JP3805087B2 - Machine Tools - Google Patents

Machine Tools Download PDF

Info

Publication number
JP3805087B2
JP3805087B2 JP31537097A JP31537097A JP3805087B2 JP 3805087 B2 JP3805087 B2 JP 3805087B2 JP 31537097 A JP31537097 A JP 31537097A JP 31537097 A JP31537097 A JP 31537097A JP 3805087 B2 JP3805087 B2 JP 3805087B2
Authority
JP
Japan
Prior art keywords
main shaft
driven
speed
clutch element
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31537097A
Other languages
Japanese (ja)
Other versions
JPH11151632A (en
Inventor
一徳 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Machine Works Ltd
Original Assignee
Sanyo Machine Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Machine Works Ltd filed Critical Sanyo Machine Works Ltd
Priority to JP31537097A priority Critical patent/JP3805087B2/en
Publication of JPH11151632A publication Critical patent/JPH11151632A/en
Application granted granted Critical
Publication of JP3805087B2 publication Critical patent/JP3805087B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、工作物や工具を直線的に移送するための直進機構を備える工作機械、例えば圧入機に関する。
【0002】
【従来の技術】
工作機械の一種として、圧入機がある。圧入機は、圧入しようとする部材(ワーク)を加圧部材で押圧して相手部材に圧入するものであり、従来では、そのほとんどが油圧で加圧部材を加圧する構造になっている。
【0003】
【発明が解決しようとする課題】
しかし、油圧式では、油タンクや配管等を必要とするため、構造が大型化・複雑化する。
【0004】
一方、この問題を解決するものとして、駆動源にサーボーモータを用い、その回転運動をボールねじ等で直線運動に変換して加圧部材を直進させる構造が考えられる。
【0005】
しかし、圧入には大きな加圧力を必要とするため、モータの大型化が避けられない。モータを小型化するには、モータに連結した減速機の減速比を大きくすればよいが、これでは加圧部材の待機位置から圧入開始位置までの移動時間(空走時間)が長くなり、作業能率が低下する。
【0006】
なお、この種の問題は、上述の圧入機に限らず、ワーク(工具も含む)を直線的に移送するための直進機構を備えるその他の工作機械においても同様に生じ得る。
【0007】
そこで、本発明では、直進機構の動力源として小型のモータを使用でき、しかも空走時間の短縮化も図ることのできる工作機械の提供を目的とする。
【0008】
【課題を解決するための手段】
上記目的を達成するため、本発明にかかる工作機械は、モータと、モータによって回転駆動される主軸と、主軸の回転運動を直進運動に変換してワークを直進させる変換機構と、前記モータを定速回転させた状態で、主軸に作用する、ワークからの軸方向反力に応じて主軸の回転速度を切り替える速度制御機構とを具備するものである。
【0009】
前記速度制御機構は、複数の出力軸を有し、前記モータに駆動されて各出力軸を異なる速度で回転させる減速機と、原動部材および従動部材を有し、各原動部材をそれぞれ減速機の出力軸に連結すると共に、各従動部材をそれぞれ主軸に取り付けた複数のクラッチ要素と、前記軸方向反力に応じて一のクラッチ要素を選択し、当該クラッチ要素で動力伝達を行うと共に、他のクラッチ要素の動力伝達を遮断する切替手段とで構成することができる。
【0010】
この場合、各クラッチ要素の原動部材を同軸上に配置すると共に、対応する従動部材をその対向位置に同軸配置し、かつ、主軸を軸方向へ変位可能に弾性的に支持し、前記軸方向反力に基く主軸の軸方向変位により、各従動部材を軸方向へ相対移動させて、各クラッチ要素の伝動および断絶を切り替えるようにするとよい。
【0011】
具体的には、クラッチ要素として、高速側のクラッチ要素と低速側のクラッチ要素との2種類を有し、かつ、切替手段に、高速側クラッチ要素の従動部材をこれに対向する原動部材に弾圧する弾性部材と、両従動部材に回転可能に枢支され、両従動部材間の固定位置に支軸を有する連結部材とを設け、主軸の軸方向変位により、弾性部材の弾圧力に抗して高速側の従動部材をこれに対向する原動部材から離反させると共に、低速側の従動部材をこれに対向する原動部材に圧接させるようにする構造が考えられる。
【0012】
以上の構成において、変換機構の出力側に、ワークを加圧して相手部材に圧入するための加圧部材を設ければ、圧入機として用いることができる。
【0013】
【発明の実施の形態】
以下、本発明を工作機械の一つである圧入機に適用し、その場合の好ましい実施形態を図1乃至図3に基いて説明する。
【0014】
図1に示すように、本発明にかかる圧入機は、モータ(1)と、モータ(1)によって回転駆動される主軸(2)と、主軸(2)の回転運動を直進運動に変換してワーク(図示せず)を直進させる変換機構(3)と、モータ(1)を定速回転させた状態で、主軸(2)に作用する、ワークからの軸方向反力に応じて主軸(2)の回転速度を切り替える速度制御機構(4)とを具備する。
【0015】
速度制御機構(4)は、モータ(1)に連結された減速機(6)と、複数のクラッチ要素(7a)(7b)と、各クラッチ要素(7a)(7b)の伝動・断絶を主軸(2)に作用する軸方向反力に応じて切り替える切替手段(8)とで構成される(図3参照)。
【0016】
減速機(6)は、モータ(1)の一定の駆動力から、回転数の異なる(トルクの異なる)複数の駆動力を同軸に出力するためのもので、図2では一例として、高速回転軸(低トルク)と低速回転軸(高トルク)の2つの出力軸(12)(17)を有する減速機(6)を示している。
【0017】
この減速機(6)は、モータ(1)にカップリング(11)を介して接続した回転軸(12)、回転軸(12)に装着した第1ギヤ(13)、第1ギヤ(13)に噛合する第2ギヤ(14)、第2ギヤ(14)と一体回転する第3ギヤ(15)、第3ギヤ(15)に噛合する第4ギヤ(16)で構成される。第2ギヤ(14)は第1ギヤ(13)よりも大径であり、第4ギヤ(16)は第3ギヤ(15)よりも大径である。第4ギヤ(16)は、回転軸(12)の外周面との間に図示しないベアリングを介在させて回転軸(12)に外挿され、その内周部には、軸方向に延びる円筒部(17)が一体形成されている。
【0018】
回転軸(12)は、モータ(1)に駆動されて一定の回転数Nで回転する。この時、回転軸(12)の外径側にある第4ギヤ(16)の円筒部(17)は、第1ギヤ(13)および第2ギヤ(14)間の減速比I1と、第3ギヤ(15)および第4ギヤ(16)間の減速比I2とを乗じた回転数(I1×I2×N)で回転する。従って、回転軸(12)が高速(N rpm)で回転する高速出力軸となり、第4ギヤ(16)の円筒部(17)が低速(I1×I2×N rpm)で回転する低速出力軸となる。
【0019】
クラッチ要素(7a)(7b)は、減速機(6)の出力軸(12)(17)と同数分だけ設けられる(本実施形態では2つ)。両クラッチ要素(7a)(7b)は、それぞれ原動部材(20a)(20b)と従動部材(21a)(21b)とで構成される。原動部材(20a)(20b)のうち、一方(20b)は円筒状に形成され、主軸(2)の軸心と同軸に配置される。他方の原動部材(20a)は、軸状に形成され、前記一方の原動部材(20b)の内径側にこれと同軸に配置される。内径側の原動部材(20a)は、前記減速機(6)の高速出力軸(12:回転軸)に連結され、外径側の原動部材(20b)は低速出力軸(17:円筒部)に連結される。2つの従動部材(21a)(21b)は何れも略円筒状に形成され、一方(21a)を他方(21b)の内径側に収容して主軸(2)の外周面にキー(22a)(22b)等で固定される。但し、内径側の従動部材(21a)については、そのキー(22a)とキー溝のハメアイを緩めにしてその軸方向変位を許容する構造とする。両従動部材(21a)(21b)は、主軸(2)の軸心と同軸上にあり、その端面は何れも原動部材(20a)(20b)の端面と軸方向に対向している。原動部材(20a)(20b)の端面と従動部材(21a)(21b)の端面との間には、通常のクラッチ装置で使用されるような摩擦材(図示せず)が介装されている。
【0020】
以上の構成から、内径側の原動部材(20a)および従動部材(21a)は、高速出力軸(12)の伝動、断絶を切り替える高速側のクラッチ要素(7a)として機能し、外径側の原動部材(20b)および従動部材(21b)は、低速出力軸(17)の伝動、断絶を切り替える低速側のクラッチ要素(7b)として機能する。
【0021】
切替手段(8)は、内径側の従動部材(21a)をこれに対向する原動部材(20a)に向けて弾圧するコイルバネ等の弾性部材(24a)(24b)と、両従動部材(21a)(21b)を連結する連結部材(25)とで構成される。
【0022】
連結部材(25)の外径側の端部は、外径側の従動部材(21b)に回転可能に枢着される。連結部材(25)の内径側の端部は球面状に形成され、この球面部分は、内径側の従動部材(21a)の外周面に陥没形成した凹部(26)内に収容されている。なお、連結部材(25)の両端部は、従動部材(21a)(21b)に回転可能に枢支されていれば足り、上述の取付け方法には限定されない。
【0023】
主軸(2)の先端部には、軸方向の孔(30)が形成される。この孔(30)には、内径側の原動部材(20a)の端面に埋め込んだベアリング(31)によって先端部を回転自在に支持されたコアピン(32)が軸方向に摺動可能となる程度の緩いハメアイで挿入される。コアピン(32)の基端部には、これと直交する方向の固定ピン(33)が貫通固定され、この固定ピン(33)の両端部は、主軸(2)を貫通して、主軸(2)の外周面に嵌合した円筒状の固定部材(34)の一端に固定されている。固定部材(34)の他端側は外径側に広がりつつ軸方向に延び、その先端部には連結部材(25)を回転可能に軸支する支軸(35)が設けられている。固定ピン(33)と主軸(2)との間には、主軸(2)の軸方向移動を許容すべく、軸方向の隙間(36)が形成されている。以上の構成から、主軸(2)が軸方向に変位した場合でも、コアピン(32)、固定ピン(33)、および固定部材(34)は静止位置にあり、従って、連結部材(25)を支持する支軸(35)も固定位置にある。
【0024】
変換機構(3)は、例えばボールねじ(41)とボールナット(42)とで構成される。ボールねじ(41)は、主軸(2)の先端部に装着され、その外周にボールナット(42)が噛合される。ボールナット(42)の外周部には、ケース(43)内に軸方向に向けて架設した一対の軸状ガイド(44)が貫通しており、このガイド(44)によってボールナット(42)は、回転不能にかつ軸方向へ移動可能に支持される。ボールナット(42)には、内部にボールねじ(41)を収容した円筒状の加圧部材(45)が固定される。加圧部材(45)の一端側は、ケース(43)の先端面を貫通しており、かつその先端部は閉塞部材(46)によって閉じられている
主軸(2)は、切替手段(8:図3参照)とボールナット(42)との間に配した支持部材(47)によって回転自在に支持される。支持部材(47)の一端面とケース(43)の基端部との間には、前記ガイド(44)に外挿した圧縮バネ(49)が介装されており、かかる構造によって、主軸(2)が軸方向に弾性変位可能に支持されている。
【0025】
以下、上述した圧入機の動作を説明する。
【0026】
先ず、空走中、すなわち加圧部材(45)が待機位置から圧入開始位置に達するまでの間は、加圧部材(45)に負荷が作用しないため、図3の下側に示すように、主軸(2)は図面右側の初期位置にある。この時には、弾性部材(24a)(24b)が内径側の高速側クラッチ要素(7a)の従動部材(21a)を軸方向に弾圧して原動部材(20a)に押付けているため、当該クラッチ要素(7a)は伝動状態にある。一方、外径側のクラッチ要素(7b)は、従動部材(21b)が原動部材(20b)から離反した断絶状態にある。従って、主軸(2)は減速機(6)の高速出力軸(12)に接続されて高速(N rpm)で回転駆動される。これにより、加圧部材(45)の直進速度が速くなるので、空走時間の短縮化が図られる。
【0027】
加圧部材(45)がワークと接触し、ワークを相手部材に圧入し始めると、ワークに相手部材から軸方向の反力が作用する。この軸方向反力は、加圧部材(45)を介して主軸(2)に伝達され、その結果、図3の上側に示すように、主軸(2)が弾性部材(24a)(24b)の弾性力に抗して軸方向(図面左側)に僅かに変位する。これにより、外径側の従動部材(21b)が図面左側に変位して対向する原動部材(20b)に圧接し、低速側のクラッチ要素(7b)が伝動状態になる。この時、内径側の従動部材(21a)は、連結部材(25)のてこ作用によって後退するため、高速側のクラッチ要素(7 a)が断絶状態になる。これによって、主軸(2)が減速機(6)の低速出力軸(17)に接続され、高トルクで駆動されるので、加圧部材(45)の加圧力が大きくなる。従って、小型のモータを用いた場合でも十分な加圧力を確保することができる。
【0028】
以上の説明では、主軸(2)の軸方向変位を利用し、機械的手段によって高速側と低速側のクラッチ要素(7a)(7b)を切り替える場合を例示しているが、同様の動作を電気的手段に行なうことも可能である。例えば、クラッチ要素(7a)(7b)を電磁クラッチとし、主軸(2)の軸方向変位をセンサで検知してこのセンサからの情報に基づいて電磁クラッチを切り替える構造が考えられる。また、上述のように主軸(2)の軸方向変位を利用する他、主軸(2)を固定位置に配置し、軸方向反力で生じた主軸(2)の歪量をセンサで検知して、その情報に基いて電磁クラッチを切り替えることもできる。
【0029】
また、減速機(6)の出力軸(12)(17)やクラッチ要素(7 a)(7 b)の設置数を3つ以上とすることもでき、その場合には、加圧部材(45)の直進速度を多段階的に切り替えることが可能となる。
【0030】
なお、本発明は、上述の圧入機に限らず、直進機構を有する工作機械、すなわち、ワーク(工具も含む)を直進させる工作機械であって、工作時(材料が除去されるか否かは問わない)に主軸(2)に負荷が生じる機械に広く適用することができる。
【0031】
【発明の効果】
本発明によれば、直進機構の動力源として小型のモータを使用することができるので、直進機構を有する工作機械の小型化および低コスト化を図ることができる。同時に空走時間の短縮化も図ることができ、作業能率の向上が達成される。
【図面の簡単な説明】
【図1】本発明にかかる圧入機の断面図である。
【図2】減速機の概略構造を示す側面図である。
【図3】速度制御機構の一部を示す断面図である。
【符号の説明】
1 モータ
2 主軸
3 変換機構
4 速度制御機構
6 減速機
7a クラッチ要素(高速側)
7b クラッチ要素(低速側)
8 切替手段
12 回転軸(低速出力軸)
17 円筒部(高速出力軸)
20a 原動部材(高速側)
20b 原動部材(低速側)
21a 従動部材(高速側)
21b 従動部材(低速側)
24a 弾性部材
24b 弾性部材
25 連結部材
35 支軸
45 加圧部材
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a machine tool, for example, a press-fitting machine, provided with a linear mechanism for linearly transferring a workpiece or a tool.
[0002]
[Prior art]
One type of machine tool is a press-fitting machine. A press-fitting machine presses a member (work) to be press-fitted with a pressurizing member and press-fits it into a mating member. Conventionally, most of the pressurizing machine is structured to pressurize the pressurizing member with hydraulic pressure.
[0003]
[Problems to be solved by the invention]
However, since the hydraulic type requires an oil tank, piping, etc., the structure becomes large and complicated.
[0004]
On the other hand, as a solution to this problem, a structure is conceivable in which a servo motor is used as a drive source, and the rotary member is converted into a linear motion with a ball screw or the like so that the pressure member moves straight.
[0005]
However, since a large pressure is required for press-fitting, an increase in the size of the motor is inevitable. To reduce the size of the motor, it is only necessary to increase the reduction ratio of the reduction gear connected to the motor. However, this increases the movement time (idle time) from the standby position of the pressure member to the press-fitting start position. Efficiency decreases.
[0006]
Note that this type of problem is not limited to the above-described press-fitting machine, but may also occur in other machine tools that include a linear mechanism for linearly transferring a workpiece (including a tool).
[0007]
Therefore, an object of the present invention is to provide a machine tool that can use a small motor as a power source for a straight-ahead mechanism and that can also reduce idle time.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, a machine tool according to the present invention includes a motor, a main shaft that is rotationally driven by the motor, a conversion mechanism that converts the rotational motion of the main shaft into a straight motion, and moves the workpiece straight, and the motor is defined. A speed control mechanism that switches the rotational speed of the main shaft according to the axial reaction force from the workpiece that acts on the main shaft in a state of being rotated at high speed.
[0009]
The speed control mechanism includes a plurality of output shafts, and includes a reduction gear that is driven by the motor and rotates each output shaft at different speeds, a driving member, and a driven member. A plurality of clutch elements connected to the output shaft, each driven member attached to the main shaft, and one clutch element according to the axial reaction force are selected, power is transmitted by the clutch element, and the other It can be configured with switching means for interrupting the power transmission of the clutch element.
[0010]
In this case, the driving member of each clutch element is coaxially arranged, the corresponding driven member is coaxially arranged at the opposite position, and the main shaft is elastically supported so as to be displaceable in the axial direction. It is preferable to switch the transmission and disconnection of each clutch element by relatively moving each driven member in the axial direction by the axial displacement of the main shaft based on the force.
[0011]
Specifically, there are two types of clutch elements, a high speed side clutch element and a low speed side clutch element, and the follower member of the high speed side clutch element is elastically pressed against the driving member opposite to the switching means. And a connecting member having a supporting shaft at a fixed position between the two driven members and having a supporting shaft at a fixed position between the two driven members, and against the elastic force of the elastic member by the axial displacement of the main shaft. A structure is conceivable in which the high-speed driven member is separated from the driving member facing the high-speed driving member and the low-speed driven member is pressed against the driving member facing the high-speed driving member.
[0012]
In the above configuration, if a pressurizing member is provided on the output side of the conversion mechanism to pressurize the work and press-fit into the mating member, the press mechanism can be used.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention is applied to a press-fitting machine which is one of machine tools, and a preferred embodiment in that case will be described with reference to FIGS.
[0014]
As shown in FIG. 1, the press-fitting machine according to the present invention converts the rotational motion of the motor (1), the main shaft (2) rotated by the motor (1), and the main shaft (2) into a straight motion. A conversion mechanism (3) for linearly moving a workpiece (not shown) and a spindle (2) according to an axial reaction force from the workpiece acting on the spindle (2) in a state where the motor (1) is rotated at a constant speed. And a speed control mechanism (4) for switching the rotation speed.
[0015]
The speed control mechanism (4) is a main shaft for transmission / disconnection of the speed reducer (6) connected to the motor (1), the plurality of clutch elements (7a) (7b), and each clutch element (7a) (7b). It is comprised with the switching means (8) switched according to the axial direction reaction force which acts on (2) (refer FIG. 3).
[0016]
The speed reducer (6) is for outputting a plurality of driving forces having different rotational speeds (different torques) from a constant driving force of the motor (1) coaxially. As an example in FIG. A reduction gear (6) having two output shafts (12) and (17) of (low torque) and a low-speed rotation shaft (high torque) is shown.
[0017]
The speed reducer (6) includes a rotating shaft (12) connected to the motor (1) via a coupling (11), a first gear (13) mounted on the rotating shaft (12), and a first gear (13). The second gear (14) meshing with the second gear (14), the third gear (15) rotating integrally with the second gear (14), and the fourth gear (16) meshing with the third gear (15). The second gear (14) has a larger diameter than the first gear (13), and the fourth gear (16) has a larger diameter than the third gear (15). The fourth gear (16) is extrapolated to the rotating shaft (12) with a bearing (not shown) interposed between the outer peripheral surface of the rotating shaft (12) and a cylindrical portion extending in the axial direction on the inner peripheral portion thereof. (17) is integrally formed.
[0018]
The rotating shaft (12) is driven by the motor (1) and rotates at a constant rotational speed N. At this time, the fourth cylindrical portion of the gear (16) on the outer diameter side of the rotation axis (12) (17), a reduction ratio I 1 between the first gear (13) and second gear (14), first It rotates at the rotation speed (I 1 × I 2 × N) multiplied by the reduction ratio I 2 between the third gear (15) and the fourth gear (16). Therefore, the rotating shaft (12) becomes a high-speed output shaft that rotates at high speed (N rpm), and the cylindrical portion (17) of the fourth gear (16) rotates at low speed (I 1 × I 2 × N rpm). It becomes an axis.
[0019]
The same number of clutch elements (7a) and (7b) as the output shafts (12) and (17) of the speed reducer (6) are provided (two in this embodiment). Both clutch elements (7a) and (7b) are respectively composed of driving members (20a) and (20b) and driven members (21a and 21b). Of the driving members (20a) and (20b), one (20b) is formed in a cylindrical shape and is arranged coaxially with the axis of the main shaft (2). The other driving member (20a) is formed in a shaft shape, and is disposed coaxially with the one driving member (20b) on the inner diameter side. The driving member (20a) on the inner diameter side is connected to the high speed output shaft (12: rotating shaft) of the speed reducer (6), and the driving member (20b) on the outer diameter side is connected to the low speed output shaft (17: cylindrical portion). Connected. The two driven members (21a) and (21b) are both formed in a substantially cylindrical shape, and one (21a) is accommodated on the inner diameter side of the other (21b), and the key (22a) (22b) is formed on the outer peripheral surface of the main shaft (2). ) Etc. However, the driven member (21a) on the inner diameter side has a structure in which the key (22a) and the keyway of the key groove are loosened to allow the axial displacement. Both driven members (21a) and (21b) are coaxial with the axis of the main shaft (2), and both end surfaces thereof face the end surfaces of the driving members (20a) and (20b) in the axial direction. A friction material (not shown) used in an ordinary clutch device is interposed between the end surfaces of the driving members (20a) and (20b) and the end surfaces of the driven members (21a) and (21b). .
[0020]
From the above configuration, the inner diameter side driving member (20a) and the driven member (21a) function as a high speed side clutch element (7a) for switching between transmission and disconnection of the high speed output shaft (12). The member (20b) and the driven member (21b) function as a low-speed side clutch element (7b) that switches between transmission and disconnection of the low-speed output shaft (17).
[0021]
The switching means (8) includes an elastic member (24a) (24b) such as a coil spring that presses the driven member (21a) on the inner diameter side toward the driving member (20a) opposed thereto, and both driven members (21a) ( 21b) and a connecting member (25).
[0022]
The outer diameter side end of the connecting member (25) is pivotally attached to the outer diameter driven member (21b). An end portion on the inner diameter side of the coupling member (25) is formed in a spherical shape, and this spherical surface portion is accommodated in a recess (26) formed in a concave shape on the outer peripheral surface of the driven member (21a) on the inner diameter side. It should be noted that both ends of the connecting member (25) need only be pivotally supported by the driven members (21a) and (21b), and are not limited to the above-described mounting method.
[0023]
An axial hole (30) is formed at the tip of the main shaft (2). In the hole (30), the core pin (32) whose tip is rotatably supported by a bearing (31) embedded in the end surface of the inner diameter side driving member (20a) is slidable in the axial direction. It is inserted with a loose hameai. A fixing pin (33) in a direction perpendicular to the core pin (32) is fixed to the base end of the core pin (32). Both ends of the fixing pin (33) pass through the main shaft (2), and the main shaft (2 ) Is fixed to one end of a cylindrical fixing member (34) fitted to the outer peripheral surface. The other end side of the fixing member (34) extends in the axial direction while spreading toward the outer diameter side, and a support shaft (35) for rotatably supporting the connecting member (25) is provided at the tip end portion thereof. Between the fixing pin (33) and the main shaft (2), an axial gap (36) is formed so as to allow the main shaft (2) to move in the axial direction. From the above configuration, even when the main shaft (2) is displaced in the axial direction, the core pin (32), the fixing pin (33), and the fixing member (34) are in a stationary position, and thus support the connecting member (25). The supporting shaft (35) is also in a fixed position.
[0024]
The conversion mechanism (3) includes, for example, a ball screw (41) and a ball nut (42). The ball screw (41) is attached to the tip of the main shaft (2), and a ball nut (42) is engaged with the outer periphery thereof. A pair of shaft-shaped guides (44) installed in the axial direction in the case (43) pass through the outer periphery of the ball nut (42), and the ball nut (42) is inserted by this guide (44). It is supported so that it cannot rotate and is movable in the axial direction. A cylindrical pressure member (45) accommodating a ball screw (41) therein is fixed to the ball nut (42). One end side of the pressurizing member (45) passes through the front end surface of the case (43), and the front end portion thereof is closed by the closing member (46). It is rotatably supported by a support member (47) disposed between the ball nut (42) and the ball nut (42). A compression spring (49) extrapolated to the guide (44) is interposed between one end surface of the support member (47) and the base end portion of the case (43). 2) is supported so as to be elastically displaceable in the axial direction.
[0025]
Hereinafter, the operation of the above-described press-fitting machine will be described.
[0026]
First, since the load does not act on the pressure member (45) during idle running, that is, until the pressure member (45) reaches the press-fitting start position from the standby position, as shown in the lower side of FIG. The main shaft (2) is in the initial position on the right side of the drawing. At this time, since the elastic members (24a) and (24b) press the driven member (21a) of the high speed side clutch element (7a) on the inner diameter side in the axial direction and press it against the driving member (20a), the clutch element ( 7a) is in transmission. On the other hand, the clutch element (7b) on the outer diameter side is in a disconnected state in which the driven member (21b) is separated from the driving member (20b). Therefore, the main shaft (2) is connected to the high-speed output shaft (12) of the speed reducer (6) and is driven to rotate at a high speed (N rpm). As a result, the straight traveling speed of the pressure member (45) is increased, so that the idle running time can be shortened.
[0027]
When the pressing member (45) comes into contact with the workpiece and starts to press-fit the workpiece into the mating member, an axial reaction force acts on the workpiece from the mating member. This axial reaction force is transmitted to the main shaft (2) via the pressurizing member (45). As a result, as shown in the upper side of FIG. 3, the main shaft (2) is moved by the elastic members (24a) (24b). It is slightly displaced in the axial direction (left side of the drawing) against the elastic force. As a result, the driven member (21b) on the outer diameter side is displaced to the left side of the drawing and pressed against the opposing driving member (20b), and the clutch element (7b) on the low speed side is in a transmission state. At this time, the driven member (21a) on the inner diameter side is retracted by the lever action of the connecting member (25), so that the clutch element (7a) on the high speed side is disconnected. As a result, the main shaft (2) is connected to the low speed output shaft (17) of the speed reducer (6) and driven with high torque, so that the pressure applied to the pressure member (45) is increased. Therefore, sufficient pressure can be ensured even when a small motor is used.
[0028]
In the above description, the case where the high speed side and low speed side clutch elements (7a) and (7b) are switched by mechanical means using the axial displacement of the main shaft (2) is exemplified. It is also possible to carry out by an appropriate means. For example, a structure in which the clutch elements (7a) and (7b) are electromagnetic clutches, the axial displacement of the main shaft (2) is detected by a sensor, and the electromagnetic clutch is switched based on information from the sensor can be considered. In addition to using the axial displacement of the main shaft (2) as described above, the main shaft (2) is arranged at a fixed position, and the amount of distortion of the main shaft (2) caused by the axial reaction force is detected by a sensor. The electromagnetic clutch can be switched based on the information.
[0029]
Also, the number of output shafts (12) (17) and clutch elements (7a) (7b) of the speed reducer (6) can be set to three or more. In that case, the pressure member (45 ) Can be switched in multiple stages.
[0030]
The present invention is not limited to the press-fitting machine described above, and is a machine tool having a straight advance mechanism, that is, a machine tool that advances a work (including a tool) straight, and whether or not the material is removed (whether or not material is removed). It can be widely applied to machines in which a load is applied to the main shaft (2).
[0031]
【The invention's effect】
According to the present invention, since a small motor can be used as a power source of the linear mechanism, the machine tool having the linear mechanism can be reduced in size and cost. At the same time, the idle time can be shortened, and the work efficiency is improved.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a press-fitting machine according to the present invention.
FIG. 2 is a side view showing a schematic structure of a speed reducer.
FIG. 3 is a cross-sectional view showing a part of the speed control mechanism.
[Explanation of symbols]
1 Motor 2 Spindle 3 Conversion mechanism 4 Speed control mechanism 6 Reducer
7a Clutch element (high speed side)
7b Clutch element (low speed side)
8 Switching means
12 Rotating shaft (low speed output shaft)
17 Cylindrical part (high-speed output shaft)
20a Driving member (high speed side)
20b Driving member (low speed side)
21a Follower (high speed side)
21b Follower (low speed side)
24a Elastic member
24b Elastic member
25 Connecting member
35 Spindle
45 Pressure member

Claims (4)

モータと、モータによって回転駆動される主軸と、主軸の回転運動を直進運動に変換してワークを直進させる変換機構と、前記モータを定速回転させた状態で、主軸に作用する、ワークからの軸方向反力に応じて主軸の回転速度を切り替える速度制御機構とを具備し、
前記速度制御機構が、
複数の出力軸を有し、前記モータに駆動されて各出力軸を異なる速度で回転させる減速機と、
原動部材および従動部材を有し、各原動部材をそれぞれ減速機の出力軸に連結すると共に、各従動部材をそれぞれ主軸に取り付けた複数のクラッチ要素と、
前記軸方向反力に応じて一のクラッチ要素を選択し、当該クラッチ要素で動力伝達を行うと共に、他のクラッチ要素の動力伝達を遮断する切替手段と
で構成された工作機械。
A motor, a main shaft that is rotationally driven by the motor, a conversion mechanism that converts the rotational motion of the main shaft into a linear motion and linearly moves the work, and the work that acts on the main shaft while rotating the motor at a constant speed. A speed control mechanism that switches the rotational speed of the main shaft according to the axial reaction force ,
The speed control mechanism is
A speed reducer having a plurality of output shafts and driven by the motor to rotate each output shaft at a different speed;
A plurality of clutch elements each having a driving member and a driven member, each driving member being connected to the output shaft of the reduction gear, and each driven member being attached to the main shaft;
Switching means for selecting one clutch element in accordance with the axial reaction force, transmitting power with the clutch element, and blocking power transmission with another clutch element;
A machine tool composed of
各クラッチ要素の原動部材を同軸上に配置すると共に、対応する従動部材をその対向位置に同軸配置し、かつ、主軸を軸方向へ変位可能に弾性的に支持してなり、前記軸方向反力に基く主軸の軸方向変位により、各従動部材を軸方向へ相対移動させて、各クラッチ要素の伝動および断絶を切り替えるようにした請求項記載の工作機械。The driving member of each clutch element is coaxially arranged, the corresponding driven member is coaxially arranged at the opposite position, and the main shaft is elastically supported so as to be displaceable in the axial direction. by axial displacement of the spindle based on the respective driven members are relatively moved in the axial direction, the machine tool of claim 1 wherein to switch the transmission and disconnection of the clutch element. クラッチ要素として、高速側のクラッチ要素と低速側のクラッチ要素との2種類を有し、かつ、切替手段が、高速側クラッチ要素の従動部材をこれに対向する原動部材に弾圧する弾性部材と、両従動部材に回転可能に枢支され、両従動部材間の固定位置に支軸を有する連結部材とを具備してなり、
主軸の軸方向変位により、弾性部材の弾圧力に抗して高速側の従動部材をこれに対向する原動部材から離反させると共に、低速側の従動部材をこれに対向する原動部材に圧接させるようにした請求項記載の工作機械。
There are two types of clutch elements, a high-speed side clutch element and a low-speed side clutch element, and the switching means is an elastic member that elastically presses the driven member of the high-speed side clutch element against the driving member facing it, A pivot member rotatably supported by both driven members, and a connecting member having a support shaft at a fixed position between the two driven members;
Due to the axial displacement of the main shaft, the driven member on the high speed side is separated from the driving member facing the elastic member against the elastic pressure of the elastic member, and the driven member on the low speed side is pressed against the driving member facing it. The machine tool according to claim 2 .
変換機構の出力側に、ワークを加圧して相手部材に圧入するための加圧部材を設けた請求項1〜3何れか記載の工作機械。The machine tool according to any one of claims 1 to 3, wherein a pressure member is provided on the output side of the conversion mechanism to pressurize the workpiece and press-fit the workpiece into the mating member.
JP31537097A 1997-11-17 1997-11-17 Machine Tools Expired - Fee Related JP3805087B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31537097A JP3805087B2 (en) 1997-11-17 1997-11-17 Machine Tools

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31537097A JP3805087B2 (en) 1997-11-17 1997-11-17 Machine Tools

Publications (2)

Publication Number Publication Date
JPH11151632A JPH11151632A (en) 1999-06-08
JP3805087B2 true JP3805087B2 (en) 2006-08-02

Family

ID=18064600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31537097A Expired - Fee Related JP3805087B2 (en) 1997-11-17 1997-11-17 Machine Tools

Country Status (1)

Country Link
JP (1) JP3805087B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3664406B1 (en) 2004-09-16 2005-06-29 サイエンティフィックテクノロジーズ有限会社 Power transmission method and apparatus having load-sensitive thrust amplification mechanism
CN106624944B (en) * 2016-12-28 2019-03-01 中国人民解放军国防科学技术大学 A kind of cutter suitable for straight cuts operation
CN114215883B (en) * 2021-12-14 2023-12-08 中冶赛迪工程技术股份有限公司 Power flow switching method

Also Published As

Publication number Publication date
JPH11151632A (en) 1999-06-08

Similar Documents

Publication Publication Date Title
KR950008236Y1 (en) Charge speed mechanism for a motor driving tool
RU2002134074A (en) DRIVE OF A ROTATING DETAIL OF A PRINTING MACHINE AND A METHOD FOR SEPARATING A DRIVE
KR100384986B1 (en) Screw rotating press fitting
KR0183124B1 (en) Manual transmission
JP4694520B2 (en) Friction transmission
JP5219751B2 (en) Hoisting machine with built-in load-sensitive automatic transmission and load-sensitive automatic transmission
JP3805087B2 (en) Machine Tools
KR101957224B1 (en) Drive for a machine, torque motor, clutch unit, device for processing materials, and use of a torque motor
RU2211150C2 (en) Drive of erasing cylinder for metallographic printing machine
KR20010108960A (en) Robot hand system with electrical driving means
EP1541904B1 (en) A ball screw actuator
US7032732B2 (en) Two-way clutch
JP4023049B2 (en) Clutch device
JP4444546B2 (en) Friction stir welding equipment
KR20010014280A (en) Servo-actuator for a car clutch
JP4744563B2 (en) Power transmission device for press machine
JP2004504560A (en) Friction wheel type continuously variable transmission
KR0181397B1 (en) Clutch release
CN215410132U (en) Gear shifting device and transportation equipment comprising same
KR200259816Y1 (en) Apparatus for extracting a electrode tip for welding
JP2537628B2 (en) Press-fitting device
JP3458861B2 (en) Friction wheel type continuously variable transmission
JPH0123688Y2 (en)
JP3052716B2 (en) Friction wheel type continuously variable transmission
KR200269087Y1 (en) Clutch brake unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041029

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060509

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090519

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120519

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120519

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150519

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees