JP4444546B2 - Friction stir welding equipment - Google Patents

Friction stir welding equipment Download PDF

Info

Publication number
JP4444546B2
JP4444546B2 JP2002034343A JP2002034343A JP4444546B2 JP 4444546 B2 JP4444546 B2 JP 4444546B2 JP 2002034343 A JP2002034343 A JP 2002034343A JP 2002034343 A JP2002034343 A JP 2002034343A JP 4444546 B2 JP4444546 B2 JP 4444546B2
Authority
JP
Japan
Prior art keywords
rotor
rotation
rotation axis
drive source
rotational
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002034343A
Other languages
Japanese (ja)
Other versions
JP2002273578A (en
Inventor
幸治 土肥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Motors Ltd
Original Assignee
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Jukogyo KK filed Critical Kawasaki Jukogyo KK
Priority to JP2002034343A priority Critical patent/JP4444546B2/en
Publication of JP2002273578A publication Critical patent/JP2002273578A/en
Application granted granted Critical
Publication of JP4444546B2 publication Critical patent/JP4444546B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、回転による摩擦熱で被接合物を軟化、攪拌して接合する摩擦攪拌接合装置に関する。
【0002】
【従来の技術】
図7は、或る提案された摩擦攪拌接合装置1を示す正面図である。この摩擦攪拌接合装置1では、先端にピン2を有する回転子3を高速で回転させながらワークに押し付け、ピン2とワークとの接合部を、回転による摩擦熱で軟化させるとともに、回転によって攪拌して接合する。つまり、摩擦攪拌接合装置1は、回転子3を、その軸線まわりに高速で回転させる回転用駆動源4と、回転子3を、回転軸線にそって直進移動させる直進駆動源5とを有する。摩擦攪拌接合装置1は、支持フレーム6とリニアスライダ7とボールねじ8とを有し、支持フレーム6が、加工機械本体に保持される。
【0003】
リニアスライダ7は、支持フレーム6に固定される。直進案内されるリニアスライダ7のガイド部には、回転自在に支持される回転子3と、回転子3を回転駆動する回転駆動源4とが取り付けられる。ボールねじ8は、リニアスライダ7に平行に支持フレーム6に固定され、ボールねじ8のねじ軸10に螺着されるナット部材9がリニアガイド7のスライド部材に連結される。したがって、ボールねじ8のねじ軸10を、サーボモータなどの直進駆動源5で回転駆動することによって、ナット部材9はねじ軸10にそって上下に直進移動する。このナット部材9に取り付けられるスライド部材は、回転子3および回転駆動源4とともに直進移動する。
【0004】
このような構成によって回転子3を回転させながら直進移動させることができる。
【0005】
【発明が解決しようとする課題】
上記した摩擦攪拌接合装置1では、回転子3を回転駆動するための回転駆動源4ごと直進駆動源5でスライドさせて、ワークに押圧していたので、大容量の直進駆動源を必要とし、装置全体が大掛かりになるといった問題を有する。またこれにより、コストアップも招いていた。さらに、このような大重量の摩擦攪拌接合装置1を装備する加工機械本体の負荷重量も大きくなってしまう。
【0006】
また、ボールねじ8とリニアスライダ7とを用いる構造では、直進駆動力を発生するボールねじ8のねじ軸10と、押圧したときにワークから負荷を受ける回転子3の軸線とは、図7で参照符Wで示すように距離Wだけ離間している。このように直進駆動軸と負荷軸とが離間していると、押圧時に曲げモーメントが発生し、これによってガタが生じやすく、耐久性に問題がある。
【0007】
また、直進駆動源5であるサーボモータの電流値に基づいて回転子の押圧力を検出する場合があるが、上記したようにガタが生じると、電流値が変動し、押圧力を正確に検出できなくなるといった問題が生じる。
【0008】
また、直進駆動源5は、回転子3とともに回転駆動源4を直進移動させるので、回転駆動源4の重量分、直進駆動源5による回転子3の押圧力と、直進駆動源4の電流値との関係に誤差を与えるといった問題がある。
【0009】
本発明の目的は、回転駆動源を直進駆動源で移動させず、また、押圧時に曲げモーメントが発生しないように構成される摩擦攪拌接合装置を提供することである。
【0011】
【課題を解決するための手段】
発明は、高速回転する回転子を回転軸線方向に移動させ、先端部を被接合物に押圧し、前記先端部の回転による摩擦熱によって前記被接合物の接触部を軟化させ、攪拌して被接合物を接合する摩擦攪拌接合装置において、
回転子を回転軸線まわりに高速回転させるサーボモータから成る回転駆動源と、
回転子を回転軸線方向に直進移動させるサーボモータから成る直進駆動源と、
回転駆動源および直進駆動源をそれぞれ支持し、回転子を回転軸線方向に移動可能に支持する支持部材と、
回転子の回転軸線方向への移動を許容し、かつ回転駆動源からの回転駆動力を回転子に伝達する回転伝達手段と、
回転子の回転を許容し、かつ直進駆動源からの直進駆動力を回転子に同軸に伝達する直進伝達手段とを備えることを特徴とする摩擦攪拌接合装置である。
【0012】
また本発明は、高速回転する回転子を回転軸線方向に移動させ、先端部を被接合物に押圧し、前記先端部の回転による摩擦熱によって前記被接合物の接触部を軟化させ、攪拌して被接合物を接合し、
加工機械本体に装備される摩擦攪拌接合装置において、
回転子を回転軸線まわりに高速回転させるサーボモータから成る回転駆動源と、
回転子を回転軸線方向に直進移動させるサーボモータから成る直進駆動源と、
回転駆動源および直進駆動源をそれぞれ支持し、回転子を回転軸線方向に移動可能に支持する支持部材と、
回転子の回転軸線方向への移動を許容し、かつ回転駆動源からの回転駆動力を回転子に伝達する回転伝達手段と、
回転子の回転を許容し、かつ直進駆動源からの直進駆動力を回転子に同軸に伝達する直進伝達手段とを備え、
支持部材は、加工機械本体に固定され、
加工機械本体は、前記回転軸線と直角方向に、任意の長さ分、回転子と被接合物との相対動作を生じさせることを特徴とする摩擦攪拌接合装置である。
【0013】
また本発明は、前記回転子の回転駆動力は、回転子の側面に伝達されることを特徴とする。
【0014】
また本発明は、前記回転子の回転駆動力は、回転子の一端部に伝達されることを特徴とする。
【0015】
本発明に従えば、回転子を回転させる回転駆動源は、回転子の回転軸線方向への変位を許容した状態で回転力を伝達する回転伝達手段によって回転力を伝達するので、回転駆動源を支持部材に固定した状態で、回転子を回転させながら、直進駆動源で回転子を直進移動させることができる。これによって、直進駆動源は、回転子のみを直進移動させればよく、回転駆動源を移動させる必要がないので、直進駆動源の容量が少なくてすみ、小型化できる。これによって、この摩擦攪拌接合装置を保持する加工機械本体の負担も軽くなる。また、回転駆動源を移動させる必要がないことにより、直進駆動源の電流値と押圧力との関係に、誤差が生じにくくなる。
【0016】
また、回転駆動源の回転力は、回転子の側面から伝達されてもよく、端部から伝達されてもよい。
【0022】
また本発明は、(a)回転子保持部材70であって、
回転子の回転子本体36が挿入される回転子挿入孔72を有し、回転子を保持する下端部を有し、
前記下端部の外周部に、前記軸線Lに平行に延びる複数のスプライン76が形成される回転子保持部材70と、
)回転支持部材73であって、
内周側に前記スプライン76が嵌まる第1スプライン受け75と、
第1スプライン受け75を、支持部材に、前記軸線Lまわりに回転可能に支持し、支持部材に取り付けられる第1軸受け74とを有する回転支持部材73とを含み、
前記回転駆動源は、支持部材に固定的に支持される回転駆動用モータ41を含み、
前記回転伝達手段は、回転子の回転軸線方向への移動を許容し、回転駆動用モータ41からの回転駆動力を回転子保持部材70に伝達し、
前記直進駆動原は、支持部材に固定的に支持される直進駆動用モータ40を含み、
前記直伝達手段は、回転子の回転を許容し、直進駆動用モータ40からの直進駆動力を回転子保持部材70の上端部に同軸に伝達することを特徴とする。
【0023】
また本発明は、支持部材は、加工機械本体に固定され、
加工機械本体は、前記回転軸線と直角方向に、任意の長さ分、回転子と被接合物との相対動作を生じさせることを特徴とする。
【0024】
【発明の実施の形態】
図1は本発明の実施の一形態である摩擦攪拌接合装置20を示す図である。摩擦攪拌接合装置20は、加工機械本体23に装備される。
【0025】
摩擦攪拌接合装置20は、支持部材である支持フレーム30、回転子31、回転押圧機構32を有する。支持フレーム30が加工機械本体23に固定され、回転押圧機構32を保持する。回転押圧機構32は、回転子31を、その軸線Lまわりに高速で回転させるとともに、回転軸線L方向に直進移動させる。また、回転子31の先端に対向する受け部33が、別途設けられる。回転子31は、先端側が先細りとなり(図2参照)、先端部は回転軸線Lと同軸の円柱部35が形成され、その下端面から回転軸線Lに沿ってピン34が突出して設けられる。
【0026】
たとえばアルミニウム合金板などの2枚のワークを接合する場合、2枚のワークを重ね、接合部の下部に摩擦攪拌接合装置20の受け部33が配置される。次に、回転押圧機構32で回転子31を高速で回転させるとともに、回転子31を前進移動させる。すると、受け部33と回転子31との間に2枚のワークが挟持され、回転子31先端のピン34がワークの接合部に押圧される。回転しながら押圧されることによって摩擦熱が発生し、接合部近傍が軟化し、ピン34が挿入される。
【0027】
ピン34が回転しながら挿入されることにより、接合部近傍で塑性流動を起こし、ピン34によって攪拌される。また、ピン34が挿入され、回転子31の円柱部35の下端面(ショルダー部)がワーク表面に押圧されると、この下端面によっても、ワーク表面が攪拌される。このようにして、ピン34が2枚のワークの接合部を超えるまで挿入され、所定の押圧力で所定時間押圧して攪拌する。加工機械本体23は、接合時もしくは接合中においては、接合の適用内容に応じて、回転軸線Lと直角方向に、任意の長さ分、回転子31とワークとの相対動作を生じさせる。その後、回転押圧機構32で回転子31を、回転軸線Lに沿って後退させる。ピン34が引き抜かれると、攪拌され塑性流動を起こした接合部近傍が冷却して硬化し、接合部で2枚のワークが接合される。
【0028】
図2は、摩擦攪拌接合装置20の回転押圧機構32の構成を示す図である。回転子31は、回転子本体36と回転子31を保持する回転子保持部材70とからなり、回転押圧機構32は、回転子31を回転駆動する回転駆動源であるインダクションモータ41、回転子31を直進移動させる直進駆動源であるサーボモータ40と、インダクションモータ41からの回転力を回転子保持部材70に伝達する回転伝達手段42と、サーボモータ40の直進駆動力を回転子保持部材70に伝達する直進伝達手段43とを有する。
【0029】
支持フレーム30は、サーボモータ40、インダクションモータ41を固定的に支持し、回転子保持部材70を回転支持部材73を介して支持する。回転子保持部材70は、外周に回転軸線Lに平行に延びる複数のスプライン76を有し、前記回転支持部材73は、内周側にスプライン76が嵌まるスプライン受け75を有し、外周側に軸受け74を有し、この軸受け74が支持フレーム30に取り付けられる。このような構成によって、回転子保持部材70は、回転軸線Lまわりに回転可能で、かつ回転軸線L方向に移動自在に支持フレーム30に支持される。
【0030】
回転子保持部材70は、円柱状であり、下端部に回転子挿入孔72が形成され、この回転子挿入孔72に回転子本体36が挿入され、回転軸線Lまわりの回転、および回転軸線L方向への移動が阻止されて回転子保持部材70に保持される。
【0031】
回転伝達手段42は、インダクションモータ41の出力軸67に固定される第一ベルト車61、Vベルト62、第二ベルト車63、スプライン軸66、スプライン軸66と第二ベルト車63とを連結するユニバーサルジョイント64とから構成される。回転子保持部材70の上端部には、内スプラインを有するスプライン孔71が、回転軸線Lと同軸に形成され、このスプライン孔71に前記スプライン軸64が挿入される。これによって、スプライン軸64と回転子保持部材70とは、軸線L方向に直進移動可能で、かつ軸線Lまわりの回転が阻止された状態で連結される。
【0032】
第二ベルト車63は、軸受け65によって軸線Lまわりに回転自在に支持フレーム30に支持され、この第二ベルト車63から第一ベルト車61にわたってVベルト62が巻き掛けられ、第二ベルト車63とスプライン軸81とが、ユニバーサルジョイント64を介して連結される。このような構成の回転伝達手段42によって、インダクションモータ41の回転力が回転子31に伝達される。
【0033】
直進伝達手段43は、サーボモータ40の出力軸44に固定される有歯ベルト車45と、タイミングベルト46と、ナット部材47とを有し、この直進伝達手段43に直線部材48が連結される。直進部材48は、前記ナット部材47が螺合するねじ軸49と、ねじ軸49の下端部に固定され、回転子保持部材70の上端部に連結される連結部材50とを有する。連結部材50の下端部は、一対の軸受け80を介して、回転子保持部材70が軸線Lまわりに回転可能で、かつ連結部材50と回転子保持部材70とが回転軸線L方向へ移動が阻止された状態で連結される。また、連結部材50下端部の外周部には、回転軸線Lに平行な方向に延びる複数の外スプライン82が設けられ、支持フレーム30には、前記外スプライン82が嵌り込むスプライン受け83が固定される。これによって、連結部材50は、回転軸線Lまわりの回転が阻止され、かつ回転軸線L方向へ移動可能に設けられる。
【0034】
連結部材50の上端部にはねじ軸49が固定され、このねじ軸49は、回転軸線Lに同軸に配置される。ねじ軸49に螺合するナット部材47は、ボールネジであり、軸受け52を介して回転軸線Lまわりに回転自在に支持され、軸受け52は、支持フレーム30に固定される。このナット部材47の上端部に有歯ベルト車51が一体に固定され、この有歯ベルト車51からサーボモータ40に取り付けられる有歯ベルト車45にわたってタイミングベルト46が巻き掛けられる。
【0035】
次に、直進伝達手段43の動作について説明する。サーボモータ40を回転させると、有歯ベルト車45、タイミングベルト46を介してナット部材47が回転する。ナット部材47は、支持フレーム30に対して回転軸線L方向に固定的に保持されているので、ナット部材47の回転によってねじ軸49が前進(下降)する。ねじ軸49の下端部に固定される連結部材50は、回転子保持部材70に対して、回転可能かつ回転軸線L方向の移動が阻止されて連結されるので、回転子保持部材70が回転可能な状態で前進する。サーボモータ40を逆転させると、ナット部材47の回転方向も逆転し、回転子31は後退(上昇)する。
【0036】
回転伝達手段42は、スプライン軸64によって、回転軸線L方向に移動可能で、かつ回転軸線Lまわりの回転力を回転子保持部材70に伝達可能に構成されるので、回転子保持部材70を前進、後退させながら回転させることができる。
【0037】
このようにして、インダクションモータ41で回転子31を高速で回転させながら、サーボモータ40によって回転軸線L方向に前進させ、回転子31先端をワークに押圧し、サーボモータ40を逆転させることによって、回転子31を回転させながら後退させることができる。このとき、回転子に直進力を作用させる直進伝達手段43の直進部材48は、ねじ軸49が回転子31の回転軸線Lと同軸にあるので、前述した従来技術のように、押圧時に曲げモーメントが発生することが防がれる。また、直進駆動源であるサーボモータ40は、従来技術のように回転子とともに回転駆動源であるインダクションモータ41を直進移動させる必要がないので、サーボモータ40のモータ容量が小さくて済み、サーボモータ40を小型、軽量化できる。
【0038】
また、摩擦攪拌接合装置20では、サーボモータ40の電流値によって、押圧力を検出するが、押圧時に曲げモーメントが発生しないことにより、サーボモータの電流値と押圧力との関係に、誤差が生じにくくなる。
【0039】
図2に示す直進伝達手段43では、ナット部材47を回転軸線Lまわりに回転自在に、かつ回転軸線L方向への移動を阻止して支持フレーム30に設け、このナット部材47を回転させることによって、直進部材のねじ軸49を前進、後退させるように構成したが、これとは逆に構成してもよい。つまり、図3に示すように、ねじ軸92を軸受け94によって回転自在に支持し、直進部材として下端部が回転子保持部材70に連結され、上端部にねじ軸92に螺合するナット部材91を有する連結部材90を設け、ねじ軸92に有歯ベルト車93を固定し、タイミングベルト46を介してねじ軸92を回転させることによって、ナット部材91に一体に設けられる連結部材90を前進、後退させるように構成してもよい。
【0040】
図4は、本発明の他の実施形態の摩擦攪拌接合装置の回転押圧機構100の構造を示す図である。図2、図3に示す回転押圧機構32では、回転駆動力および直進力が、回転子31の一端部から伝達される構成であるが、本実施形態の回転押圧機構100では、回転駆動力が回転子31の一端部から入力され、回転力が回転子31の側面に伝達される。
【0041】
つぎに、本実施形態の回転押圧機構100の構成について詳細に説明する。なお、前述した回転押圧機構32に対応する構成には同一の参照符号を付し、説明を省略する。
【0042】
本実施形態の直進伝達手段110に連結される直進部材101は、円筒状であり、回転軸線Lに同軸に回転子保持部材70の上端部を外囲して配置される。この円筒状の直進部材101の上下両端部に設けられる軸受け102,103を介して直進部材101と回転子保持部材70とは、回転軸線Lまわりに相対的に回転自在であり、回転軸線L方向への移動が阻止されて連結される。この直進部材101の外周には外ねじが形成され、この外ねじにナット部材104が螺合する。
【0043】
ナット部材104は、一対の軸受け105,106を介して支持フレーム30に、回転軸線Lまわりに回転自在に、かつ回転軸線L方向への移動が阻止されて支持される。また、ナット部材104の外周には歯が形成されて有歯ベルト車として機能する。したがって、サーボモータ40の有歯ベルト車45からナット部材104にわたってタイミングベルト46が巻き掛けられることによって、サーボモータ40の回転駆動力が、直進部材101に伝達される。
【0044】
また、直進部材101の外周部には回転軸線Lに平行にガイド溝107が形成されており、前記ナット部材104の上方で、直進部材101を外囲する環状の回り止め部材108が支持フレーム30に固定されており、回り止め部材108には内側に突出し、直進部材101の前記ガイド溝107に嵌まり込む回り止め突起109が形成される。これによって、直進部材101は、回転軸線L方向には移動可能で、回転軸線Lまわりの回転が阻止される。
【0045】
また、インダクションモータ41は、出力軸67にユニバーサルジョイント64を介してスプライン軸64が連結され、このスプライン軸64と回転子保持部材70とが、回転軸線Lまわりの回転が阻止され、かつ回転軸線L方向に移動可能に連結される。
【0046】
サーボモータ40を回転駆動させると、有歯ベルト車45、タイミングベルト46を介してナット部材104が回転軸線Lまわりに回転し、このナット部材104の回転によって、直進部材101を介して回転子保持部材70および回転子31が回転軸線L方向に直進移動する。このようにして、直進駆動源であるサーボモータ40からの直進力が、直進部材107の側面から伝達される。
【0047】
またインダクションモータ41からの回転力は、スプライン軸64によって、回転軸線L方向に移動可能に伝達され、これによって、回転子31は、回転軸線Lまわりに回転しながら回転軸線L方向に直進移動することができる。このようにして、回転力は、回転子31の一端部から伝達される。
【0048】
本実施形態においても、回転駆動源であるインダクションモータ41を移動させることが防がれる。また回転子31に直進力を作用させる直進部材48が、回転軸線Lと同軸に配置されるので、押圧時に曲げモーメントが作用するといったことが防がれる。
【0049】
図5は、本発明のさらに他の実施形態の摩擦攪拌接合装置の回転押圧機構120の構成を示す図である。この回転押圧機構120では、インダクションモータ41からの回転力が回転子31の側面から伝達され、サーボモータ40からの直進力が、回転子31の上端部から伝達される。なお、図1〜図4に示される構成と同様の構成には同一の参照符号を付し、説明を省略する。
【0050】
この回転押圧機構120では、図2で説明した回転押圧機構32と同様の直進伝達手段43を有する。ただし、本実施形態の回転伝達手段121は、回転子保持部材70の側面から回転力が伝達されるので、直進伝達手段43の連結部材50は、回転伝達手段のタイミングベルト62を避ける必要がないので、連結部材50の構成を小さくすることができる。
【0051】
回転子保持部材70の外周には複数のスプライン122が、回転軸線Lに平行に形成される。回転力伝達手段121は、インダクションモータ41の出力軸に固定されるVベルト車61、Vベルト62、スプライン受け123を有する。スプライン受け123は、環状であり、回転子保持部材70の前記スプライン122に嵌まり込み、スプライン受け123と回転子保持部材70とは、回転軸線Lまわりの回転が阻止され、かつ回転軸線L方向へ移動可能に連結される。このスプライン受け123は、上下一対の軸受け124,125によって、回転軸線Lまわりに回転自在に、かつ回転軸線L方向への移動が阻止されて支持フレーム30に支持される。また、スプライン受け123の外周部は、ベルト車として機能し、この外周部にはVベルト62が巻き掛けられる。
【0052】
このような構成によって、インダクションモータ41の回転力が、Vベルト車61、Vベルト62を介してスプライン受け123、回転子保持部材70および回転子31を回転軸線Lまわりに回転駆動する。また、回転子保持部材70は、直進移動可能に支持されているので、直進伝達手段43からの直進力によって回転しながら直進移動することができる。
【0053】
本実施形態においても、回転駆動源であるインダクションモータ41を移動させることが防がれる。また回転子31に直進力を作用させる直進部材48が、回転軸線Lと同軸に配置されるので、押圧時に曲げモーメントが作用するといったことが防がれる。
【0054】
また、本実施形態の直進伝達手段43を、図3で説明した構成と同様に、直進部材にナット部材を固定し、ねじ軸側を回転させるように構成してもよい。
【0055】
図6は、本発明のさらに他の実施形態の摩擦攪拌接合装置の回転押圧機構130の構成を示す図である。この回転押圧機構130では、直進力および回転力が回転子31の側面から伝達される。つまり、図4で説明した直進伝達手段110と、図5で説明した回転伝達手段121を有する。なお、図1〜図5に示される構成と同様の構成には同一の参照符号を付し、説明を省略する。
【0056】
本実施形態においても、回転駆動源であるインダクションモータ41を移動させることが防がれる。また回転子31に直進力を作用させる直進部材101が、回転軸線Lと同軸に配置されるので、押圧時に曲げモーメントが作用するといったことが防がれる。
【0057】
また、上述した各実施形態では回転駆動源としてインダクションモータを用いるように構成したが、本発明はこれに限らず、回転駆動源をサーボモータとしてもよい。このとき、回転伝達手段は、Vベルトでなく、タイミングベルトを用いる。
【0058】
【発明の効果】
以上のように本発明によれば、回転子を回転させる回転駆動源は、回転子の回転軸線方向への変位を許容した状態で回転力を伝達する回転伝達手段によって回転力を伝達するので、回転駆動源を支持部材に固定した状態で、回転子を回転させながら、直進駆動源で回転子を直進移動させることができる。これによって、直進駆動源は、回転子のみを直進移動させればよく、回転駆動源を移動させる必要がないので、直進駆動源の容量が少なくてすみ、小型化できる。これによって、この摩擦攪拌接合装置を保持する加工機械本体の負担も軽くなる。また、回転駆動源を移動させる必要がないことにより、直進駆動源の電流値と押圧力との関係に、誤差が生じにくくなる。
【図面の簡単な説明】
【図1】本発明の摩擦攪拌接合装置を摩擦攪拌接合装置20に適用した実施の一形態を示す図である。
【図2】摩擦攪拌接合装置20の回転押圧機構32の構造を示す図である。
【図3】直線伝達機構43の他の形態を示す図である。
【図4】本発明の他の実施形態の回転押圧機構100の構造を示す図である。
【図5】本発明のさらに他の実施形態の回転押圧機構120の構造を示す図である。
【図6】本発明のさらに他の実施形態の回転押圧機構130の構造を示す図である。
【図7】従来の摩擦攪拌接合装置1を示す図である。
【符号の説明】
23 加工機械本体
20 摩擦攪拌接合装置
30 支持フレーム
31 回転子
32,100,120,130 回転押圧機構
34 ピン
40 サーボモータ
41 インダクションモータ
42 回転伝達手段
43 直進伝達手段
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a friction stir welding apparatus that softens and stirs an object to be joined by frictional heat generated by rotation and joins the objects by stirring.
[0002]
[Prior art]
FIG. 7 is a front view showing a proposed friction stir welding apparatus 1. In this friction stir welding apparatus 1, the rotor 3 having the pin 2 at the tip is pressed against the work while rotating at high speed, and the joint between the pin 2 and the work is softened by the frictional heat generated by the rotation and stirred by the rotation. And join. That is, the friction stir welding apparatus 1 includes a rotation drive source 4 that rotates the rotor 3 around its axis at a high speed, and a rectilinear drive source 5 that moves the rotor 3 straight along the rotation axis. The friction stir welding apparatus 1 includes a support frame 6, a linear slider 7, and a ball screw 8, and the support frame 6 is held by the processing machine body.
[0003]
The linear slider 7 is fixed to the support frame 6. A rotor 3 that is rotatably supported and a rotational drive source 4 that rotationally drives the rotor 3 are attached to the guide portion of the linear slider 7 that is guided in a straight line. The ball screw 8 is fixed to the support frame 6 in parallel with the linear slider 7, and a nut member 9 screwed to the screw shaft 10 of the ball screw 8 is connected to the slide member of the linear guide 7. Therefore, when the screw shaft 10 of the ball screw 8 is rotationally driven by the linear drive source 5 such as a servo motor, the nut member 9 moves straight up and down along the screw shaft 10. The slide member attached to the nut member 9 moves straight along with the rotor 3 and the rotation drive source 4.
[0004]
With this configuration, the rotor 3 can be moved straight while rotating.
[0005]
[Problems to be solved by the invention]
In the friction stir welding apparatus 1 described above, the rotary drive source 4 for rotationally driving the rotor 3 is slid by the linear drive source 5 and pressed against the work, so a large-capacity linear drive source is required. There is a problem that the entire apparatus becomes large. This also led to an increase in cost. Furthermore, the load weight of the processing machine main body equipped with such a heavy friction stir welding apparatus 1 is also increased.
[0006]
Further, in the structure using the ball screw 8 and the linear slider 7, the screw shaft 10 of the ball screw 8 that generates a straight driving force and the axis of the rotor 3 that receives a load from the workpiece when pressed are shown in FIG. As indicated by the reference symbol W, they are separated by a distance W. If the linear drive shaft and the load shaft are separated from each other as described above, a bending moment is generated at the time of pressing, which tends to cause looseness, and there is a problem in durability.
[0007]
Also, the pressing force of the rotor may be detected based on the current value of the servo motor that is the linear drive source 5, but when the play occurs as described above, the current value fluctuates and the pressing force is accurately detected. The problem that it becomes impossible to occur.
[0008]
Further, since the linear drive source 5 moves the rotary drive source 4 linearly together with the rotor 3, the pressing force of the rotor 3 by the linear drive source 5 and the current value of the linear drive source 4 by the weight of the rotary drive source 4. There is a problem that an error is given to the relationship.
[0009]
An object of the present invention is to provide a friction stir welding apparatus configured so that a rotational drive source is not moved by a linear drive source and a bending moment is not generated at the time of pressing.
[0011]
[Means for Solving the Problems]
In the present invention, the rotor rotating at high speed is moved in the rotation axis direction, the tip is pressed against the workpiece, the contact portion of the workpiece is softened by the frictional heat generated by the rotation of the tip, and stirred. In a friction stir welding apparatus for joining workpieces,
A rotational drive source consisting of a servo motor that rotates the rotor around the rotational axis at high speed;
A rectilinear drive source consisting of a servomotor that moves the rotor linearly in the direction of the rotation axis;
A support member that supports each of the rotational drive source and the straight drive source, and supports the rotor movably in the rotation axis direction;
A rotation transmitting means that allows movement of the rotor in the direction of the rotation axis and transmits a rotational driving force from the rotational driving source to the rotor;
A friction stir welding apparatus comprising: a rectilinear transmission means that permits rotation of the rotor and transmits a rectilinear driving force from a rectilinear driving source coaxially to the rotor.
[0012]
In the present invention, the rotor that rotates at a high speed is moved in the direction of the rotation axis, the tip is pressed against the workpiece, the contact portion of the workpiece is softened by the frictional heat generated by the rotation of the tip, and stirred. To join the objects to be joined,
In the friction stir welding device equipped in the processing machine body,
A rotational drive source consisting of a servo motor that rotates the rotor around the rotational axis at high speed;
A rectilinear drive source consisting of a servomotor that moves the rotor linearly in the direction of the rotation axis;
A support member that supports each of the rotational drive source and the straight drive source, and supports the rotor movably in the rotation axis direction;
A rotation transmitting means that allows movement of the rotor in the direction of the rotation axis and transmits a rotational driving force from the rotational driving source to the rotor;
A linear transmission means for allowing the rotation of the rotor and transmitting the linear driving force from the linear driving source coaxially to the rotor;
The support member is fixed to the processing machine body,
The processing machine main body is a friction stir welding apparatus characterized by causing a relative motion between the rotor and the workpiece to be joined in an arbitrary length in a direction perpendicular to the rotation axis.
[0013]
According to the present invention, the rotational driving force of the rotor is transmitted to a side surface of the rotor.
[0014]
According to the present invention, the rotational driving force of the rotor is transmitted to one end of the rotor.
[0015]
According to the present invention, the rotational drive source that rotates the rotor transmits the rotational force by the rotational transmission means that transmits the rotational force in a state in which the displacement of the rotor in the rotational axis direction is allowed. The rotor can be linearly moved by a linear drive source while rotating the rotor while being fixed to the support member. As a result, the linear drive source only needs to move only the rotor in a straight line, and it is not necessary to move the rotary drive source, so the capacity of the linear drive source can be reduced and the size can be reduced. As a result, the burden on the processing machine main body holding the friction stir welding apparatus is reduced. Further, since it is not necessary to move the rotational drive source, an error is less likely to occur in the relationship between the current value of the linear drive source and the pressing force.
[0016]
Further, the rotational force of the rotational drive source may be transmitted from the side surface of the rotor or may be transmitted from the end portion.
[0022]
Moreover, this invention is (a ) Rotor holding member 70,
Has a rotor insertion hole 72 of the rotor body 36 of the rotating element is inserted, has a lower end portion which holds the rotating element,
A rotor holding member 70 in which a plurality of splines 76 extending in parallel to the axis L are formed on the outer periphery of the lower end;
( B ) a rotation support member 73,
A first spline receiver 75 in which the spline 76 is fitted on the inner peripheral side;
A first spline receiving 75, the supporting member, rotatably supported on the around the axis L, and a rotation support member 73 having a first bearing 74 that is mounted to a support member,
The rotary drive source comprises a rotary drive motor 41 is fixedly supported by the support member,
The rotation transmission means allows the movement of the rotor in the direction of the rotation axis, transmits the rotation driving force from the rotation driving motor 41 to the rotor holding member 70,
The linear drive source includes a linear drive motor 40 fixedly supported by a support member,
The straight-advance transmission means to permit rotation of the rotor, characterized in that it transmitted to the coaxial rectilinear driving force from the linear drive motor 40 to the upper end portion of the rotor retaining member 70.
[0023]
In the present invention, the support member is fixed to the processing machine main body,
The processing machine main body is characterized in that the rotor and the object to be joined are caused to move relative to each other by an arbitrary length in a direction perpendicular to the rotation axis.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a diagram showing a friction stir welding apparatus 20 according to an embodiment of the present invention. The friction stir welding apparatus 20 is installed in the processing machine main body 23.
[0025]
The friction stir welding apparatus 20 includes a support frame 30 that is a support member, a rotor 31, and a rotation pressing mechanism 32. The support frame 30 is fixed to the processing machine main body 23 and holds the rotation pressing mechanism 32. The rotation pressing mechanism 32 rotates the rotor 31 around the axis L at a high speed and linearly moves in the direction of the rotation axis L. Further, a receiving portion 33 that faces the tip of the rotor 31 is provided separately. The rotor 31 is tapered at the tip side (see FIG. 2), and a cylindrical portion 35 coaxial with the rotation axis L is formed at the tip, and a pin 34 projects from the lower end surface along the rotation axis L.
[0026]
For example, when two workpieces such as an aluminum alloy plate are joined, the two workpieces are overlapped, and the receiving portion 33 of the friction stir welding apparatus 20 is disposed below the joining portion. Next, the rotor 31 is rotated at a high speed by the rotation pressing mechanism 32 and the rotor 31 is moved forward. Then, two workpieces are sandwiched between the receiving portion 33 and the rotor 31, and the pin 34 at the tip of the rotor 31 is pressed against the joint portion of the workpiece. By being pressed while rotating, frictional heat is generated, the vicinity of the joint is softened, and the pin 34 is inserted.
[0027]
By inserting the pin 34 while rotating, plastic flow is caused in the vicinity of the joint, and the pin 34 is agitated. Further, when the pin 34 is inserted and the lower end surface (shoulder portion) of the cylindrical portion 35 of the rotor 31 is pressed against the work surface, the work surface is also stirred by the lower end surface. In this way, the pin 34 is inserted until it exceeds the joint of the two workpieces, and is pressed and stirred for a predetermined time with a predetermined pressing force. During or during joining, the processing machine main body 23 causes the rotor 31 and the workpiece to move relative to each other in a direction perpendicular to the rotation axis L in accordance with the application content of the joining. Thereafter, the rotor 31 is retracted along the rotation axis L by the rotation pressing mechanism 32. When the pin 34 is pulled out, the vicinity of the joint portion that has been agitated and caused plastic flow is cooled and hardened, and two workpieces are joined at the joint portion.
[0028]
FIG. 2 is a diagram illustrating a configuration of the rotary pressing mechanism 32 of the friction stir welding apparatus 20. The rotor 31 includes a rotor main body 36 and a rotor holding member 70 that holds the rotor 31, and the rotation pressing mechanism 32 includes an induction motor 41 and a rotor 31 that are rotational drive sources that rotationally drive the rotor 31. Servo motor 40 that is a linear drive source for linearly moving the motor, rotation transmission means 42 that transmits the rotational force from the induction motor 41 to the rotor holding member 70, and the linear drive force of the servo motor 40 to the rotor holding member 70. And a straight transmission means 43 for transmission.
[0029]
The support frame 30 fixedly supports the servo motor 40 and the induction motor 41, and supports the rotor holding member 70 through the rotation support member 73. The rotor holding member 70 has a plurality of splines 76 extending in parallel to the rotation axis L on the outer periphery, and the rotation support member 73 has a spline receiver 75 in which the splines 76 are fitted on the inner periphery side. A bearing 74 is provided, and the bearing 74 is attached to the support frame 30. With such a configuration, the rotor holding member 70 is supported by the support frame 30 so as to be rotatable about the rotation axis L and movable in the direction of the rotation axis L.
[0030]
The rotor holding member 70 has a columnar shape, and a rotor insertion hole 72 is formed at a lower end portion. The rotor body 36 is inserted into the rotor insertion hole 72, and the rotation around the rotation axis L and the rotation axis L The movement in the direction is blocked and held by the rotor holding member 70.
[0031]
The rotation transmission means 42 connects the first belt wheel 61, the V belt 62, the second belt wheel 63, the spline shaft 66, the spline shaft 66 and the second belt wheel 63 fixed to the output shaft 67 of the induction motor 41. The universal joint 64 is comprised. A spline hole 71 having an inner spline is formed at the upper end of the rotor holding member 70 coaxially with the rotation axis L, and the spline shaft 64 is inserted into the spline hole 71. As a result, the spline shaft 64 and the rotor holding member 70 are coupled in a state where the spline shaft 64 and the rotor holding member 70 can move linearly in the direction of the axis L and are prevented from rotating around the axis L.
[0032]
The second belt wheel 63 is supported by the support frame 30 so as to be rotatable around the axis L by a bearing 65, and a V belt 62 is wound around the first belt wheel 61 from the second belt wheel 63. And the spline shaft 81 are connected via a universal joint 64. The rotational force of the induction motor 41 is transmitted to the rotor 31 by the rotation transmission means 42 having such a configuration.
[0033]
The rectilinear transmission means 43 includes a toothed belt wheel 45 fixed to the output shaft 44 of the servo motor 40, a timing belt 46, and a nut member 47, and a linear member 48 is connected to the rectilinear transmission means 43. . The rectilinear member 48 includes a screw shaft 49 into which the nut member 47 is screwed, and a connecting member 50 fixed to the lower end portion of the screw shaft 49 and connected to the upper end portion of the rotor holding member 70. The lower end portion of the connecting member 50 is configured such that the rotor holding member 70 can rotate around the axis L via a pair of bearings 80, and the connecting member 50 and the rotor holding member 70 are prevented from moving in the direction of the rotation axis L. It is connected in the state that was done. A plurality of outer splines 82 extending in a direction parallel to the rotation axis L are provided on the outer peripheral portion of the lower end portion of the connecting member 50, and a spline receiver 83 into which the outer splines 82 are fitted is fixed to the support frame 30. The Thereby, the connection member 50 is provided so as to be prevented from rotating around the rotation axis L and movable in the direction of the rotation axis L.
[0034]
A screw shaft 49 is fixed to the upper end portion of the connecting member 50, and the screw shaft 49 is disposed coaxially with the rotation axis L. The nut member 47 screwed into the screw shaft 49 is a ball screw, and is supported rotatably around the rotation axis L via the bearing 52, and the bearing 52 is fixed to the support frame 30. A toothed belt wheel 51 is integrally fixed to the upper end portion of the nut member 47, and the timing belt 46 is wound around the toothed belt wheel 45 attached to the servo motor 40 from the toothed belt wheel 51.
[0035]
Next, the operation of the straight transmission means 43 will be described. When the servo motor 40 is rotated, the nut member 47 is rotated via the toothed belt wheel 45 and the timing belt 46. Since the nut member 47 is fixedly held in the direction of the rotation axis L with respect to the support frame 30, the screw shaft 49 moves forward (lowers) by the rotation of the nut member 47. Since the connecting member 50 fixed to the lower end portion of the screw shaft 49 is connected to the rotor holding member 70 while being rotatable and prevented from moving in the direction of the rotation axis L, the rotor holding member 70 is rotatable. Move forward in a safe state. When the servo motor 40 is reversed, the rotation direction of the nut member 47 is also reversed, and the rotor 31 is retracted (raised).
[0036]
The rotation transmitting means 42 is configured to be movable in the direction of the rotation axis L by the spline shaft 64 and to transmit the rotational force around the rotation axis L to the rotor holding member 70, so that the rotor holding member 70 is advanced. , Can be rotated while retreating.
[0037]
In this way, by rotating the rotor 31 at a high speed by the induction motor 41, the servo motor 40 moves forward in the direction of the rotation axis L, presses the tip of the rotor 31 against the workpiece, and reverses the servo motor 40. The rotor 31 can be moved backward while rotating. At this time, since the screw shaft 49 is coaxial with the rotation axis L of the rotor 31, the linear member 48 of the linear transmission means 43 that applies a linear force to the rotor has a bending moment when pressed as in the prior art described above. Is prevented from occurring. Further, the servo motor 40 that is a linear drive source does not need to move the induction motor 41 that is a rotary drive source together with the rotor as in the prior art, so that the motor capacity of the servo motor 40 can be small, and the servo motor 40 can be reduced in size and weight.
[0038]
In the friction stir welding apparatus 20, the pressing force is detected based on the current value of the servo motor 40, but since no bending moment is generated during pressing, an error occurs in the relationship between the current value of the servo motor and the pressing force. It becomes difficult.
[0039]
In the straight transmission means 43 shown in FIG. 2, the nut member 47 is provided on the support frame 30 so as to be rotatable around the rotation axis L and prevented from moving in the direction of the rotation axis L. By rotating the nut member 47, the nut member 47 is rotated. The screw shaft 49 of the rectilinear member is configured to move forward and backward, but may be configured in reverse. That is, as shown in FIG. 3, the screw shaft 92 is rotatably supported by the bearing 94, the lower end portion is connected to the rotor holding member 70 as a rectilinear member, and the nut member 91 is screwed to the screw shaft 92 at the upper end portion. The connecting member 90 having the above structure is provided, the toothed belt wheel 93 is fixed to the screw shaft 92, and the screw shaft 92 is rotated via the timing belt 46, whereby the connecting member 90 provided integrally with the nut member 91 is advanced. You may comprise so that it may reverse | retreat.
[0040]
FIG. 4 is a view showing the structure of the rotary pressing mechanism 100 of the friction stir welding apparatus according to another embodiment of the present invention. In the rotary pressing mechanism 32 shown in FIGS. 2 and 3, the rotational driving force and the straight driving force are transmitted from one end of the rotor 31. However, in the rotary pressing mechanism 100 of this embodiment, the rotational driving force is not transmitted. Input from one end of the rotor 31, and rotational force is transmitted to the side surface of the rotor 31.
[0041]
Next, the configuration of the rotary pressing mechanism 100 of the present embodiment will be described in detail. In addition, the same reference number is attached | subjected to the structure corresponding to the rotary press mechanism 32 mentioned above, and description is abbreviate | omitted.
[0042]
The rectilinear member 101 connected to the rectilinear transmission means 110 of the present embodiment has a cylindrical shape and is disposed so as to surround the upper end portion of the rotor holding member 70 coaxially with the rotation axis L. The linearly moving member 101 and the rotor holding member 70 are relatively rotatable around the rotation axis L via bearings 102 and 103 provided at both upper and lower ends of the cylindrical linearly moving member 101, and are in the direction of the rotation axis L. The movement to is blocked and connected. An external thread is formed on the outer periphery of the rectilinear member 101, and the nut member 104 is screwed onto the external thread.
[0043]
The nut member 104 is supported by the support frame 30 via a pair of bearings 105 and 106 so as to be rotatable around the rotation axis L and prevented from moving in the direction of the rotation axis L. Further, teeth are formed on the outer periphery of the nut member 104 to function as a toothed belt wheel. Therefore, when the timing belt 46 is wound around the nut member 104 from the toothed belt wheel 45 of the servo motor 40, the rotational driving force of the servo motor 40 is transmitted to the rectilinear member 101.
[0044]
A guide groove 107 is formed in the outer peripheral portion of the rectilinear member 101 in parallel with the rotation axis L, and an annular detent member 108 surrounding the rectilinear member 101 is provided above the nut member 104 in the support frame 30. The anti-rotation member 108 is formed with an anti-rotation protrusion 109 that protrudes inward and fits into the guide groove 107 of the rectilinear member 101. As a result, the rectilinear member 101 can move in the direction of the rotation axis L and is prevented from rotating around the rotation axis L.
[0045]
The induction motor 41 has a spline shaft 64 connected to an output shaft 67 via a universal joint 64. The spline shaft 64 and the rotor holding member 70 are prevented from rotating about the rotation axis L, and the rotation axis It is connected so as to be movable in the L direction.
[0046]
When the servo motor 40 is driven to rotate, the nut member 104 rotates around the rotation axis L via the toothed belt wheel 45 and the timing belt 46, and the rotor is held via the rectilinear member 101 by the rotation of the nut member 104. The member 70 and the rotor 31 move straight in the direction of the rotation axis L. In this way, the linear force from the servo motor 40 that is the linear drive source is transmitted from the side surface of the linear member 107.
[0047]
The rotational force from the induction motor 41 is transmitted by the spline shaft 64 so as to be movable in the direction of the rotational axis L, whereby the rotor 31 moves linearly in the direction of the rotational axis L while rotating around the rotational axis L. be able to. In this way, the rotational force is transmitted from one end of the rotor 31.
[0048]
Also in this embodiment, it is possible to prevent the induction motor 41 that is a rotational drive source from moving. Further, since the rectilinear member 48 that applies a rectilinear force to the rotor 31 is arranged coaxially with the rotation axis L, it is possible to prevent a bending moment from acting when pressed.
[0049]
FIG. 5 is a diagram showing a configuration of the rotary pressing mechanism 120 of the friction stir welding apparatus according to still another embodiment of the present invention. In the rotation pressing mechanism 120, the rotational force from the induction motor 41 is transmitted from the side surface of the rotor 31, and the straight traveling force from the servo motor 40 is transmitted from the upper end portion of the rotor 31. The same components as those shown in FIGS. 1 to 4 are denoted by the same reference numerals, and description thereof is omitted.
[0050]
The rotation pressing mechanism 120 includes a straight transmission means 43 similar to the rotation pressing mechanism 32 described in FIG. However, since the rotation transmission means 121 of the present embodiment transmits the rotational force from the side surface of the rotor holding member 70, the connecting member 50 of the straight transmission means 43 does not need to avoid the timing belt 62 of the rotation transmission means. Therefore, the structure of the connecting member 50 can be reduced.
[0051]
A plurality of splines 122 are formed in parallel to the rotation axis L on the outer periphery of the rotor holding member 70. The rotational force transmission means 121 includes a V belt wheel 61, a V belt 62, and a spline receiver 123 that are fixed to the output shaft of the induction motor 41. The spline receiver 123 has an annular shape and is fitted into the spline 122 of the rotor holding member 70. The spline receiver 123 and the rotor holding member 70 are prevented from rotating around the rotation axis L and in the direction of the rotation axis L. It is movably connected to. The spline bearing 123 is supported by the support frame 30 by a pair of upper and lower bearings 124 and 125 so as to be rotatable around the rotation axis L and prevented from moving in the direction of the rotation axis L. Moreover, the outer peripheral part of the spline receiver 123 functions as a belt wheel, and the V belt 62 is wound around the outer peripheral part.
[0052]
With such a configuration, the rotational force of the induction motor 41 rotationally drives the spline receiver 123, the rotor holding member 70, and the rotor 31 around the rotation axis L via the V belt wheel 61 and the V belt 62. Further, since the rotor holding member 70 is supported so as to be able to move linearly, it can move linearly while being rotated by the linear force from the linear transmission means 43.
[0053]
Also in this embodiment, it is possible to prevent the induction motor 41 that is a rotational drive source from moving. Further, since the rectilinear member 48 that applies a rectilinear force to the rotor 31 is arranged coaxially with the rotation axis L, it is possible to prevent a bending moment from acting when pressed.
[0054]
Further, the linear transmission means 43 of the present embodiment may be configured such that a nut member is fixed to the linear member and the screw shaft side is rotated, similarly to the configuration described in FIG.
[0055]
FIG. 6 is a diagram showing a configuration of the rotary pressing mechanism 130 of the friction stir welding apparatus according to still another embodiment of the present invention. In the rotary pressing mechanism 130, the straight advance force and the rotational force are transmitted from the side surface of the rotor 31. That is, the linear transmission means 110 described in FIG. 4 and the rotation transmission means 121 described in FIG. 5 are included. The same components as those shown in FIGS. 1 to 5 are denoted by the same reference numerals, and the description thereof is omitted.
[0056]
Also in this embodiment, it is possible to prevent the induction motor 41 that is a rotational drive source from moving. Further, since the rectilinear member 101 that applies a rectilinear force to the rotor 31 is arranged coaxially with the rotation axis L, it is possible to prevent a bending moment from acting when pressed.
[0057]
In each of the above-described embodiments, the induction motor is used as the rotational drive source. However, the present invention is not limited to this, and the rotational drive source may be a servo motor. At this time, the rotation transmission means uses a timing belt instead of the V belt.
[0058]
【The invention's effect】
As described above, according to the present invention, the rotational drive source that rotates the rotor transmits the rotational force by the rotational transmission means that transmits the rotational force in a state where the displacement of the rotor in the rotational axis direction is allowed. In a state where the rotation drive source is fixed to the support member, the rotor can be moved linearly by the linear drive source while rotating the rotor. As a result, the linear drive source only needs to move only the rotor in a straight line, and it is not necessary to move the rotary drive source, so the capacity of the linear drive source can be reduced and the size can be reduced. As a result, the burden on the processing machine main body holding the friction stir welding apparatus is reduced. Further, since it is not necessary to move the rotational drive source, an error is less likely to occur in the relationship between the current value of the linear drive source and the pressing force.
[Brief description of the drawings]
FIG. 1 is a diagram showing an embodiment in which a friction stir welding apparatus according to the present invention is applied to a friction stir welding apparatus 20;
FIG. 2 is a view showing a structure of a rotary pressing mechanism 32 of the friction stir welding apparatus 20;
3 is a view showing another form of the linear transmission mechanism 43. FIG.
FIG. 4 is a diagram showing a structure of a rotary pressing mechanism 100 according to another embodiment of the present invention.
FIG. 5 is a diagram showing a structure of a rotary pressing mechanism 120 according to still another embodiment of the present invention.
FIG. 6 is a view showing a structure of a rotary pressing mechanism 130 according to still another embodiment of the present invention.
7 is a view showing a conventional friction stir welding apparatus 1. FIG.
[Explanation of symbols]
23 Processing Machine Body 20 Friction Stir Welding Device 30 Support Frame 31 Rotors 32, 100, 120, 130 Rotating Press Mechanism 34 Pin 40 Servo Motor 41 Induction Motor 42 Rotation Transmitting Means 43 Straight Traveling Transmitting Means

Claims (6)

高速回転する回転子を回転軸線方向に移動させ、先端部を被接合物に押圧し、前記先端部の回転による摩擦熱によって前記被接合物の接触部を軟化させ、攪拌して被接合物を接合する摩擦攪拌接合装置において、
回転子を回転軸線まわりに高速回転させるサーボモータから成る回転駆動源と、
回転子を回転軸線方向に直進移動させるサーボモータから成る直進駆動源と、
回転駆動源および直進駆動源をそれぞれ支持し、回転子を回転軸線方向に移動可能に支持する支持部材と、
回転子の回転軸線方向への移動を許容し、かつ回転駆動源からの回転駆動力を回転子に伝達する回転伝達手段と、
回転子の回転を許容し、かつ直進駆動源からの直進駆動力を回転子に同軸に伝達する直進伝達手段とを備えることを特徴とする摩擦攪拌接合装置。
The rotor rotating at high speed is moved in the direction of the rotation axis, the tip is pressed against the workpiece, the contact portion of the workpiece is softened by the frictional heat generated by the rotation of the tip, and the workpiece is agitated by stirring. In the friction stir welding apparatus to join,
A rotational drive source consisting of a servo motor that rotates the rotor around the rotational axis at high speed;
A rectilinear drive source consisting of a servomotor that moves the rotor linearly in the direction of the rotation axis;
A support member that supports each of the rotational drive source and the straight drive source, and supports the rotor movably in the rotation axis direction;
A rotation transmitting means that allows movement of the rotor in the direction of the rotation axis and transmits a rotational driving force from the rotational driving source to the rotor;
A friction stir welding apparatus, comprising: a linear transmission means that allows rotation of the rotor and transmits a linear driving force from a linear driving source coaxially to the rotor.
高速回転する回転子を回転軸線方向に移動させ、先端部を被接合物に押圧し、前記先端部の回転による摩擦熱によって前記被接合物の接触部を軟化させ、攪拌して被接合物を接合し、
加工機械本体に装備される摩擦攪拌接合装置において、
回転子を回転軸線まわりに高速回転させるサーボモータから成る回転駆動源と、
回転子を回転軸線方向に直進移動させるサーボモータから成る直進駆動源と、
回転駆動源および直進駆動源をそれぞれ支持し、回転子を回転軸線方向に移動可能に支持する支持部材と、
回転子の回転軸線方向への移動を許容し、かつ回転駆動源からの回転駆動力を回転子に伝達する回転伝達手段と、
回転子の回転を許容し、かつ直進駆動源からの直進駆動力を回転子に同軸に伝達する直進伝達手段とを備え、
支持部材は、加工機械本体に固定され、
加工機械本体は、前記回転軸線と直角方向に、任意の長さ分、回転子と被接合物との相対動作を生じさせることを特徴とする摩擦攪拌接合装置。
The rotor rotating at high speed is moved in the direction of the rotation axis, the tip is pressed against the workpiece, the contact portion of the workpiece is softened by the frictional heat generated by the rotation of the tip, and the workpiece is agitated by stirring. Joined,
In the friction stir welding device equipped in the processing machine body,
A rotational drive source consisting of a servo motor that rotates the rotor around the rotational axis at high speed;
A rectilinear drive source consisting of a servomotor that moves the rotor linearly in the direction of the rotation axis;
A support member that supports each of the rotational drive source and the straight drive source, and supports the rotor movably in the rotation axis direction;
A rotation transmitting means that allows movement of the rotor in the direction of the rotation axis and transmits a rotational driving force from the rotational driving source to the rotor;
A linear transmission means for allowing the rotation of the rotor and transmitting the linear driving force from the linear driving source coaxially to the rotor;
The support member is fixed to the processing machine body,
A friction stir welding apparatus characterized in that a processing machine main body causes a relative motion between a rotor and a workpiece to be bonded by an arbitrary length in a direction perpendicular to the rotation axis.
前記回転子の回転駆動力は、回転子の側面に伝達されることを特徴とする請求項1または2記載の摩擦攪拌接合装置。The friction stir welding apparatus according to claim 1 or 2, wherein the rotational driving force of the rotor is transmitted to a side surface of the rotor. 前記回転子の回転駆動力は、回転子の一端部に伝達されることを特徴とする請求項1または2記載の摩擦攪拌接合装置。The friction stir welding apparatus according to claim 1 or 2, wherein the rotational driving force of the rotor is transmitted to one end of the rotor. (a)回転子保持部材70であって、
回転子の回転子本体36が挿入される回転子挿入孔72を有し、回転子を保持する下端部を有し、
前記下端部の外周部に、前記軸線Lに平行に延びる複数のスプライン76が形成される回転子保持部材70と、
)回転支持部材73であって、
内周側に前記スプライン76が嵌まる第1スプライン受け75と、
第1スプライン受け75を、支持部材に、前記軸線Lまわりに回転可能に支持し、支持部材に取り付けられる第1軸受け74とを有する回転支持部材73とを含み、
前記回転駆動源は、支持部材に固定的に支持される回転駆動用モータ41を含み、
前記回転伝達手段は、回転子の回転軸線方向への移動を許容し、回転駆動用モータ41からの回転駆動力を回転子保持部材70に伝達し、
前記直進駆動源は、支持部材に固定的に支持される直進駆動用モータ40を含み、
前記直伝達手段は、回転子の回転を許容し、直進駆動用モータ40からの直進駆動力を回転子保持部材70の上端部に同軸に伝達することを特徴とする請求項1記載の摩擦撹拌接合装置。
(A ) a rotor holding member 70,
Has a rotor insertion hole 72 of the rotor body 36 of the rotating element is inserted, has a lower end portion which holds the rotating element,
A rotor holding member 70 in which a plurality of splines 76 extending in parallel to the axis L are formed on the outer periphery of the lower end;
( B ) a rotation support member 73,
A first spline receiver 75 in which the spline 76 is fitted on the inner peripheral side;
A first spline receiving 75, the supporting member, rotatably supported on the around the axis L, and a rotation support member 73 having a first bearing 74 that is mounted to a support member,
The rotary drive source comprises a rotary drive motor 41 is fixedly supported by the support member,
The rotation transmission means allows the movement of the rotor in the direction of the rotation axis, transmits the rotation driving force from the rotation driving motor 41 to the rotor holding member 70,
The linear drive source includes a linear drive motor 40 fixedly supported by a support member,
The straight-advance transmission means to permit rotation of the rotor, the friction of claim 1, wherein the transmitting coaxial rectilinear driving force from the linear drive motor 40 to the upper end portion of the rotor retaining member 70 Stir welding device.
支持部材は、加工機械本体に固定され、
加工機械本体は、前記回転軸線と直角方向に、任意の長さ分、回転子と被接合物との相対動作を生じさせることを特徴とする請求項記載の摩擦撹拌接合装置。
The support member is fixed to the processing machine body,
The friction stir welding apparatus according to claim 5 , wherein the processing machine main body causes a relative motion between the rotor and the workpiece to be bonded by an arbitrary length in a direction perpendicular to the rotation axis.
JP2002034343A 2002-02-12 2002-02-12 Friction stir welding equipment Expired - Lifetime JP4444546B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002034343A JP4444546B2 (en) 2002-02-12 2002-02-12 Friction stir welding equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002034343A JP4444546B2 (en) 2002-02-12 2002-02-12 Friction stir welding equipment

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000219402A Division JP3291491B2 (en) 2000-07-19 2000-07-19 Friction stir welding equipment

Publications (2)

Publication Number Publication Date
JP2002273578A JP2002273578A (en) 2002-09-25
JP4444546B2 true JP4444546B2 (en) 2010-03-31

Family

ID=19192562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002034343A Expired - Lifetime JP4444546B2 (en) 2002-02-12 2002-02-12 Friction stir welding equipment

Country Status (1)

Country Link
JP (1) JP4444546B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3538406B2 (en) 2001-10-17 2004-06-14 川崎重工業株式会社 Friction stir welding equipment
JP4218888B2 (en) * 2004-01-26 2009-02-04 Obara株式会社 C-type friction stir spot welding gun
JP4628218B2 (en) * 2005-08-22 2011-02-09 Obara株式会社 Friction stir spot welding equipment
KR100711778B1 (en) * 2005-12-26 2007-04-25 재단법인 포항산업과학연구원 Apparatus for friction stir spot welding
JP5803992B2 (en) * 2012-07-03 2015-11-04 日本軽金属株式会社 Manufacturing method of heat transfer plate

Also Published As

Publication number Publication date
JP2002273578A (en) 2002-09-25

Similar Documents

Publication Publication Date Title
EP1557233B1 (en) Friction stir spot joining device
EP1647348B1 (en) Friction stir spot joining device
EP2072174B1 (en) Friction stir spot joining device
JP4444546B2 (en) Friction stir welding equipment
US7422140B2 (en) Friction stir spot joining device
JP3291491B2 (en) Friction stir welding equipment
US4862989A (en) Two and four-wheel drive transfer device
JP2002205244A (en) Dividing device and its assembling method
JP4218895B2 (en) Friction stir spot welding equipment
JP3543307B2 (en) Electric power steering device
US3725998A (en) Friction welding
JP3291492B2 (en) Friction stir welding equipment
JPH09253963A (en) Clamp device and feeding device
JP5039306B2 (en) Friction stir spot welding equipment
JPH046511B2 (en)
CN214999195U (en) Forward and reverse lead screw transmission module
JP3805087B2 (en) Machine Tools
JP4313020B2 (en) Friction stir welding apparatus and friction stir welding method
JP7479910B2 (en) Friction stir welding attachment, friction stir welding head, friction stir welding device, and friction stir welding method
CN113732619B (en) Radiator casing tooth piece wire drawing device
JPH06144246A (en) Motor-driven power steering
JP2767860B2 (en) Processing unit
JPH1199429A (en) Tool changing device
JP2523326Y2 (en) Electric power steering device
JPS62193705A (en) Clamping and rotary device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100112

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100114

R150 Certificate of patent or registration of utility model

Ref document number: 4444546

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140122

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150122

Year of fee payment: 5

EXPY Cancellation because of completion of term