 浙江鼎测地理信息技术有限公司 Detection method of underground pipeline

Also Published As

Publication number Publication date
FR2733030B1 (en) 1998-01-02
FR2733030A1 (en) 1996-10-18

Similar Documents

Publication Publication Date Title
JPH05256984A (en) Flexible cable
TWI338757B (en) Boiler tube inspection probe with centering mechanism and method of operating the same
CN105308686B (en) Check steam generator
JPH08285830A (en) Float for carrying cable
US3994173A (en) Remote orientation of a probe in a tubular conduit
JP4772830B2 (en) Ultrasonic wall thickness measuring device for tubes
US3958120A (en) Radiographic inspection of steam generator tubes
JP6279572B2 (en) Apparatus and method for detecting ovalization of circumferential section of heat exchanger tube
JP6552844B2 (en) Inspection system
JP2009229451A (en) In-pipe insertion type ultrasonic flaw detection and inspection apparatus
CN210572127U (en) Corrosion imaging detection device
EP2423583A1 (en) Cable for inspecting heat tubes and method of analyzing insertion force of cable
JPS59200958A (en) Traveling body in pipe
JP3154948B2 (en) Flaw detection sensor unit
JPH09145687A (en) Pipe insertion ultrasonic flaw inspection apparatus
JPS595861B2 (en) Conductor drive device for tube-shaped flaw detector
KR20180088012A (en) Ultrasonic sensor module structure of ultrasonic inspection device for performing non-destructive test
JP5649598B2 (en) Alignment tool, in-pipe insertion type ultrasonic inspection apparatus and ultrasonic inspection system
JPH06148146A (en) Pipe inspection probe and inspection device
US20090120191A1 (en) Methods and apparatus for inspecting furnace tubes
JP2625211B2 (en) Ultrasonic testing equipment for small diameter pipes
JPS6239324Y2 (en)
SU1326982A1 (en) Scanning device for flaw detection of internal surfaces of tubes
JP2014085199A (en) Ultrasonic inspection method and ultrasonic inspection device of outer surface crack in thick tube
JPS6215456A (en) Ultrasonic flaw detecting method for heat transfer tube