JP3809989B2 - 可溶化式汚泥処理方法及び装置 - Google Patents

可溶化式汚泥処理方法及び装置 Download PDF

Info

Publication number
JP3809989B2
JP3809989B2 JP26828399A JP26828399A JP3809989B2 JP 3809989 B2 JP3809989 B2 JP 3809989B2 JP 26828399 A JP26828399 A JP 26828399A JP 26828399 A JP26828399 A JP 26828399A JP 3809989 B2 JP3809989 B2 JP 3809989B2
Authority
JP
Japan
Prior art keywords
sludge
acid
alkali
solubilized
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26828399A
Other languages
English (en)
Other versions
JP2001087798A (ja
Inventor
昌浩 多田羅
芳孝 東郷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP26828399A priority Critical patent/JP3809989B2/ja
Publication of JP2001087798A publication Critical patent/JP2001087798A/ja
Application granted granted Critical
Publication of JP3809989B2 publication Critical patent/JP3809989B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Treatment Of Sludge (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は可溶化式汚泥処理方法及び装置に関し、とくに下水処理場や廃水処理設備から排出される余剰汚泥を酸とアルカリとで可溶化したのち嫌気性消化槽で処理する方法及び装置に関する。
【0002】
【従来の技術】
下水処理場や化学工場、食品工場等の廃水処理設備において、好気性微生物を使った活性汚泥法が広く使われている。活性汚泥法は、エアレーション(曝気)により廃水中の好気性微生物に廃水中の有機物の一部分を酸化分解させると共に残部分を栄養として同化させることにより、廃水を処理する方法である。そのため活性汚泥法では、有機物を資化し増殖した多種多様の好気性微生物で構成される大量の余剰汚泥(以下、単に汚泥という。)が発生する。汚泥発生量が少ない改良された活性汚泥法として生物膜法、長時間曝気法等が開発されているが、汚泥を全く排出しない活性汚泥法は存在しない。
【0003】
汚泥は産業廃棄物として処理・処分する必要があり、従来多くの汚泥は脱水あるいは焼却後に埋立処分されている。しかし埋立処分は、処分地の確保が困難になるにつれて処分費用が高騰し、また焼却時に放出される二酸化炭素による地球温暖化やダイオキシンによる環境汚染等の問題点がある。このため、汚泥の減量等を目的として、処分前に汚泥を嫌気性消化槽で処理する方法も行なわれている。
【0004】
また最近では、汚泥を熱処理又はオゾン処理等により可溶化したのち活性汚泥槽で処理する方法も開発されている。この方法では、熱処理又はオゾン処理後の汚泥の約1/3を活性汚泥槽で生物的に酸化分解できる。未分解の汚泥は、新たに下水処理場等から排出される汚泥と共に再び熱処理又はオゾン処理し活性汚泥槽へ戻して処理する。このサイクルを繰り返すことにより、排出が予想される汚泥量の3倍量を熱処理又はオゾン処理すれば、理論的には汚泥の増加を最小化できる。
【0005】
さらに汚泥を再利用する観点から、汚泥を高温(800℃程度)で溶融し煉瓦などにリサイクルする方法も開発されている。
【0006】
【発明が解決しようとする課題】
しかし従来の前記熱処理又はオゾン処理で汚泥を可溶化したのち活性汚泥槽で処理する方法は、可溶化のための加熱、オゾンの供給及び活性汚泥槽の曝気用に多大なエネルギーを要するため、汚泥処理のランニングコストが嵩む問題点がある。オゾン処理の場合は高価なオゾン発生装置等を必要とするので、設備費も高くなる。また通常の熱による可溶化処理では、汚泥の約30%程度しか可溶化することができないので、未分解の汚泥が大量に残り処理効率が悪いという問題点もある。
【0007】
前記溶融した汚泥をリサイクルする方法も、溶融のため大きな装置とエネルギーを必要とし、しかも専門的な知識を有する管理者を配置する必要があるので、汚泥処理のランニングコストが嵩む問題点がある。このためリサイクルした煉瓦などは価格が高く利用が難しくなっている。
【0008】
他方、前記嫌気性消化槽で汚泥を処理する方法は、嫌気状態で汚泥を分解するので曝気が不要であり、最終生成物として発生するメタンガスからエネルギーが回収できる利点を有する。しかし従来の嫌気性消化処理は、汚泥の処理に長時間を要し、しかも分解処理効率が低いという問題点が指摘されている。これは汚泥の主成分である微生物の細胞壁にペプチドグリカン、ペクチン質、セルロース等の難分解物質が多量に含まれているからである。従って継続的に発生する汚泥を嫌気性消化槽で処理する場合、消化日数が例えば30日以上必要となるため、その消化日数分の汚泥を滞留するための大型の嫌気性消化槽と広大な敷地スペースとが必要となる問題も生じる。
【0009】
近年、産業廃棄物の排出量が年々増加するなかで、汚泥の占める割合は45.5%(平成5年度)と最も高い。汚泥は含水率が高く腐敗しやすいため、効率的な汚泥減容化技術の開発が重要な課題となっている。
【0010】
そこで本発明の目的は、汚泥を嫌気性消化槽により短時間で効率的に処理する方法及び装置を提供するにある。
【0011】
【課題を解決するための手段】
本発明者は、酸又はアルカリの添加と加熱とにより汚泥を可溶化する技術に注目した。汚泥は殆どが微生物であり、微生物の細胞壁はペプチドグリカン、ペクチン質、セルロース等の難分解物質を多量に含んでいる。そのため汚泥をそのまま処理しようとしても、細胞壁が細胞内の有機物を保護するような形となり、分解できないか、あるいは分解に時間がかかる。汚泥を嫌気性消化槽で処理する前に酸又はアルカリを添加して加熱すれば、汚泥中の微生物細胞壁を破壊することができ、消化処理の効率向上と時間短縮とが期待できる。
【0012】
しかし酸又はアルカリ添加と加熱とにより汚泥を可溶化する場合、消化処理前にアルカリ又は酸を添加して可溶化した汚泥を嫌気性微生物が活性を示す水素イオン指数pHにまで中和する必要があるが、中和時に大量の塩が生じると嫌気性微生物の活性を低下させるおそれがある。例えばナトリウム(Na+)濃度が7,000mg/リットル以上になるとメタン発酵の反応速度を50%程度阻害することが報告されている(燃料及燃焼、第51巻、第4号、1986年、益田信夫ら、「メタン発酵の基礎と応用(4)」)。汚泥の嫌気性消化処理を安定的に且つ高効率で行なうためには、単に汚泥を可溶化するだけでは足りず、消化対象汚泥中の塩濃度を嫌気性微生物の活性が阻害されない程度に低く抑える必要がある。
【0013】
本発明者は、汚泥中の微生物細胞を可溶化し、しかも可溶化した汚泥中の塩濃度を嫌気性微生物の活性が阻害されない程度に抑える嫌気性消化処理技術の研究開発の結果、本発明の完成に至った。
【0014】
図1の実施例を参照するに、本発明の可溶化式汚泥処理方法は、汚泥を嫌気性微生物で消化する処理方法において、被処理汚泥40の一部分を所定当量の酸47で可溶化すると共に被処理汚泥40の残部分を酸47と中和する当量のアルカリ48で可溶化し、酸可溶化後の汚泥42とアルカリ可溶化後の汚泥43とを混合することにより該混合後の汚泥44中の塩濃度を嫌気性微生物の活性範囲内とした上で消化してなるものである。
【0015】
好ましくは、酸可溶化後の汚泥42とアルカリ可溶化後の汚泥43との混合時に水で希釈することにより前記混合後の汚泥44中の塩濃度を嫌気性微生物の活性範囲内とする。更に好ましくは、被処理汚泥40を酸47及びアルカリ48で可溶化する前に脱水する。
【0016】
また図1を参照するに、本発明の可溶化式汚泥処理装置は、被処理汚泥40を酸47で可溶化する酸可溶化装置2、被処理汚泥40をアルカリ48で可溶化するアルカリ可溶化装置3、及び酸可溶化装置2及びアルカリ可溶化装置3で可溶化後の両汚泥42、43を混合したのち嫌気性微生物で消化する嫌気性消化槽5を備え、酸可溶化装置2により被処理汚泥40の一部分を所定当量の酸47で可溶化すると共に被処理汚泥40の残部分をアルカリ可溶化装置3により酸47と中和する当量のアルカリ48で可溶化し、混合後の汚泥44中の塩濃度を嫌気性微生物の活性範囲内とした上で消化してなるものである。
【0017】
好ましくは、酸可溶化装置2及びアルカリ可溶化装置3と嫌気性消化槽5との間又は嫌気消化槽5内に希釈装置4を設け、可溶化後の両汚泥42、43を希釈装置4で混合し且つ嫌気性微生物の活性範囲内の塩濃度に希釈した上で消化する。更に好ましくは、被処理汚泥40を脱水する脱水装置1を設け、酸可溶化装置2及びアルカリ可溶化装置3による可溶化前に被処理汚泥40を脱水する。更に好ましくは、嫌気性消化槽5で生じる消化ガスにより温水又は蒸気をつくるボイラー8を設け、前記温水又は蒸気により酸可溶化装置2、アルカリ可溶化装置3及び/又は嫌気性消化槽5を加熱する。
【0018】
【発明の実施の形態】
図1は、本発明の汚泥処理装置の一実施例を示す。同図では、下水処理場等から排出された被処理汚泥40を可溶化処理する前に、脱水装置1で脱水している。脱水装置1は例えば天日乾燥による乾燥床、又は真空脱水機、遠心分離機、フィルタープレス(過圧脱水機)等である。脱水装置1の上流側に汚泥濃縮タンク等を設け、脱水処理前に汚泥を濃縮してもよい。
【0019】
脱水の程度は、含水率を低くするほど後述する酸可溶化装置2及びアルカリ可溶化装置3の小型化が可能であるが、とくに制限はない。可溶化処理の操作性からは、脱水後の汚泥41(以下、脱水汚泥41という。)の含水率を80〜90%とすることが望ましい。ただし、活性汚泥処理装置から適当な含水率の脱水汚泥41が被処理汚泥40として出力される等の場合は、脱水装置1を省略できる。従って脱水装置1は本発明の汚泥処理装置に必須のものではない。
【0020】
被処理汚泥40又は脱水汚泥41(以下、纏めて脱水汚泥41という。)の一部分を酸可溶化装置2へ送り、残部分をアルカリ可溶化装置3へ送る。酸可溶化装置2及びアルカリ可溶化装置3へ送る汚泥量は、例えば脱水汚泥41の全量の半量ずつとすることができる。ただし可溶化装置2、3へ送る汚泥量は必ずしも等量に限定されない。後述する可溶化装置2、3における可溶化効率の相違、可溶化処理で使用する酸47及びアルカリ48の濃度等を考慮して、実験等に基づき、酸可溶化装置2及びアルカリ可溶化装置3へ送る汚泥量の比率を適当に定めることができる。
【0021】
酸可溶化装置2において脱水汚泥41の一部分に所定当量の酸47を添加して加熱し、アルカリ可溶化装置3において脱水汚泥41の残部分に酸47と中和する当量のアルカリ48を添加して加熱する。脱水汚泥41に酸47又はアルカリ48を加えて加熱すれば、脱水汚泥41中の微生物の細胞壁は変性・溶解し、細胞が破壊されて細胞内の有機物が可溶化する。細胞内の有機物は、通常の有機性廃水と同様の成分がほとんどであるため、従来の嫌気性消化槽5で容易に分解できる。また難分解性の細胞壁も、酸47又はアルカリ48と加熱とで可溶化することにより嫌気性微生物が分解容易な有機物に変性・溶解するので、嫌気性消化槽5で分解可能である。しかも酸47及びアルカリ48の添加と加熱とによる可溶化処理は、脱水汚泥41のSS(浮遊物質、Suspended Solids)濃度にかかわらず脱水汚泥41を高度に可溶化できる。
【0022】
図示例の酸可溶化装置2及びアルカリ可溶化装置3はそれぞれ、脱水汚泥41を貯留する酸可溶化槽26及びアルカリ可溶化槽27と、各可溶化槽26、27の下端側から汚泥を引き抜き上端側ヘ戻す汚泥循環ライン13及び循環ポンプ14と、循環ライン13上の汚泥を加熱する汚泥加熱装置24とを有する。図中の符号15は、循環ライン13と酸可溶化汚泥輸送ライン16又はアルカリ可溶化汚泥輸送ライン17とを切り替えるライン切替バルブを示す。汚泥41の加熱装置24による加熱温度は高いほど後述の可溶化率が高くなり、温度を高くするほど酸47及びアルカリ48の使用量を減らすことができる。しかし使用エネルギーや使用設備費などを考慮した場合、温度50〜80℃において可溶化することが望ましい。ただし、可溶化装置2、3の構成は図示例に限定されない。
【0023】
脱水汚泥41の可溶化に必要な酸47の濃度を検討するため、容積5リットルの7槽のジャーファーメンターにそれぞれ含水率80%に調整した脱水汚泥41を投入し、そのうち6槽にそれぞれ最終濃度が0.005、0.01、0.05、0.2、0.5、1Nとなるように塩酸(HCl)を加え、各槽の汚泥41を循環しつつ70℃に維持してVSS(揮発性固形物、Volatile Suspended Solids)可溶化率の経時変化の実験を行なった。実験結果を図2のグラフに示す。
【0024】
また脱水汚泥41の可溶化に必要なアルカリ48の濃度を検討するため、上記と同様に脱水汚泥41を投入した7槽のジャーファーメンターを用い、そのうち6槽にそれぞれ最終濃度が0.005、0.01、0.05、0.2、0.5、1Nとなるように水酸化ナトリウム(NaOH)を加えてVSS可溶化率の経時変化の実験を行なった。実験結果を図3のグラフに示す。
【0025】
図2のグラフから、70℃において6時間処理すれば酸47の濃度1Nで汚泥41を80%程度以上可溶化でき、0.5Nでは70%程度、0.2Nでは55%程度、0.05Nでは40%程度可溶化できることが確認できた。また図3のグラフから、70℃における6時間処理によりアルカリ48の濃度1Nで汚泥41をほぼ100%可溶化でき、0.5Nでは80%程度、0.2Nでは70%程度、0.05Nでは60%程度可溶化できることが確認できた。
【0026】
従来の加熱のみによる可溶化処理では汚泥の約30%程度しか可溶化できなかったのに対し、HCl及びNaOHの濃度を0.05〜1.0Nとすれば汚泥41の40%及び60%以上を可溶化できる。可溶化効率とランニングコストを考慮して、HCl及びNaOHの濃度は0.2〜1.0Nとすることが望ましい。また、酸可溶化装置2中の酸当量がアルカリ可溶化装置3中のアルカリ当量と嫌気性微生物が活性を示すpH範囲内で中和する条件の下で、アルカリ可溶化装置3の処理汚泥量を酸可溶化装置2の処理汚泥量より多くすることにより、酸可溶化槽2の酸濃度をアルカリ可溶化槽3のアルカリ濃度よりも高濃度とすることも可能である。例えばアルカリ可溶化装置3の処理汚泥量を酸可溶化装置2の処理汚泥量の2倍とすれば、アルカリ可溶化槽3のNaOH濃度0.5Nに対し酸可溶化槽2のHCl濃度を1.0Nとすることができるので、何れの可溶化装置2、3においても約80%の可溶化率を達成できる。
【0027】
さらに図2、3のグラフから、70℃に加熱した場合、汚泥41の酸可溶化反応及びアルカリ可溶化反応は何れも6時間程度でほぼ完了し、それ以上加熱時間を長くしても汚泥41の可溶化率はそれほど上昇しないことが確認できた。従って本発明では、可溶化処理時間が比較的短く、汚泥41も脱水により減容されているので、可溶化装置2、3の小型化を図ることができる。
【0028】
なお可溶化処理に用いる酸47及びアルカリ48はHCl及びNaOHに限定されず、他の薬品を用いることができる。ただし可溶化処理に適する酸47及びアルカリ48の濃度は、処理対象の汚泥41及び使用する薬品の種類に応じて変更する必要があり、上述したHCl及びNaOHの場合と同様の実験により定めることができる。
【0029】
図1の例では、ライン切替バルブ15を切り替えて酸47で可溶化した汚泥42(以下、酸可溶化汚泥42という。)及びアルカリ48で可溶化した汚泥43(以下、アルカリ可溶化汚泥43という。)を希釈装置4へ送り、攪拌装置33で攪拌しながら酸可溶化汚泥42とアルカリ可溶化汚泥43とを混合して中和すると共に、中和時に生じる塩の濃度を嫌気性微生物が活性を示す値(以下、活性塩濃度という。)に希釈している。
【0030】
例えばアルカリ48としてNaOHを用いた場合、前述したようにNa+濃度が5,000mg/リットル以上になるとメタン発酵が阻害されるので、中和後の汚泥44(以下、中和汚泥44という。)が活性塩濃度以上である場合は希釈装置4において希釈水を加え、可溶化汚泥42、43中のナトリウム塩濃度を5,000mg/リットル以下とする。NaOH以外のアルカリ48の場合も、種類に応じて活性塩濃度を実験的に求めることができる。希釈水として、例えば脱水装置1からの分離水及び/又は嫌気性消化槽5からの処理水を利用できるので、本発明の処理装置外からの水の供給を必須としない。
【0031】
図示例は可溶化装置2とは独立の希釈装置4を示すが、希釈装置4の構成は図示例に限定されない。例えば図1の希釈水供給ライン29を酸可溶化装置2、アルカリ可溶化装置3又は嫌気性消化槽5へ接続し、希釈装置4を可溶化装置2、3又は嫌気性消化槽5と一体型のものとすることができる。ただし、希釈装置2は本発明の必須要件ではなく、酸可溶化装置2及びアルカリ可溶化装置3内の酸47及びアルカリ48の濃度の調節により中和汚泥44の塩濃度を調整することにより、希釈装置4を省略することも可能である。この場合は、酸可溶化装置2の酸濃度及びアルカリ可溶化装置3のアルカリ濃度として、混合時に生じる塩濃度が嫌気性微生物の活性範囲内となる濃度を選択する。
【0032】
本発明では、酸可溶化装置2とアルカリ可溶化装置3とを併用し、酸可溶化装置2による可溶化汚泥42とアルカリ可溶化装置3による可溶化汚泥43とを混合することにより中和するので、脱水汚泥41を酸又はアルカリで可溶化したのちアルカリ又は酸で中和する方法に比し、酸47及びアルカリ48の薬剤使用量を減らし、中和汚泥44の塩濃度を低く抑えることができる。例えば脱水汚泥41を酸可溶化装置2及びアルカリ可溶化装置3で半量ずつ処理すれば、汚泥41の全量を酸又はアルカリで可溶化処理する場合に比し、使用薬剤量を約半分程度とし、中和後の塩濃度を約半分程度に減らすことが期待できる。従って、中和汚泥44の塩濃度を活性塩濃度以下とするための希釈水の量を減らして中和汚泥44の減容化を図ることができる。中和汚泥44の減容化は以下に述べる嫌気性消化槽5のコンパクト化に寄与する。なお、脱水装置1で汚泥41の含水率を更に下げ、可溶化処理時に添加する薬品量を更に減らすことにより、中和時に生じる塩の濃度を更に低く抑えることも期待できる。
【0033】
図1では、中和汚泥44を嫌気性消化槽5へ送り、嫌気性消化槽5に保持した嫌気性微生物で消化処理している。本発明では、脱水汚泥41中の微生物細胞を破壊し且つ塩濃度を活性塩濃度に調整するので、嫌気性消化槽5において中和汚泥44を効率よく短時間で分解することができる。従って汚泥44を嫌気性消化槽5に滞留させる時間も短縮できるので、消化槽5をコンパクトにすることができ、設置面積も小さく抑えることができる。また消化槽5で発生する消化ガスを可溶化装置2、3及び/又は嫌気性消化槽5の加熱用熱源として利用できるので、本発明では外部から加えるエネルギーを最小とすることができ、汚泥処理のランニングコストが低減できる。
【0034】
こうして本発明の目的である「汚泥を嫌気性消化槽により短時間で効率的に処理する方法及び装置」の提供を達成できる。
【0035】
【実施例】
図1の汚泥処理装置では、固定床式の嫌気性消化槽5を用いている。同図の消化槽5には、例えばガラス繊維又は炭素繊維製の微生物担体を充填し、嫌気性微生物を高濃度に保持することができる。また同図の消化槽5は、下端側から汚泥を引き抜き上端側ヘ戻す汚泥循環ライン19及び循環ポンプ20と、循環ライン19上で汚泥を加熱する汚泥加熱装置25とを有し、加熱装置25で消化槽5内の汚泥を嫌気性微生物の活性に適する発酵温度、例えば中温(37℃程度)又は高温(55℃程度)に維持している。ただし本発明で用いる嫌気性消化槽5の発酵温度、浮遊床や固定床等の方式は図示例に限定されない。
【0036】
図1では、嫌気性消化槽5で発生した消化ガスをガスライン22経由で取り出し、脱硫塔6で脱硫したのちガスメーター7経由で温水又は蒸気ボイラー8へ送り、温水又は蒸気ボイラー8の燃料として使用している。温水又は蒸気ボイラー8と可溶化装置2、3及び嫌気性消化槽5の各汚泥加熱装置24、25との間に往復温水又は蒸気ライン23a、23bを設け、温水又は蒸気ボイラー8から温水又は蒸気を各汚泥加熱装置24、25へ送ることにより、汚泥処理装置の外部からのエネルギー供給なしに可溶化装置2、3及び嫌気性消化槽5を加熱することができる。この場合、汚泥加熱装置24、25の一例は熱交換器である。
【0037】
[実験例]
廃水処理施設からのSS濃度20,000mg/リットルの余剰汚泥40を用いて、図1の汚泥処理装置による効果を確認する実験を行なった。先ず脱水装置1で含水率80%の脱水汚泥41としたのち、脱水汚泥41の半量を酸可溶化装置2へ送り終濃度0.5NとなるようにHClを加え、脱水汚泥41の残り半量をアルカリ可溶化装置3へ送り終濃度0.5NとなるようにNaOHを加え、各可溶化装置2、3により60℃で10時間可溶化処理した。各可溶化装置2、3の可溶化汚泥42、43を希釈装置4へ送り、混合することにより中和したところ、中和後のpHは7.3となり、Na+濃度、Cl-濃度が共に約6,000mg/リットルとなり活性塩濃度5,000mg/リットルを超えていた。このため、中和後の汚泥に対し2倍量の水を加えて希釈し、希釈後の中和汚泥44を図4に示す原料槽34に貯えて実験に用いた。
【0038】
本実験では、図4に示すように容積3リットルの固定床式の嫌気性消化槽5を用い、汚泥加熱装置22(図示せず)により温度を55℃に制御した。嫌気性消化槽5には、槽4内の微生物濃度を高く保つため、直径30mm、高さ600mmの4本の円筒状ガラス繊維製又は炭素繊維製の微生物担体を円筒軸が鉛直方向となるように規則的に充填した。
【0039】
原料槽34から嫌気性消化槽5へ負荷を徐々に上げながら中和汚泥44を投入し、20日で立ち上げを完了し、CODcr容積負荷約18kg/m3/day(汚泥投入量約0.6リットル)で定常運転に切り替えた。図5は、本実験におけるCODcr容積負荷と消化ガス発生量の経日変化のグラフを示す。また図6は、本実験におけるCODcr容積負荷の変化に応じたT-CODcr除去率及びSS除去率の変化のグラフを示す。
【0040】
図5のグラフに示すように定常運転中の消化ガス発生量は16リットル/day程度と安定しており、メタン発酵の指標である有機酸量も10meq/リットルと低い値に保たれていたことから、中和汚泥44を安定的に消化処理できたと考えられる。また消化日数は3日程度であり、従来の嫌気性消化槽における汚泥の消化日数30日以上に比し短時間で消化できることが確認できた。図6のグラフからは、定常運転時のT-CODcr除去率は約80%、SS除去率は約80%であることが確認できた。
【0041】
また本実験から、中和汚泥44の1リットル当りから80リットルの消化ガスが発生することがわかった。消化ガス中のメタン含有量は70%であったため、熱量に換算すると中和汚泥44の1リットル当りの熱量は約480kcalであった。酸可溶化装置2及びアルカリ可溶化装置3において1リットルの汚泥を20℃から60℃まで加熱することに要する熱量は約40kcalである。このことから、可溶化装置2、3を適切に保温すれば、汚泥可溶化に必要な熱量はメタン発酵で得られる消化ガスの1割程度のエネルギーでほぼ補えることがわかった。
【0042】
【発明の効果】
以上説明したように本発明の汚泥処理方法及び装置は、被処理汚泥の一部分を所定当量の酸で可溶化すると共に被処理汚泥の残部分を前記酸と中和する当量のアルカリで可溶化し、酸可溶化汚泥とアルカリ可溶化汚泥との混合時に生じる塩濃度を前記嫌気性微生物の活性範囲内としたのち嫌気性消化槽で処理するので、次の顕著な効果を奏する。
【0043】
(イ)汚泥を可溶化し且つ塩濃度を嫌気性微生物に適する値に調整したのち消化するので、嫌気性消化槽において汚泥を効率よく短時間で消化分解できる。
(ロ)酸可溶化処理とアルカリ可溶化処理とを併用し、各可溶化装置による可溶化汚泥を混合して中和するので、汚泥を酸又はアルカリで可溶化したのちアルカリ又は酸で中和する方法に比し、使用する薬剤の使用量を減らし、中和後の汚泥中の塩濃度を低く抑えることができる。
(ハ)中和後の汚泥中の塩濃度が低いので、塩濃度を活性塩濃度以下とするための希釈水の量を減らし、消化対象汚泥量の減容化を図ることができる。
(ニ)消化処理時間が短く且つ消化対象汚泥量が減容されているため、消化処理槽をコンパクトなものとし、設置面積も小さく抑えることができる。
(ホ)可溶化汚泥をメタン発酵により処理するため、メタン発酵により発生する消化ガスを利用することにより、外部からエネルギーを供給することなく汚泥の可溶化処理及び嫌気性消化処理を行うことが可能である。
(ヘ)外部からの資源及びエネルギー供給を最小に抑えることができるので、汚泥処理のランニングコストを低く抑えることができる。
【図面の簡単な説明】
【図1】は、本発明の一実施例のブロック図である。
【図2】は、HCl添加による汚泥の可溶化率の経時変化を示すグラフである。
【図3】は、NaOH添加による汚泥の可溶化率の経時変化を示すグラフである。
【図4】は、本発明の汚泥処理方法の効果確認実験の説明図ある。
【図5】は、本発明の汚泥処理方法によるCODcr容積負荷と消化ガス発生量の経日変化を示すグラフである。
【図6】は、本発明の汚泥処理方法によるCODcr容積負荷とT-CODcr除去率及びSS除去率との関係を示すグラフである。
【符号の説明】
1…脱水装置 2…酸可溶化装置
3…アルカリ可溶化装置 4…希釈装置
5…嫌気性消化槽 6…脱硫塔
7…ガスメーター 8…温水又は蒸気ボイラー
10…汚泥供給ライン 11…分離水ライン
12…脱水汚泥輸送ライン 13…汚泥循環ライン
14…汚泥循環ポンプ 15…ライン切り替えバルブ
16…酸可溶化汚泥輸送ライン
17…アルカリ可溶化汚泥輸送ライン
18…中和汚泥輸送ライン
19…汚泥循環ライン 20…汚泥循環ポンプ
21…処理水ライン 22…ガスライン
23…温水又は蒸気ライン 24…汚泥加熱装置
25…汚泥加熱装置 26…酸可溶化槽
27…アルカリ可溶化槽 28…酸供給装置
29…酸供給ライン 30…アルカリ供給装置
31…アルカリ供給ライン 32…希釈水供給ライン
33…攪拌装置 34…原料槽
40…汚泥 41…脱水汚泥
42…酸可溶化汚泥 43…アルカリ可溶化汚泥
44…中和汚泥 45…消化ガス
46…温水又は蒸気 47…酸
48…アルカリ

Claims (10)

  1. 汚泥を嫌気性微生物で消化する処理方法において、被処理汚泥の一部分を所定当量の酸で可溶化すると共に前記被処理汚泥の残部分を前記酸と中和する当量のアルカリで可溶化し、前記酸可溶化後の汚泥と前記アルカリ可溶化後の汚泥とを混合することにより該混合後の汚泥中の塩濃度を前記嫌気性微生物の活性範囲内とした上で消化してなる可溶化式汚泥処理方法。
  2. 請求項1の処理方法において、前記酸可溶化後の汚泥と前記アルカリ可溶化後の汚泥との混合時に水で希釈することにより前記混合後の汚泥中の塩濃度を嫌気性微生物の活性範囲内としてなる可溶化式汚泥処理方法。
  3. 請求項1又は2の処理方法において、前記被処理汚泥を前記酸及びアルカリで可溶化する前に脱水してなる可溶化式汚泥処理方法。
  4. 請求項1から3の何れかの処理方法において、前記被処理汚泥の一部分及び残部分をそれぞれ温度50〜80℃において可溶化してなる可溶化式汚泥処理方法。
  5. 請求項1から4の何れかの処理方法において、前記被処理汚泥の半量を前記酸で可溶化すると共に前記被処理汚泥の残量を前記アルカリで可溶化してなる可溶化式汚泥処理方法。
  6. 請求項1から5の何れかの処理方法において、前記酸及びアルカリを塩酸(HCl)及び水酸化ナトリウム(NaOH)とし、前記被処理汚泥の一部分及び残部分の酸濃度及びアルカリ濃度を0.05〜1.0Nとし、前記混合後の汚泥中の塩化ナトリウム濃度を5,000mg/リットル以下としてなる可溶化式汚泥処理方法。
  7. 被処理汚泥を酸で可溶化する酸可溶化装置、前記被処理汚泥をアルカリで可溶化するアルカリ可溶化装置、及び前記酸可溶化装置及びアルカリ可溶化装置で可溶化後の両汚泥を混合したのち嫌気性微生物で消化する嫌気性消化槽を備え、前記酸可溶化装置により前記被処理汚泥の一部分を所定当量の酸で可溶化すると共に前記被処理汚泥の残部分を前記アルカリ可溶化装置により前記酸と中和する当量のアルカリで可溶化し、前記混合後の汚泥中の塩濃度を前記嫌気性微生物の活性範囲内とした上で消化してなる可溶化式汚泥処理装置。
  8. 請求項7の処理装置において、前記酸可溶化装置及びアルカリ可溶化装置と前記嫌気性消化槽との間又は前記嫌気消化槽内に希釈装置を設け、前記可溶化後の両汚泥を前記希釈装置で混合し且つ前記嫌気性微生物の活性範囲内の塩濃度に希釈した上で消化してなる可溶化式汚泥処理装置。
  9. 請求項7又は8の処理装置において、前記被処理汚泥を脱水する脱水装置を設け、前記酸可溶化装置及びアルカリ可溶化装置による可溶化前に前記被処理汚泥を脱水してなる可溶化式汚泥処理装置。
  10. 請求項7から9の何れかの処理装置において、前記嫌気性消化槽で生じる消化ガスにより温水又は蒸気をつくるボイラーを設け、前記温水又は蒸気により前記酸可溶化装置、前記アルカリ可溶化装置及び/又は前記嫌気性消化槽を加熱してなる可溶化式汚泥処理装置。
JP26828399A 1999-09-22 1999-09-22 可溶化式汚泥処理方法及び装置 Expired - Fee Related JP3809989B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26828399A JP3809989B2 (ja) 1999-09-22 1999-09-22 可溶化式汚泥処理方法及び装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26828399A JP3809989B2 (ja) 1999-09-22 1999-09-22 可溶化式汚泥処理方法及び装置

Publications (2)

Publication Number Publication Date
JP2001087798A JP2001087798A (ja) 2001-04-03
JP3809989B2 true JP3809989B2 (ja) 2006-08-16

Family

ID=17456397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26828399A Expired - Fee Related JP3809989B2 (ja) 1999-09-22 1999-09-22 可溶化式汚泥処理方法及び装置

Country Status (1)

Country Link
JP (1) JP3809989B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108587869A (zh) * 2018-07-02 2018-09-28 浙江华庆元生物科技有限公司 一种尾菜生化处理脱水系统
CN109110891A (zh) * 2018-09-04 2019-01-01 南京师范大学 一种基于ceps碱性厌氧发酵的混凝剂原位回收及再循环工艺
CN112624545A (zh) * 2020-12-22 2021-04-09 湖南军信环保股份有限公司 一种厌氧消化污泥的处理方法和处理系统
CN114275983A (zh) * 2021-12-08 2022-04-05 天津壹新环保工程有限公司 一种污泥厌氧处理系统及方法

Also Published As

Publication number Publication date
JP2001087798A (ja) 2001-04-03

Similar Documents

Publication Publication Date Title
US5492624A (en) Waste treatment process employing oxidation
US20060266703A1 (en) Anaerobic Digestion Process for Low-Solid Waste
JP5288730B2 (ja) 有機性廃棄物の処理方法及び処理装置
CN104803546A (zh) 一种污水处理厂污泥减量化、资源化处理工艺
KR102222858B1 (ko) 유기성 폐기물의 열가수분해 혐기소화 시스템
JP3654789B2 (ja) 汚泥処理方法及び装置
KR20020080285A (ko) 슬러지 분해가용화 방법을 이용한 슬러지 무배출하수고도처리방법
JP6755058B1 (ja) 有機性廃棄物処理システム
CN116490294A (zh) 水热处理系统
JP3809989B2 (ja) 可溶化式汚泥処理方法及び装置
KR101003482B1 (ko) 고농도 유기성 폐수의 처리방법
JP2007326070A (ja) 廃棄物処理方法及びシステム
JP4145049B2 (ja) 有機性固形物の処理装置及びその処理方法
JP4631162B2 (ja) 有機性廃棄物の処理方法
JP3959843B2 (ja) 有機性排液の生物処理方法
CN113754220A (zh) 一种高含固市政污泥制备生物燃气工艺
KR20020075637A (ko) 하폐수의 생물학적 처리 공정에서 발생한 잉여슬러지의처리방법 및 그 장치
JP3756827B2 (ja) 汚泥減量方法および装置
KR102073704B1 (ko) 초음파 발생 장치와 열교환 장치가 상호 연계되는 고효율 하이브리드 하폐수 처리 및 슬러지 감량화 처리 시스템
KR101174811B1 (ko) 잉여 슬러지 처리용 슬러지 감량장치
JPH10128376A (ja) 有機性廃水の処理方法
JP3969144B2 (ja) 生物学的処理方法及び生物学的処理装置
US11420890B2 (en) Method of treatment of partially hydrolyzed biosolids
JP2001259675A (ja) 汚泥減量方法及び装置
KR20000017711A (ko) 슬러지 무배출 생물학적 하폐수 처리 방법 및 그 장치

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060519

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060519

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090602

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120602

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees