JP3804875B2 - Method for producing methacrolein - Google Patents

Method for producing methacrolein Download PDF

Info

Publication number
JP3804875B2
JP3804875B2 JP14245896A JP14245896A JP3804875B2 JP 3804875 B2 JP3804875 B2 JP 3804875B2 JP 14245896 A JP14245896 A JP 14245896A JP 14245896 A JP14245896 A JP 14245896A JP 3804875 B2 JP3804875 B2 JP 3804875B2
Authority
JP
Japan
Prior art keywords
catalyst
reaction
methacrolein
layer
butyl alcohol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14245896A
Other languages
Japanese (ja)
Other versions
JPH09323950A (en
Inventor
徹 渡部
修 永野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP14245896A priority Critical patent/JP3804875B2/en
Publication of JPH09323950A publication Critical patent/JPH09323950A/en
Application granted granted Critical
Publication of JP3804875B2 publication Critical patent/JP3804875B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、イソブチレンおよび/又はt−ブチルアルコールから選ばれる少なくとも1種を分子状酸素含有ガスを用いて固定床多管式反応器内で気相接触酸化によってメタクロレインの製造方法に関する。
【0002】
【従来の技術】
イソブチレンおよび/又はt−ブチルアルコールを気相接触酸化反応して、メタクロレインを製造する方法に関しては数多くの提案がなされている。これらは主として触媒を構成する成分及びその比率にかかわるものである。例えば、特開昭63−122642号公報、特開昭48−32814号公報、特開昭51−63112号公報、特公昭62−36740号公報、特開平4−41453号公報等があげられる。しかし、これら公知の触媒を工業的にメタクロレインの製造を行う場合には種々の問題を生じる。
【0003】
これら問題の一つは、本反応が多量の発熱を伴う酸化反応である為、触媒層の局部で発熱に伴う蓄熱が起こりメタクロレインの選択率、収率を低下させる。また、局部発熱によって触媒が劣化し触媒寿命が短くなってしまう問題がある。触媒層で蓄熱する部分に不活性な物質を混合し、発熱量を低く抑える方法が特公昭34−9895号公報、特公昭43−24403号公報、特公昭53−30688号公報、特開昭51−127013号公報が提案されている。これらの方法は蓄熱を抑える方法としては充分とは言えない。また、t−ブチルアルコールからメタクロレインを製造する方法に関して、特開平4−217932号公報の比較例6に、ガス入口部から触媒層を2層に分け、ガス入口部の1層目で触媒とラッシヒリングを混合しで充填を行い、ガス入口部から2層目で触媒のみを充填する方法が開示されている。この比較例の場合には、1層目の活性制御が不十分で、2層目で反応温度が高くなって、メタクロレインの収率が低くなっていると考えられる。
【0004】
特開平3−176440号公報、特開平3−200733号公報、特開平3−215441号公報、特開平3−294238号公報には、固定床多管式反応器を用いてイソブチレンおよび/又はt−ブチルアルコールを分子状酸素により気相酸化してメタクロレインおよび/又はメタクリル酸を製造する方法が開示されている。この開示に於いては、触媒層を分割して複数個の反応帯を設け、この複数個の反応帯に、触媒構成元素の種類および/又は比率を変えることにより、あるいは触媒調製時の焼成温度を変えることにより活性を調整した触媒を入口部から出口部に向かって、活性が高くなるように充填してイソブチレンおよび/又はt−ブチルアルコールを分子状酸素により気相酸化してメタクロレインおよび/又はメタクリル酸を製造する方法が記載されている。
【0005】
特開平4−217932号公報には、占有容積の異なる触媒を用いて、反応管内の管軸方向に複数個の反応帯を設け、反応管の入口から出口へ向かって、占有容積が小さくなるように上記反応帯に充填し、イソブチレンおよび/又はt−ブチルアルコールを気相接触酸化しメタクロレインおよび/又はメタクリル酸を製造する方法が記載されている。
【0006】
特開平6−192144号公報には触媒活性成分を担体に担持した触媒を、反応管内に管軸方向に複数個の反応帯を設け、反応管の入口から出口へ向かって、担持量が高くなるように充填し、イソブチレンおよび/又はt−ブチルアルコールを気相接触酸化しメタクロレインおよび/又はメタクリル酸を製造する方法が記載されている。
【0007】
特開平4−217932号公報、特開平6−192144号公報の方法も、実質的には触媒を入口部から出口部に向かって、活性が高くなるように充填してイソブチレンおよび/又はt−ブチルアルコールを分子状酸素により気相酸化してメタクロレインおよび/又はメタクリル酸を製造する方法である。
特開平3−176440号公報、特開平3−200733号公報、特開平3−215441号公報、特開平H3−294238号公報上記方法、特開平4−217932号公報、特開平6−192144号公報では、触媒層の蓄熱防止策としてはある程度の効果があるものの、これらの特許の充填方法では、低い温度で原料ガスを導入する場合に、入口部分の活性が低く、イソブチレンおよび/又はt−ブチルアルコールの転化率を高める為には触媒層が長くなり、圧力損失が高くなる欠点を有している。また、原料ガス温度を高めた場合には、触媒層での温度が高まるので触媒の活性を低下させる必要がある。従って、反応温度が高くならないようにする為に、これらの特許の充填方法では、活性の低いガス入口部の触媒層を長くするか、充填層を多くする不都合が生じてしまう。短時間で原料ガスを所定の温度に高める場合には、別途加熱装置を設定する必要もあり、触媒層の入口部分で原料ガスを高める工夫をとった方が工業的には有利である。
【0008】
特開平3−176440号公報、特開平3−200733号公報、特開平3−215441号公報、特開平3−294238号公報、特開平4−217932号公報、特開平6−192144号公報の実施例に於いて、アクロレインおよびアクリル酸の合成反応では反応管の内径38(mm)で実施されているが、メタクロレインおよび/又はメタクリル酸製造に於いては、反応管の内径は最大でも25.4(mm)でしか実施されていない。イソブチレンおよび/又はt−ブチルアルコールを気相接触反応してメタクロレインおよび/又はメタクリル酸を生成する反応に於いては、これら出発原料はいずれもプロピレンと異なり、並列反応、逐次反応などの副反応が多く、副生成物は数、量とも多い。従って、イソブチレンおよび/又はt−ブチルアルコ−ルからメタクロレインおよび/又はメタクリル酸を生成する場合の反応熱は、プロピレンからアクロレインおよび/又はアクリル酸を生成する場合の反応熱よりも大きい。このことが触媒層の蓄熱を助長し、暴走反応を生じさせてしまう為に、従来の方法では敢えて反応管径を細くし、除熱効果を高めた反応管を用いてメタクロレインおよびメタクリル酸製造を製造していた。しかも、t−ブチルアルコールからメタクロレインおよび/又はメタクリル酸を製造する際には、ガス入口部でt−ブチルアルコールの脱水反応による反応温度の低下が起こる。反応管径が大きくなる程吸熱の影響が大きくなり、ガス入口部の触媒層の温度が低下する。t−ブチルアルコールを高転化率で得る為には、触媒充填層が長くなり、圧力損失が高くなって、メタクロレインおよび/又はメタクリル酸を高選択率、高収率で得るには不利な傾向にあった。工業的規模の生産にとって、反応管径を大きくすることは、反応器の製造コストを低減できるのみならず、反応管本数が減少するので触媒の充填が容易になる。従って、反応管径を大きくしたメタクロレインの製造方法が望まれていた。
【0009】
さらに、特開平H3−176440号公報、特開平3−200733号公報、特開平H3−215441号公報、特開平H3−294238号公報上記方法、特開平4−217932号公報、特開平6−192144号公報の実施例では触媒の活性を変える為に、触媒の成分、焼成温度、形状、担持率等を変えることによって、触媒活性を変化させている。複数の触媒を製造する際には、工業的規模では触媒製造工程が増え、煩雑となる欠点を有している。従って、同一の触媒を用いてメタクロレインを製造する方法が望まれていた。
【0010】
特開昭63−216835号公報では、t−ブチルアルコールを含む原料ガスを触媒層に導入する前に、予めt−ブチルアルコールをイソブチレンと水に脱水分解して供給することで、触媒寿命が長くなることを提案している。しかし、t−ブチルアルコールを分解するため、新しい装置や触媒を使用する必要が生じ、t−ブチルアルコールを直接触媒層に供給する方法が望まれていた。
【0011】
以上説明したように今迄に知られていた反応手段は充分と言い難く、触媒充填方法、メタクロレイン製造工程の実用性の点で工業的見知から更に改良が望まれている。
【0012】
【発明が解決しようとする課題】
本発明の目的は、イソブチレンおよび/又はt−ブチルアルコールから選ばれる少なくとも1種を分子状酸素含有ガスを用いて固定床多管式反応器で気相接触酸化し、メタクロレインを高収率で製造する方法を提供することである。
【0013】
【課題を解決するための手段】
本発明者らは、イソブチレンおよび/又はt−ブチルアルコールから選ばれる少なくとも1種を分子状酸素含有ガスを用いて固定床多管式反応器内で気相接触酸化し、メタクロレインを製造する方法に関して、原料ガス入口部の触媒充填密度、充填方法、原料ガス温度、多管式反応器のジャケット部分の温度について鋭意検討を進めた結果、驚くべきことに、従来提案されていたような、ガス入口部分の触媒活性を低くするのではなく、ガス入口部の触媒活性を高くすることによってイソブチレンおよび/又はt−ブチルアルコールから高選択率、高収率で、長時間にわたってメタクロレインを製造する方法を見いだして本発明を完成した。
【0014】
すなわち、本発明は、固定床多管式反応器を用いてイソブチレンおよび/又はt−ブチルアルコールを分子状酸素含有ガスを用いて気相接触酸化し、メタクロレインを製造する方法に於いて、各反応管内の触媒層を管軸方向に3層以上に分割して設けた複数個の反応帯に於いて、原料ガス入口部の1層目に充填する触媒の単位容積当たりの活性を2層目の反応帯に充填する単位容積当たりの活性より高くし、かつ3層目以降に充填する触媒の単位体積当たりの活性を2層目の単位容積当たりの活性より高く充填することを特徴とするメタクロレインの製造方法である。
【0015】
本発明に於いて、反応管の内径R(m)が18.0(mm)<R<55.0(mm)の範囲が好ましく、より好ましくは30.0(mm)<R<50.0(mm)の範囲で、メタクロレインが高収率で反応することができる。
本発明に於いて、固定床多管式反応器に充填した触媒層の全長をL0(m)とし、原料ガス入口部から反応管内の触媒層を管軸方向に3層以上に分割した反応帯の長さを原料ガス入口部から順次、L1(m)、L2(m)、L3(m)・・・とし、原料ガス入口部から反応管内の触媒層を管軸方向に3層以上に分割した反応帯の各触媒層の触媒充填密度C(Kg/cm3 )を、原料ガス入口部から順次C1、C2、C3・・・とし、3層目以降で最も触媒充填密度が高い触媒層の触媒充填密度をChとした場合、1層目の反応帯L1(m)が全長L0(m)に対して、0.01<L1/L0<0.3が好ましく、より好ましくは0.018<L1/L0<0.26であり、2層目の反応帯L2(m)が全長L0(m)に対して、0.2<L2/L0<0.5が好ましく、より好ましくは0.1<L2/L0<0.6である。
【0016】
また、反応管全長L0(m)は、1(m)<L0<10(m)が好ましく、より好ましくは2(m)<L0<6.5(m)である。この範囲でメタクロレインを高収率で反応することができる。L0が短いと、イソブチレンおよび/又はt−ブチルアルコールの転化率が低く、メタクロレインを高収率で得ることができない。また、L0が長いと、圧力損失が高くなり、メタクロレインの選択率が低下する。
【0017】
本発明に於いて、固定床多管式反応器に充填した触媒層で、原料ガス入口部から反応管内の触媒層を管軸方向に3層以上に分割した反応帯の各触媒層の触媒充填密度C(Kg/cm3 )を、原料ガス入口部から順次C1(Kg/cm3 )、C2(Kg/cm3 )、C3(Kg/cm3 )・・・とし、3層目以降で最も触媒充填密度が高い触媒層の触媒充填密度をCh(Kg/cm3 )とした場合に於いて、た場合に於いて、2層目の充填密度C2(Kg/cm3 )が、C1(Kg/cm3 )、Ch(Kg/cm3 )に対して、C1/C2>1.9、Ch/C2>2.0の範囲になるように充填することが好ましい。
【0018】
本発明に於いて、いずれの触媒でも本発明の効果を期待することができるが、上記提案に示されたような、Mo-Bi-Fe系、Mo-Bi-Fe-Co/Ni- アルカリ金属系、Mo-W-Bi-Fe-Co/Ni- アルカリ金属系に適用することができる。好ましくは、下記一般式で表される複合酸化物を用いることがぎる。
Mo12Bia Ceb c Fed e f g
(式中、Aはコバルト単独、またはコバルトとマグネシウムの混合物で、混合物中のマグネシウムのコバルに対する原子比率は0.7以下、Bはルビジウム、セシウムまたはそれらの混合物であり、a、b、c、d、e、f及びgは、それぞれ、モリブデン12原子に対するビスマス、セリウム、鉄、A、B及び酸素の原子比率を表し、0<a≦8、0<b≦8、0<c≦1.2、0<d≦2.5、1.0<e≦12、0<f≦2.0で、gは存在する他の元素の原子価条件を満足させるのに必要な酸素の原子数であり、a、b、c及びdは、0.05≦b/(a+b+c)≦0.7、0<c/(a+b+c)≦0.4、0<d/(a+b+d)≦0.9の条件を満足する。)
本発明に於いて、活性の異なる複数の触媒を用いてもいいが、活性の異なる触媒を製造する際には、工業的規模では触媒製造工程が増え、煩雑となるので、1種類の触媒を用いることが好ましい。
【0019】
本発明に於いて、接触気相酸化反応では、原料ガス組成としては、1〜10vol%のイソブチレンおよびt−ブチルアルコールから選ばれる少なくとも1種、より好ましくはt−ブチルアルコールを用い、4〜20vol%の分子状酸素、および70〜90vol%の希釈ガスからなる混合ガスを用い、触媒層に250〜450℃の温度範囲および常圧〜5気圧の圧力下で、空間速度400〜4000/hr(STP)で導入することで実施される。
【0020】
分子状酸素を含むガスとして通常空気を使用するが、純酸素を希釈ガスと混合してもよい。希釈ガスには窒素や二酸化炭素などの他、水蒸気を用いてもよく、これらの希釈ガスの混合ガスを用いてもよい。原料ガス中の水蒸気は、触媒へのコーキングを防ぐ点では必要であるが、メタクリル酸や酢酸等のカルボン酸の副生を抑制する点に於いては、できるだけ希釈ガス中に含ませない方が好ましい。原料ガス中の水蒸気は通常0〜30vol%の範囲で使用される。
【0021】
本発明に於いて、反応管内の触媒層を管軸方向に分割して設ける反応帯の数については、3〜4層とすることが好ましい。反応帯の数を多くするほど、触媒層の温度分布制御の効果は増すが、触媒の製造及び充填が著しく煩雑になるデメリットが生じてくる。工業的には3〜4層に分割することにより十分目的とする効果を得ることができる。また、分割長比については各層の触媒、希釈剤をいかなる大きさと割合にするかによって左右されるが触媒充填層全体にわたって温度分布幅が小さくなるように分割長比を調整することが好ましい。
【0022】
本発明に於いて、触媒の活性を制御する方法として、触媒と不活性な物質との混合によって行っているが、不活性な物質としては磁器物質(主成分はシリカとアルミナ)、シリカ、アルミナ、SUS鋼等で、不活性物質の形状は触媒との物理的混合性がよく、反応管中でメタクロレインの収率を低下させない形状であれば球状、円柱状、リング状、板状等が挙げられ、特に限定されない。また、不活性な物質が、圧力損失を小さくするような形状であればさらに好ましい。
【0023】
【発明の実施の形態】
本願発明において、転化率および選択率は、それぞれ次の通り定義される。
転化率(%)=(反応したイソブチレンおよび/又はt−ブチルアルコールのモル数)/(供給したイソブチレンおよび/又はt−ブチルアルコールのモル数)×100
選択率(%)=(生成したメタクロレインおよび/又はメタクリル酸のモル数)/(反応したイソブチレンまたはt−ブチルアルコールのモル数)×100
分析はガスクロマトグラフィーにより行った。
【0024】
【実施例1】
約50℃の温水1820gにヘプタモリブデン酸アンモニウム364gを溶解させた(A液)。また、硝酸ビスマス133g、硝酸セリウム29.8g、硝酸鉄58.8g、硝酸セシウム13.4g、硝酸カリウム3.34gおよび硝酸コバルト400gを15wt%の硝酸水溶液290gに溶解させた(B液)。A液とB液の両液を約2時間程度撹拌混合した後、この混合溶液を噴霧乾燥し、さらにここに得られた噴霧乾燥触媒を200℃で3時間仮焼した。かくして得られた擬似球形の仮焼触媒を直径5mm、高さ4mmの円柱触媒に打錠成型し、460℃で3時間焼成した。この触媒の組成は、Mo12原子を基準として酸素を除いた原子比で表すと触媒(1):Mo12Bi1.6 Ce0.4 Fe1 Co8 Cs0.4 0.2 である。
【0025】
この打錠触媒を外径50.7mm、内径46.7mmのジャッケト付きステンレス製反応管(SUS304製)に、ガス入口部から出口部に向かって、触媒層を3層の反応帯に分け、入口部から順次触媒充填密度(以下単位はKg/m3 )C1=800、C2=400、C3=1000で、各反応帯の充填層の高さ(以下単位はm)はそれぞれ、L1=0.6、L2=1.5、L3=2.5となるように充填した。
【0026】
触媒充填密度の調製は、直径5mm、高さ4mm、貫通経3mmの円柱状磁器製ラッシヒリングと打錠触媒を混合して行った。
ジャッケト部の熱媒温度を320℃でt−ブチルアルコール5.75vol%、酸素8.37vol%、水蒸気4.17vol%および窒素81.71vol%の混合ガスを290℃で導入し、空間速度(SV)900hr-1で反応を行った。結果はt−ブチルアルコール転化率が100%に於いてメタクロレイン選択率が85.6%、メタクロレイン収率が85.6%であった。また、各反応帯の最高温度をそれぞれT1、T2,T3(℃)とすると、T1=384、T2=384,T3=383であった。
【0027】
この条件で、4000時間経過した時の反応成績は、t−ブチルアルコール転化率が100%に於いてメタクロレイン選択率が85.6%、メタクロレイン収率が85.6%で変化がなく、また、T1、T2,T3も変化が無かった。
【0028】
【実施例2】
実施例1に於いて、磁性ラッシヒリングの代わりに、直径6.4(mm)の磁性ボールに変えた以外は、実施例1と同様にして反応を行った。結果は、t−ブチルアルコール転化率が100%に於いてメタクロレイン選択率が85.2%、メタクロレイン収率が85.2%であった。また、T1=388、T2=388、T3=381であった。
【0029】
【実施例3】
実施例1に於いて、磁性ラッシヒリングの代わりに、直径6(mm)、高さ64(mm)、貫通経4.7(mm)の円柱状SUS製ラッシヒリングに変えた以外は、実施例1と同様にして反応を行った。結果は、t−ブチルアルコール転化率が100%に於いてメタクロレイン選択率が85.8%、メタクロレイン収率が85.8%であった。また、T1=382、T2=382、T3=383であった。
【0030】
実施例1〜3より、触媒充填密度の調製に、反応に不活性な物質が触媒と充分混合する場合には、不活性な物質に関係なく、良い結果が得られる。
【0031】
【実施例4】
実施例1と同じ触媒を、外径50.7mm、内径46.7mmのジャッケト付きステンレス製反応管(SUS304製)に、ガス入口部から出口部に向かって、触媒層を3層の反応帯に分け、入口部から順次触媒充填密度がC1=800、C2=400、C3=1000とし、各反応帯の充填層の高さはそれぞれ、L1=0.8、L2=1.35、L3=2.4となるように充填した以外は、実施例1と同様にして、反応を行った。結果は、t−ブチルアルコール転化率が100%に於いてメタクロレイン選択率が85.1%、メタクロレイン収率が85.1%であった。また、T1=397、T2=397、T3=380であった。
【0032】
【実施例5】
実施例1と同じ触媒を、外径50.7(mm)、内径46.7(mm)のジャッケト付きステンレス製反応管(SUS304製)に、ガス入口部から出口部に向かって、触媒層を3層の反応帯に分け、入口部から順次触媒充填密度がC1=800、C2=400、C3=1000とし、各反応帯の充填層の高さはそれぞれ、L1=1.1、L2=1.0、L3=2.3となるように充填した以外は、実施例1と同様に反応を行った。結果は、t−ブチルアルコール転化率が100%に於いてメタクロレイン選択率が82.9%、メタクロレイン収率が82.9%であった。また、T1=420、T2=420、T3=378であった。
【0033】
【実施例6】
実施例1と同じ触媒を、外径50.7mm、内径46.7mmのジャッケト付きステンレス製反応管(SUS304製)に、ガス入口部から出口部に向かって、触媒層を3層の反応帯に分け、入口部から順次触媒充填密度がC1=800、C2=400、C3=1000とし、各反応帯の充填層の高さはそれぞれ、L1=0.1、L2=2.5、L3=2.5となるように充填した以外は、実施例1と同様に反応を行った。結果は、t−ブチルアルコール転化率が100%に於いてメタクロレイン選択率が83.1%、メタクロレイン収率が83.1%であった。また、T1=303、T2=372、T3=391であった。
【0034】
【実施例7】
実施例1と同じ触媒を、外径50.7(mm)、内径46.7(mm)のジャッケト付きステンレス製反応管(SUS304製)に、ガス入口部から出口部に向かって、触媒層を3層の反応帯に分け、入口部から順次触媒充填密度がC1=800、C2=400、C3=1000とし、各反応帯の充填層の高さはそれぞれ、L1=0.25、L2=2.2、L3=2.5となるように充填した以外は、実施例1と同様に反応を行った。結果は、t−ブチルアルコール転化率が100%に於いてメタクロレイン選択率が84.3%、メタクロレイン収率が84.3%であった。また、T1=336、T2=375、T3=389であった。
【0035】
【比較例1】
実施例1と同じ触媒を、外径50.7(mm)、内径46.7(mm)のジャッケト付きステンレス製反応管(SUS304製)に、ガス入口部から出口部に向かって、触媒層を2層の反応帯に分け、入口部から順次触媒充填密度がC1=400、C2=1000とし、各反応帯の充填層の高さはそれぞれ、L1=2.9、L2=2.5となるように充填した以外は、実施例1と同様にして、反応を行った。反応結果は、t−ブチルアルコール転化率が100%に於いてメタクロレイン選択率が81.9%、メタクロレイン収率が81.9%であった。また、T1=378、T2=392であった。
【0036】
実施例1と比較例1を比較すると実施例1のように入口部の触媒充填密度を高めた場合にメタクロレイン収率が高くなるが、比較例1のように入口部分の触媒充填密度が低い場合には、触媒充填層高が長くなるばかりでなく、メタクロレインの収率が低下することが判った。
【0037】
【比較例2】
実施例1と同じ触媒を、外径50.7(mm)、内径46.7(mm)のジャッケト付きステンレス製反応管(SUS304製)に、ガス入口部から出口部に向かって、触媒層を2層の反応帯に分け、入口部から順次触媒充填密度がC1=500、C2=1000とし、各反応帯の充填層の高さはそれぞれ、L1=2.6、L2=2.4となるように充填した以外は、実施例1と同様に反応を行った。結果は、t−ブチルアルコール転化率が100%に於いてメタクロレイン選択率が82.6%、メタクロレイン収率が82.6%であった。また、T1=395、T2=396であった。
【0038】
【比較例3】
実施例1と同じ触媒を、外径50.7(mm)、内径46.7(mm)のジャッケト付きステンレス製反応管(SUS304製)に、ガス入口部から出口部に向かって、触媒層を2層の反応帯に分け、入口部から順次触媒充填密度がC1=600、C2=1000とし、各反応帯の充填層の高さはそれぞれ、L1=2.3、L2=2.2となるように充填した以外は、実施例1と同様に反応を行った。反応結果は、t−ブチルアルコール転化率が100%に於いてメタクロレイン選択率が80.8%、メタクロレイン収率が80.8%であった。また、T1=420、T2=425であった。
【0039】
比較例1、2、3に比べ、実施例1は、メタクロレイン収率が高く、本発明が優れていることが判る。
【0040】
【比較例4】
実施例1の触媒を500℃で焼成した触媒を触媒(2)とした、この打錠触媒8.0(g)を直径10mmのジャッケット月SUS製反応管に充填し、反応温度350℃でイソブチレン6vol%、酸素10.8vol%、水蒸気10.0vol%および窒素73.2vol%の混合ガスを100ml/min(STP)の流量で通気しメタクロレイン合成反応を遂行した。触媒(1)の触媒を4.0(g)を反応させた場合のイソブチレン転化率=97.4%、メタクロレイン選択率=87.1%と同じであった。外径50.7(mm)、内径46.7(mm)のジャッケト付きステンレス製反応管(SUS304製)に、ガス入口部から出口部に向かって、触媒層を2層の反応帯に分け、1層目に触媒(2)を充填密度がC1=1000、2層目に触媒(1)が充填密度C2=1000とし、各反応帯の充填層の高さはそれぞれ、L1=2.6、L2=2.4となるように充填した以外は、比較例2と同様に反応を行った。結果は、t−ブチルアルコール転化率が100%に於いてメタクロレイン選択率が80.9%、メタクロレイン収率が80.9%であった。また、T1=405、T2=395であった。
【0041】
比較例2と比較例4から、触媒活性を低下させた触媒を1層目に充填する方法に比べ、比較例2の様に希釈剤と混合させて活性を低下させた場合にメタクロレイン収率が高くなった。これは、希釈剤を使用した場合には圧力損失が低下し、メタクロレイン収率が高くなったと考えられる。比較例4のように触媒の活性を低下させる方法では、触媒量が希釈剤を使用した場合に比べ多くなり、工業的使用に際しては不利なことが判った。
【0042】
【比較例5】
実施例1と同じ触媒を、外径50.7(mm)、内径46.7(mm)のジャッケト付きステンレス製反応管(SUS304製)に、ガス入口部から出口部に向かって、触媒層を2層の反応帯に分け、入口部から順次触媒充填密度がC1=400、C2=1000とし、各反応帯の充填層の高さはそれぞれ、L1=2.6、L2=2.35となるように充填し、混合ガスを350℃で導入した以外は、実施例1と同様にして、反応を行った。反応結果は、t−ブチルアルコール転化率が100%に於いてメタクロレイン選択率が82.7%、メタクロレイン収率が82.7%であった。また、T1=392、T2=395であった。
【0043】
【比較例6】
実施例1と同じ触媒を、外径50.7(mm)、内径46.7(mm)のジャッケト付きステンレス製反応管(SUS304製)に、ガス入口部から出口部に向かって、触媒層を2層の反応帯に分け、入口部から順次触媒充填密度がC1=400、C2=1000とし、各反応帯の充填層の高さはそれぞれ、L1=2.3、L2=2.3となるように充填し、ジャッケト部の熱媒温度を350(℃)、混合ガス温度を350℃で導入した以外は、実施例1と同様にして反応を行った。反応結果は、t−ブチルアルコール転化率が100%に於いてメタクロレイン選択率が81.2%、メタクロレイン収率が81.2%であった。また、T1=419、T2=422であった。
【0044】
比較例5、比較例6は、入口部分の触媒充填密度を高めるのではなく、入口のガス温度と多管式反応器のジャケット部分の温度を高める方法を試みたが、比較例1に比べ、比較例5の場合には、入口部のガス温度を高めることでメタクロレインの収率が高まった。しかし、比較例5を実施例1と比較すると、比較例5は、メタクロレイン収率が低く、本発明の充填方法の効果が高いことが判った。
【0045】
【比較例7】
実施例1と同じ触媒を、外径50.7(mm)、内径46.7(mm)のジャッケト付きステンレス製反応管(SUS304製)に、ガス入口部から出口部に向かって、触媒層を3層の反応帯に分け、入口部から順次触媒充填密度がC1=200、C2=400、C3=1000とし、各反応帯の充填層の高さはそれぞれ、L1=1.4、L2=2.3、L3=2.5となるように充填した以外は、実施例1と同様に反応を行った。結果は、t−ブチルアルコール転化率が100%に於いてメタクロレイン選択率が81.2%、メタクロレイン収率が81.2%であった。また、T1=331、T2=362、T3=393であった。
【0046】
また、実施例1と比較例7を比較すると実施例1のように入口部の触媒充填密度を高めた場合にメタクロレイン収率が高くなるが、比較例7のように入口部分の触媒充填密度が低い場合には、触媒充填層高が長くなるばかりでなく、メタクロレインの収率が低下することが判った。
【0047】
【比較例8】
実施例1と同じ打錠触媒を、外径50.7(mm)、内径46.7(mm)のジャッケト付きステンレス製反応管(SUS304製)に、T1=1000とし、L1=3.6となるように充填した以外は、実施例1と同様に反応を行った。結果は、反応温度が450℃以上になり反応を続けることができなかった。
【0048】
【実施例8】
実施例1と同じ打錠触媒、外径50.7(mm)、内径46.7(mm)のジャッケト付きステンレス製反応管(SUS304製)に、C1=800、C2=400、C3=1000とし、L1=0.4、L2=1.4、L3=2.5となるように充填した。ジャッケト部の熱媒温度を320(℃)でイソブチレン5.44vol%、酸素7.92vol%、水蒸気9.39vol%および窒素77.25vol%の混合ガスを導入し、空間速度(SV)950hr-1で反応を行った。結果はイソブチレン転化率が98.0%に於いてメタクロレイン選択率が85.6%、メタクロレイン収率が83.9%であった。また、T1=387、T2=387、T3=383であった。
【0049】
この条件に於いて、4000時間経過した時点での反応成績は、イソブチレン転化率が98.0%に於いてメタクロレイン選択率が87.6%、メタクロレイン収率が85.8%であった。また、T1、T2、T3は変化がなかった。
【0050】
【比較例9】
実施例1と同じ打錠触媒を、外径50.7(mm)、内径46.7(mm)のジャッケト付きステンレス製反応管(SUS304製)に、ガス入口部から出口部に向かって、触媒層を2層の反応帯に分け、入口部から順次触媒充填密度がC1=400、C2=1000とし、L1=2.5、L2=2.5となるように充填した以外は、実施例8と同様に反応を行った。結果はイソブチレン転化率が97.9%に於いてメタクロレイン選択率が84.0%、メタクロレイン収率が82.2%であった。また、T1=380、T2=391であった。
【0051】
【比較例10】
実施例1と同じ打錠触媒を、外径50.7(mm)、内径46.7(mm)のジャッケト付きステンレス製反応管(SUS304製)に、C1=200、C2=400、C3=1000とし、各反応帯の充填層の高さはそれぞれ、L1=1.2、L2=1.8、L3=2.5となるように充填した以外は、実施例8と同様に反応を行った。結果はイソブチレン転化率が98.1%に於いてメタクロレイン選択率が83.6%、メタクロレイン収率が82.0%であった。また、T1=342、T2=365、T3=391であった。
【0052】
実施例8と比較例9、比較例10を比較すると、イソブチレン原料の場合においても、t−ブチルアルコールと同様に、入口部分の触媒充填密度を高めると、メタクロレイン収率が高まり、本発明の充填方法の効果が高いことが判った。
【0053】
【実施例9】
実施例1と同じ打錠触媒を、外径38.1(mm)、内径34.1(mm)のジャッケト付きステンレス製反応管(SUS304製)に、C1=800、C2=400、C3=1000とし、L1=0.5、L2=1.4、L3=2.1となるように充填した。ジャッケト部の熱媒温度を320(℃)で、t−ブチルアルコール5.75vol%、酸素8.37vol%、水蒸気4.17vol%および窒素81.71vol%の混合ガスを290(℃)で導入し、空間速度(SV)1200hr-1で反応を行った。結果はt−ブチルアルコール転化率が100.0%に於いてメタクロレイン選択率が85.3%、メタクロレイン収率が85.3%であった。また、T1=387、T2=391、T3=391であった。この条件に於いて、6000時間経過した時点での反応成績は、t−ブチルアルコール転化率が100.0%に於いてメタクロレイン選択率が85.3%、メタクロレイン収率が85.3%であった。また、T1=387、T2=391、T3=391であった。
【0054】
【比較例11】
実施例1と同じ打錠触媒を、外径38.1(mm)、内径34.1(mm)のジャッケト付きステンレス製反応管(SUS304製)に、C1=400、C2=1000とし、各反応帯の充填層の高さはそれぞれ、L1=2.6、L2=2.3となるように充填した以外は、実施例9と同様に反応を行った。結果はt−ブチルアルコール転化率が100.0%に於いてメタクロレイン選択率が82.2%、メタクロレイン収率が82.2%であった。また、T1=386、T2=393であった。
【0055】
【実施例10】
実施例1と同じ打錠触媒を、外径21.7(mm)、内径18.4(mm)のジャッケト付きステンレス製反応管(SUS304製)に、C1=1000、C2=500、C3=1000とし、L1=0.4、L2=0.7、L3=1.1となるように充填した。ジャッケト部の熱媒温度を330(℃)で、t−ブチルアルコール5.75vol%、酸素8.37vol%、水蒸気4.17vol%および窒素81.71vol%の混合ガスを290(℃)で導入し、空間速度(SV)1600hr-1で反応を行った。結果はt−ブチルアルコール転化率が100.0%に於いてメタクロレイン選択率が85.0%、メタクロレイン収率が85.0%であり、T1=379、T2=389、T3=388であった。
【0056】
実施例9、実施例10、比較例11は反応管径を実施例1に比べて細くした場合であるが、実施例9、実施例10から判るように、入口部分の触媒充填密度を高くするとメタクロレインが高収率で得られることが分かった。
【0057】
【実施例11】
実施例1と同じ打錠触媒を、外径60.5(mm)、内径54.9(mm)のジャッケト付きステンレス製反応管(SUS304製)に、C1=100、C2=450、C3=1000とし、L1=0.6、L2=1.8、L3=2.4となるように充填した。ジャッケト部の熱媒温度を320(℃)で、t−ブチルアルコール5.75vol%、酸素8.37vol%、水蒸気4.17vol%および窒素81.7vol%の混合ガスを290(℃)で導入し、空間速度(SV)600hr-1で反応を行った。結果はt−ブチルアルコール転化率が100.0%に於いてメタクロレイン選択率が84.8%、メタクロレイン収率が84.8%であった。また、T1=395、T2=397、T3=397であった。
【0058】
【実施例12】
実施例1と同じ触媒を、外径60.5(mm)、内径54.9(mm)のジャッケト付きステンレス製反応管(SUS304製)に、C1=1000、C2=450、C3=1000とし、各反応帯の充填層の高さはそれぞれ、L1=0.9、L2=2.1、L3=3.0となるように充填し、ジャッケト部の熱媒温度を310(℃)にし、空間速度(SV)950hr-1にし以外は、実施例11と同様に反応を行った。結果は、t−ブチルアルコール転化率が100%に於いてメタクロレイン選択率が84.2%、メタクロレイン収率が84.2%であった。また、T1=391、T2=394、T3=395であった。
【0059】
【比較例12】
実施例1と同じ打錠触媒を、外径60.5(mm)、内径54.9(mm)のジャッケト付きステンレス製反応管(SUS304製)に、C1=500、C2=1000とし、L1=3.0、L2=2.6となるように充填した以外は、実施例11と同様に反応を行った。結果はt−ブチルアルコール転化率が100.0%に於いてメタクロレイン選択率が81.5%、メタクロレイン収率が81.5%であった。また、T1=393、T2=395であった。
【0060】
実施例11、実施例12、比較例12は実施例1に比べ反応管径を太くした実施例であるが、実施例8はメタクロレインを高収率で得られているが、実施例1に比べ空間速度が小さい。実施例12は空間速度が大きい場合には、メタクロレインの収率が低下することが判った。また、実施例11と比較例12から、反応管径を太くしても、入口部分の触媒充填密度を高くするとメタクロレインが高収率で得られ、本発明の充填方法の効果が高いことが判った。
【0061】
【発明の効果】
本発明の方法により、メタクロレインを高収率で得ることができる。また、1種類の触媒を用いることで、メタクロレインを高収率で得るので、複数の触媒を工業的製造する際に生じる製造工程増加の煩雑さがなくなった。
本発明の充填方法で、反応管径が細い反応管に比べ、反応管径が太い反応管でもメタクロレインを高収率に得ることができ、さらに長時間安定にメタクロレインを製造できることが判った。
【0062】
原料がTBAの場合には、触媒充填層高を従来の方法に比べ短くでき、メタクロレインが高収率に得られ、長期運転も高い安定性がある。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing methacrolein by gas phase catalytic oxidation of at least one selected from isobutylene and / or t-butyl alcohol in a fixed bed multitubular reactor using a molecular oxygen-containing gas.
[0002]
[Prior art]
Many proposals have been made regarding a method for producing methacrolein by gas phase catalytic oxidation reaction of isobutylene and / or t-butyl alcohol. These are mainly related to the components constituting the catalyst and their ratios. Examples thereof include JP-A-63-122642, JP-A-48-32814, JP-A-51-63112, JP-B-62-36740, and JP-A-4-41453. However, various problems occur when these known catalysts are industrially produced for methacrolein.
[0003]
One of these problems is that this reaction is an oxidation reaction accompanied by a large amount of heat generation, so that heat storage accompanying heat generation occurs locally in the catalyst layer, and the selectivity and yield of methacrolein are lowered. Further, there is a problem that the catalyst deteriorates due to local heat generation and the catalyst life is shortened. A method of mixing an inert substance in the heat storage portion of the catalyst layer to keep the heat generation amount low is disclosed in Japanese Patent Publication No. 34-9895, Japanese Patent Publication No. 43-24403, Japanese Patent Publication No. 53-30688, Japanese Patent Publication No. Sho 51. No. -12,007 has been proposed. These methods are not sufficient as methods for suppressing heat storage. Moreover, regarding the method for producing methacrolein from t-butyl alcohol, in Comparative Example 6 of JP-A-4-217932, the catalyst layer is divided into two layers from the gas inlet, and the catalyst is separated in the first layer of the gas inlet. A method is disclosed in which rasch rings are mixed and filled, and only the catalyst is filled in the second layer from the gas inlet. In the case of this comparative example, it is considered that the activity control of the first layer is insufficient, the reaction temperature is high in the second layer, and the yield of methacrolein is low.
[0004]
In JP-A-3-176440, JP-A-3-200743, JP-A-3-215441, and JP-A-3-294238, isobutylene and / or t- A method for producing methacrolein and / or methacrylic acid by vapor phase oxidation of butyl alcohol with molecular oxygen is disclosed. In this disclosure, the catalyst layer is divided to provide a plurality of reaction zones, and by changing the type and / or ratio of the catalyst constituent elements in the plurality of reaction zones, or the calcination temperature at the catalyst preparation. From the inlet to the outlet, the catalyst whose activity is adjusted by filling the catalyst is packed so as to increase the activity, and isobutylene and / or t-butyl alcohol is vapor-phase oxidized with molecular oxygen to methacrolein and / or Alternatively, a method for producing methacrylic acid is described.
[0005]
In JP-A-4-217932, a plurality of reaction zones are provided in the axial direction of the reaction tube using catalysts having different occupied volumes so that the occupied volume decreases from the inlet to the outlet of the reaction tube. Describes a method for producing methacrolein and / or methacrylic acid by filling the reaction zone and subjecting isobutylene and / or t-butyl alcohol to gas phase catalytic oxidation.
[0006]
In JP-A-6-192144, a catalyst carrying a catalytically active component on a carrier is provided with a plurality of reaction zones in the tube axis direction in the reaction tube, and the loading amount increases from the inlet to the outlet of the reaction tube. The method of producing methacrolein and / or methacrylic acid by gas phase catalytic oxidation of isobutylene and / or t-butyl alcohol is described.
[0007]
In the methods of JP-A-4-217932 and JP-A-6-192144, isobutylene and / or t-butyl is also obtained by substantially filling the catalyst from the inlet part to the outlet part so as to increase the activity. In this method, methacrolein and / or methacrylic acid is produced by vapor-phase oxidation of alcohol with molecular oxygen.
In JP-A-3-176440, JP-A-3-200743, JP-A-3-215441, JP-A H3-294238, the above method, JP-A-4-217932, JP-A-6-192144 Although there is a certain effect as a measure for preventing heat accumulation in the catalyst layer, in the filling method of these patents, when the raw material gas is introduced at a low temperature, the activity of the inlet portion is low, and isobutylene and / or t-butyl alcohol In order to increase the conversion rate, the catalyst layer becomes longer and the pressure loss becomes higher. Further, when the temperature of the raw material gas is increased, the temperature in the catalyst layer is increased, so that the activity of the catalyst needs to be decreased. Therefore, in order to prevent the reaction temperature from becoming high, the filling methods of these patents have the disadvantage of lengthening the catalyst layer at the gas inlet portion with low activity or increasing the number of packed beds. When raising the raw material gas to a predetermined temperature in a short time, it is necessary to set a separate heating device, and it is industrially advantageous to take measures to increase the raw material gas at the inlet of the catalyst layer.
[0008]
Examples of JP-A-3-176440, JP-A-3-200743, JP-A-3-215441, JP-A-3-294238, JP-A-4-217932, and JP-A-6-192144 In the synthesis reaction of acrolein and acrylic acid, the inner diameter of the reaction tube is 38 (mm). However, in the production of methacrolein and / or methacrylic acid, the inner diameter of the reaction tube is at most 25.4. (Mm) only. In the reaction for producing methacrolein and / or methacrylic acid by gas phase catalytic reaction of isobutylene and / or t-butyl alcohol, these starting materials are all different from propylene, and side reactions such as parallel reaction and sequential reaction. There are many by-products in both quantity and quantity. Therefore, the heat of reaction when producing methacrolein and / or methacrylic acid from isobutylene and / or t-butyl alcohol is greater than the heat of reaction when producing acrolein and / or acrylic acid from propylene. Since this promotes heat storage in the catalyst layer and causes a runaway reaction, the conventional method dare to reduce the reaction tube diameter and produce methacrolein and methacrylic acid using a reaction tube with enhanced heat removal effect. Was manufacturing. Moreover, when producing methacrolein and / or methacrylic acid from t-butyl alcohol, the reaction temperature decreases due to the dehydration reaction of t-butyl alcohol at the gas inlet. As the reaction tube diameter increases, the effect of endotherm increases and the temperature of the catalyst layer at the gas inlet decreases. In order to obtain t-butyl alcohol at a high conversion rate, the catalyst packed bed becomes long, the pressure loss becomes high, and it tends to be disadvantageous for obtaining methacrolein and / or methacrylic acid with high selectivity and high yield. It was in. For industrial scale production, increasing the reaction tube diameter not only reduces the manufacturing cost of the reactor, but also reduces the number of reaction tubes, facilitating catalyst filling. Therefore, a method for producing methacrolein with a large reaction tube diameter has been desired.
[0009]
Further, the methods described above, JP-A-4-217932, JP-A-6-192144, JP-A-H3-176440, JP-A-3-200743, JP-A-H3-215441, JP-A-H3-294238. In the examples of the publication, in order to change the activity of the catalyst, the catalyst activity is changed by changing the catalyst component, the firing temperature, the shape, the loading rate, and the like. When producing a plurality of catalysts, the catalyst production process increases on an industrial scale, and there is a disadvantage that becomes complicated. Therefore, a method for producing methacrolein using the same catalyst has been desired.
[0010]
In Japanese Patent Laid-Open No. 63-216835, the catalyst life is extended by supplying t-butyl alcohol to isobutylene and water in advance by dehydration before supplying the raw material gas containing t-butyl alcohol to the catalyst layer. Propose to be. However, in order to decompose | disassemble t-butyl alcohol, it became necessary to use a new apparatus and a catalyst, and the method of supplying t-butyl alcohol directly to a catalyst layer was desired.
[0011]
As described above, it is difficult to say that the reaction means known so far is sufficient, and further improvements are desired from the industrial point of view in terms of practicality of the catalyst filling method and the methacrolein production process.
[0012]
[Problems to be solved by the invention]
An object of the present invention is to subject at least one selected from isobutylene and / or t-butyl alcohol to gas phase catalytic oxidation in a fixed bed multitubular reactor using a molecular oxygen-containing gas to produce methacrolein in a high yield. It is to provide a method of manufacturing.
[0013]
[Means for Solving the Problems]
The present inventors provide a method for producing methacrolein by gas-phase catalytic oxidation of at least one selected from isobutylene and / or t-butyl alcohol in a fixed bed multitubular reactor using a molecular oxygen-containing gas. As a result of diligent investigations on the catalyst packing density at the raw material gas inlet, the filling method, the raw material gas temperature, and the temperature of the jacket portion of the multi-tubular reactor, surprisingly, the gas as previously proposed Method for producing methacrolein from isobutylene and / or t-butyl alcohol with high selectivity and high yield over a long period of time by increasing the catalytic activity of the gas inlet part instead of lowering the catalytic activity of the inlet part As a result, the present invention was completed.
[0014]
That is, the present invention relates to a method for producing methacrolein by gas-phase catalytic oxidation of isobutylene and / or t-butyl alcohol with a molecular oxygen-containing gas using a fixed bed multitubular reactor. In a plurality of reaction zones in which the catalyst layer in the reaction tube is divided into three or more layers in the tube axis direction, the activity per unit volume of the catalyst filled in the first layer of the raw material gas inlet is measured in the second layer. A catalyst having a higher activity per unit volume charged in the reaction zone of the catalyst and a higher activity per unit volume of the catalyst charged in the third and subsequent layers than the activity per unit volume of the second layer. It is a manufacturing method of rain.
[0015]
In the present invention, the inner diameter R (m) of the reaction tube is preferably in the range of 18.0 (mm) <R <55.0 (mm), more preferably 30.0 (mm) <R <50.0. In the range of (mm), methacrolein can react with high yield.
In the present invention, the total length of the catalyst layer packed in the fixed bed multi-tubular reactor is L0 (m), and the reaction zone in which the catalyst layer in the reaction tube is divided into three or more layers in the axial direction from the raw material gas inlet. The length of the gas is sequentially L1 (m), L2 (m), L3 (m) ... from the source gas inlet, and the catalyst layer in the reaction tube is divided into three or more layers in the tube axis direction from the source gas inlet Catalyst packing density C (Kg / cm) of each catalyst layer in the reaction zoneThree) In order from the source gas inlet, and the catalyst packing density of the catalyst layer having the highest catalyst packing density in the third and subsequent layers is Ch, the reaction zone L1 ( m) is preferably 0.01 <L1 / L0 <0.3, more preferably 0.018 <L1 / L0 <0.26 with respect to the total length L0 (m), and the reaction zone L2 of the second layer (M) is preferably 0.2 <L2 / L0 <0.5, more preferably 0.1 <L2 / L0 <0.6 with respect to the total length L0 (m).
[0016]
Further, the total length L0 (m) of the reaction tube is preferably 1 (m) <L0 <10 (m), more preferably 2 (m) <L0 <6.5 (m). Within this range, methacrolein can be reacted in high yield. When L0 is short, the conversion of isobutylene and / or t-butyl alcohol is low, and methacrolein cannot be obtained in a high yield. Moreover, when L0 is long, pressure loss becomes high and the selectivity of methacrolein decreases.
[0017]
In the present invention, a catalyst bed packed in a fixed bed multi-tubular reactor is packed into each catalyst layer in a reaction zone in which the catalyst layer in the reaction tube is divided into three or more layers in the axial direction from the raw material gas inlet. Density C (Kg / cmThree) From the source gas inlet to C1 (Kg / cmThree), C2 (Kg / cmThree), C3 (Kg / cmThree) ... and the catalyst packing density of the catalyst layer having the highest catalyst packing density in the third and subsequent layers is Ch (Kg / cmThree), The filling density of the second layer C2 (Kg / cmThree) Is C1 (Kg / cmThree), Ch (Kg / cmThree) To C1 / C2> 1.9 and Ch / C2> 2.0.
[0018]
In the present invention, the effect of the present invention can be expected with any catalyst, but as shown in the above proposal, Mo-Bi-Fe-based, Mo-Bi-Fe-Co / Ni-alkali metal It can be applied to the Mo-W-Bi-Fe-Co / Ni-alkali metal system. Preferably, a composite oxide represented by the following general formula is used.
Mo12BiaCebKcFedAeBfOg
(In the formula, A is cobalt alone or a mixture of cobalt and magnesium, the atomic ratio of magnesium to cobalt in the mixture is 0.7 or less, B is rubidium, cesium or a mixture thereof; a, b, c, d, e, f, and g represent atomic ratios of bismuth, cerium, iron, A, B, and oxygen, respectively, with respect to 12 atoms of molybdenum, and 0 <a ≦ 8, 0 <b ≦ 8, and 0 <c ≦ 1. 2, 0 <d ≦ 2.5, 1.0 <e ≦ 12, 0 <f ≦ 2.0, and g is the number of oxygen atoms necessary to satisfy the valence condition of other elements present. Yes, a, b, c and d are the conditions of 0.05 ≦ b / (a + b + c) ≦ 0.7, 0 <c / (a + b + c) ≦ 0.4, 0 <d / (a + b + d) ≦ 0.9 To satisfy.)
In the present invention, a plurality of catalysts having different activities may be used. However, when producing catalysts having different activities, the catalyst production process is increased and complicated on an industrial scale. It is preferable to use it.
[0019]
In the present invention, in the catalytic gas phase oxidation reaction, the raw material gas composition is at least one selected from 1 to 10 vol% isobutylene and t-butyl alcohol, more preferably t-butyl alcohol, and 4 to 20 vol. % Of molecular oxygen and a mixed gas consisting of 70 to 90 vol% diluent gas, and a space velocity of 400 to 4000 / hr (at a temperature range of 250 to 450 ° C. and a pressure of normal pressure to 5 atm) in the catalyst layer. It is implemented by introducing in STP).
[0020]
Usually, air is used as a gas containing molecular oxygen, but pure oxygen may be mixed with a diluent gas. In addition to nitrogen and carbon dioxide, water vapor may be used as the dilution gas, or a mixed gas of these dilution gases may be used. The water vapor in the raw material gas is necessary in terms of preventing coking of the catalyst, but in terms of suppressing the by-production of carboxylic acids such as methacrylic acid and acetic acid, it is better not to include it in the dilution gas as much as possible. preferable. The water vapor in the raw material gas is usually used in the range of 0 to 30 vol%.
[0021]
In the present invention, the number of reaction zones provided by dividing the catalyst layer in the reaction tube in the tube axis direction is preferably 3 to 4 layers. As the number of reaction zones increases, the effect of controlling the temperature distribution of the catalyst layer increases, but there is a disadvantage that the production and filling of the catalyst becomes extremely complicated. Industrially, the desired effect can be obtained sufficiently by dividing into 3 to 4 layers. The split length ratio depends on the size and ratio of the catalyst and diluent in each layer, but it is preferable to adjust the split length ratio so that the temperature distribution width is reduced over the entire catalyst packed bed.
[0022]
In the present invention, the method for controlling the activity of the catalyst is performed by mixing the catalyst with an inert substance. Examples of the inert substance include porcelain substances (main components are silica and alumina), silica and alumina. In the case of SUS steel, etc., the inert material has good physical mixing with the catalyst, and can be spherical, cylindrical, ring-shaped, plate-shaped, etc., as long as it does not reduce the yield of methacrolein in the reaction tube. There is no particular limitation. Further, it is more preferable if the inert substance has a shape that reduces the pressure loss.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, the conversion rate and the selectivity are respectively defined as follows.
Conversion (%) = (number of moles of reacted isobutylene and / or t-butyl alcohol) / (number of moles of supplied isobutylene and / or t-butyl alcohol) × 100
Selectivity (%) = (number of moles of methacrolein and / or methacrylic acid produced) / (number of moles of reacted isobutylene or t-butyl alcohol) × 100
Analysis was performed by gas chromatography.
[0024]
[Example 1]
364 g of ammonium heptamolybdate was dissolved in 1820 g of hot water at about 50 ° C. (solution A). Further, 133 g of bismuth nitrate, 29.8 g of cerium nitrate, 58.8 g of iron nitrate, 13.4 g of cesium nitrate, 3.34 g of potassium nitrate and 400 g of cobalt nitrate were dissolved in 290 g of a 15 wt% nitric acid aqueous solution (B solution). After both the liquids A and B were stirred and mixed for about 2 hours, this mixed solution was spray-dried, and the spray-dried catalyst obtained here was calcined at 200 ° C. for 3 hours. The pseudospherical calcined catalyst thus obtained was molded into a cylindrical catalyst having a diameter of 5 mm and a height of 4 mm, and calcined at 460 ° C. for 3 hours. The composition of this catalyst can be expressed as an atomic ratio excluding oxygen based on Mo12 atoms. Catalyst (1): Mo12Bi1.6Ce0.4Fe1Co8Cs0.4K0.2It is.
[0025]
This tableting catalyst was divided into a reaction zone of three layers from a gas inlet part to an outlet part in a stainless steel reaction tube (made of SUS304) with a jacket having an outer diameter of 50.7 mm and an inner diameter of 46.7 mm. Catalyst density in order from the part (hereinafter the unit is Kg / mThree) C1 = 800, C2 = 400, C3 = 1000, and the height of the packed bed in each reaction zone (hereinafter the unit is m) is L1 = 0.6, L2 = 1.5, L3 = 2.5, respectively. It filled so that it might become.
[0026]
The catalyst packing density was prepared by mixing a cylindrical porcelain rashhi ring having a diameter of 5 mm, a height of 4 mm, and a penetration diameter of 3 mm and a tableting catalyst.
At a heating medium temperature of the jacket portion of 320 ° C., a mixed gas of 5.75 vol% t-butyl alcohol, 8.37 vol% oxygen, 4.17 vol% water vapor and 81.71 vol% nitrogen was introduced at 290 ° C., and the space velocity (SV ) 900hr-1The reaction was carried out. As a result, the methacrolein selectivity was 85.6% and the methacrolein yield was 85.6% when the conversion of t-butyl alcohol was 100%. Further, assuming that the maximum temperatures of the reaction zones were T1, T2, and T3 (° C.), respectively, T1 = 384, T2 = 384, and T3 = 383.
[0027]
Under these conditions, the reaction results after 4000 hours passed showed no change in t-butyl alcohol conversion rate of 100%, methacrolein selectivity of 85.6%, and methacrolein yield of 85.6%. T1, T2, and T3 were not changed.
[0028]
[Example 2]
In Example 1, the reaction was performed in the same manner as in Example 1 except that instead of the magnetic lash ring, a magnetic ball having a diameter of 6.4 (mm) was used. As a result, the methacrolein selectivity was 85.2% and the methacrolein yield was 85.2% when the conversion of t-butyl alcohol was 100%. Further, T1 = 388, T2 = 388, and T3 = 381.
[0029]
[Example 3]
Example 1 is the same as Example 1 except that the magnetic slash ring is replaced with a cylindrical SUS slash ring having a diameter of 6 (mm), a height of 64 (mm), and a through diameter of 4.7 (mm). The reaction was conducted in the same manner. As a result, the methacrolein selectivity was 85.8% and the methacrolein yield was 85.8% when the conversion of t-butyl alcohol was 100%. Further, T1 = 382, T2 = 382, and T3 = 383.
[0030]
From Examples 1 to 3, good results can be obtained regardless of the inert substance when the inert substance to the reaction is sufficiently mixed with the catalyst to adjust the catalyst packing density.
[0031]
[Example 4]
The same catalyst as in Example 1 was applied to a stainless steel reaction tube (made of SUS304) with a jacket of 50.7 mm in outer diameter and 46.7 mm in inner diameter from a gas inlet part to an outlet part in a three-layer reaction zone. The catalyst packing density is C1 = 800, C2 = 400, C3 = 1000 sequentially from the inlet, and the height of the packed bed in each reaction zone is L1 = 0.8, L2 = 1.35, L3 = 2, respectively. The reaction was carried out in the same manner as in Example 1 except that it was charged to be .4. As a result, the methacrolein selectivity was 85.1% and the methacrolein yield was 85.1% when the conversion of t-butyl alcohol was 100%. In addition, T1 = 397, T2 = 397, and T3 = 380.
[0032]
[Example 5]
The same catalyst as in Example 1 was applied to a stainless steel reaction tube (made of SUS304) with a jacket with an outer diameter of 50.7 (mm) and an inner diameter of 46.7 (mm) from the gas inlet to the outlet. Divided into three reaction zones, the catalyst packing density is C1 = 800, C2 = 400, C3 = 1000 sequentially from the inlet, and the height of the packed bed in each reaction zone is L1 = 1.1, L2 = 1, respectively. Reaction was carried out in the same manner as in Example 1 except that the packing was carried out so that 0.03 and L3 = 2.3. As a result, the methacrolein selectivity was 82.9% and the methacrolein yield was 82.9% when the conversion of t-butyl alcohol was 100%. T1 = 420, T2 = 420, T3 = 378.
[0033]
[Example 6]
The same catalyst as in Example 1 was applied to a stainless steel reaction tube (made of SUS304) with a jacket of 50.7 mm in outer diameter and 46.7 mm in inner diameter from a gas inlet part to an outlet part in a three-layer reaction zone. The catalyst packing density is C1 = 800, C2 = 400, C3 = 1000 sequentially from the inlet, and the height of the packed bed in each reaction zone is L1 = 0.1, L2 = 2.5, L3 = 2, respectively. The reaction was carried out in the same manner as in Example 1 except that it was charged so as to be .5. As a result, the methacrolein selectivity was 83.1% and the methacrolein yield was 83.1% when the conversion of t-butyl alcohol was 100%. Further, T1 = 303, T2 = 372, and T3 = 391.
[0034]
[Example 7]
The same catalyst as in Example 1 was applied to a stainless steel reaction tube (made of SUS304) with a jacket with an outer diameter of 50.7 (mm) and an inner diameter of 46.7 (mm) from the gas inlet to the outlet. Divided into three reaction zones, the catalyst packing density is C1 = 800, C2 = 400, C3 = 1000 sequentially from the inlet, and the height of the packed bed in each reaction zone is L1 = 0.25, L2 = 2, respectively. .2, reaction was carried out in the same manner as in Example 1 except that L3 = 2.5. As a result, the methacrolein selectivity was 84.3% and the methacrolein yield was 84.3% when the conversion of t-butyl alcohol was 100%. In addition, T1 = 336, T2 = 375, and T3 = 389.
[0035]
[Comparative Example 1]
The same catalyst as in Example 1 was applied to a stainless steel reaction tube (made of SUS304) with a jacket with an outer diameter of 50.7 (mm) and an inner diameter of 46.7 (mm) from the gas inlet to the outlet. Divided into two reaction zones, the catalyst packing density is C1 = 400 and C2 = 1000 sequentially from the inlet, and the height of the packed bed in each reaction zone is L1 = 2.9 and L2 = 2.5, respectively. The reaction was carried out in the same manner as in Example 1 except that charging was performed as described above. As a result of the reaction, the methacrolein selectivity was 81.9% and the methacrolein yield was 81.9% when the conversion of t-butyl alcohol was 100%. Further, T1 = 378 and T2 = 392.
[0036]
When Example 1 and Comparative Example 1 are compared, the yield of methacrolein increases when the catalyst packing density at the inlet is increased as in Example 1, but the catalyst packing density at the inlet is low as in Comparative Example 1. In this case, it was found that not only the catalyst packed bed height was increased, but also the yield of methacrolein was lowered.
[0037]
[Comparative Example 2]
The same catalyst as in Example 1 was applied to a stainless steel reaction tube (made of SUS304) with a jacket with an outer diameter of 50.7 (mm) and an inner diameter of 46.7 (mm) from the gas inlet to the outlet. Dividing into two reaction zones, the catalyst packing density is C1 = 500 and C2 = 1000 sequentially from the inlet, and the height of the packed bed in each reaction zone is L1 = 2.6 and L2 = 2.4, respectively. The reaction was carried out in the same manner as in Example 1 except that it was charged as described above. As a result, the methacrolein selectivity was 82.6% and the methacrolein yield was 82.6% when the conversion of t-butyl alcohol was 100%. In addition, T1 = 395 and T2 = 396.
[0038]
[Comparative Example 3]
The same catalyst as in Example 1 was applied to a stainless steel reaction tube (made of SUS304) with a jacket with an outer diameter of 50.7 (mm) and an inner diameter of 46.7 (mm) from the gas inlet to the outlet. Dividing into two reaction zones, the catalyst packing density is C1 = 600 and C2 = 1000 sequentially from the inlet, and the height of the packed bed in each reaction zone is L1 = 2.3 and L2 = 2.2, respectively. The reaction was carried out in the same manner as in Example 1 except that it was charged as described above. As a result of the reaction, the methacrolein selectivity was 80.8% and the methacrolein yield was 80.8% when the conversion of t-butyl alcohol was 100%. T1 = 420 and T2 = 425.
[0039]
Compared to Comparative Examples 1, 2, and 3, Example 1 has a high methacrolein yield, which indicates that the present invention is superior.
[0040]
[Comparative Example 4]
The compression catalyst 8.0 (g) using the catalyst obtained by calcining the catalyst of Example 1 at 500 ° C. as the catalyst (2) was filled in a 10 mm diameter Jackett-Moon SUS reaction tube, and the reaction temperature was 350 ° C. A mixed gas of 6 vol%, oxygen 10.8 vol%, water vapor 10.0 vol% and nitrogen 73.2 vol% was aerated at a flow rate of 100 ml / min (STP) to carry out the methacrolein synthesis reaction. When 4.0 (g) of the catalyst of the catalyst (1) was reacted, the conversion of isobutylene was 97.4% and the selectivity of methacrolein was 87.1%. Into a stainless steel reaction tube (made of SUS304) with jacket having an outer diameter of 50.7 (mm) and an inner diameter of 46.7 (mm), the catalyst layer is divided into two reaction zones from the gas inlet to the outlet. The packing density of the catalyst (2) in the first layer is C1 = 1000, the packing density of the catalyst (1) is C2 = 1000 in the second layer, and the height of the packed bed in each reaction zone is L1 = 2.6, The reaction was conducted in the same manner as in Comparative Example 2 except that the filling was performed so that L2 = 2.4. As a result, the methacrolein selectivity was 80.9% and the methacrolein yield was 80.9% when the conversion of t-butyl alcohol was 100%. T1 = 405 and T2 = 395.
[0041]
From Comparative Example 2 and Comparative Example 4, the yield of methacrolein was reduced when the activity was reduced by mixing with a diluent as in Comparative Example 2, compared to the method of filling the catalyst with reduced catalyst activity in the first layer. Became high. This is considered that when a diluent was used, the pressure loss was reduced and the methacrolein yield was increased. In the method of reducing the activity of the catalyst as in Comparative Example 4, the amount of the catalyst was increased as compared with the case where a diluent was used, and it was found that the method was disadvantageous for industrial use.
[0042]
[Comparative Example 5]
The same catalyst as in Example 1 was applied to a stainless steel reaction tube (made of SUS304) with a jacket with an outer diameter of 50.7 (mm) and an inner diameter of 46.7 (mm) from the gas inlet to the outlet. Dividing into two reaction zones, the catalyst packing density is C1 = 400 and C2 = 1000 sequentially from the inlet, and the height of the packed bed in each reaction zone is L1 = 2.6 and L2 = 2.35, respectively. The reaction was carried out in the same manner as in Example 1 except that the mixed gas was introduced at 350 ° C. As a result of the reaction, the methacrolein selectivity was 82.7% and the methacrolein yield was 82.7% when the conversion of t-butyl alcohol was 100%. Further, T1 = 392 and T2 = 395.
[0043]
[Comparative Example 6]
The same catalyst as in Example 1 was applied to a stainless steel reaction tube (made of SUS304) with a jacket with an outer diameter of 50.7 (mm) and an inner diameter of 46.7 (mm) from the gas inlet to the outlet. Dividing into two reaction zones, the catalyst packing density is C1 = 400 and C2 = 1000 sequentially from the inlet, and the height of the packed bed in each reaction zone is L1 = 2.3 and L2 = 2.3, respectively. The reaction was carried out in the same manner as in Example 1 except that the heating medium temperature of the jacket portion was 350 (° C.) and the mixed gas temperature was 350 ° C. As a result of the reaction, the methacrolein selectivity was 81.2% and the methacrolein yield was 81.2% when the conversion of t-butyl alcohol was 100%. T1 = 419 and T2 = 422.
[0044]
In Comparative Example 5 and Comparative Example 6, instead of increasing the catalyst packing density in the inlet portion, an attempt was made to increase the gas temperature at the inlet and the temperature at the jacket portion of the multitubular reactor. In the case of Comparative Example 5, the yield of methacrolein was increased by increasing the gas temperature at the inlet. However, comparing Comparative Example 5 with Example 1, it was found that Comparative Example 5 had a low methacrolein yield and a high effect of the filling method of the present invention.
[0045]
[Comparative Example 7]
The same catalyst as in Example 1 was applied to a stainless steel reaction tube (made of SUS304) with a jacket with an outer diameter of 50.7 (mm) and an inner diameter of 46.7 (mm) from the gas inlet to the outlet. Divided into three reaction zones, the catalyst packing density is C1 = 200, C2 = 400, C3 = 1000 sequentially from the inlet, and the height of the packed bed in each reaction zone is L1 = 1.4, L2 = 2, respectively. .3, and the reaction was carried out in the same manner as in Example 1 except that L3 = 2.5. As a result, the methacrolein selectivity was 81.2% and the methacrolein yield was 81.2% when the conversion of t-butyl alcohol was 100%. T1 = 331, T2 = 362, and T3 = 393.
[0046]
Moreover, when Example 1 and Comparative Example 7 are compared, the yield of methacrolein increases when the catalyst packing density at the inlet is increased as in Example 1, but the catalyst packing density at the inlet as in Comparative Example 7 is increased. In the case of low, not only the catalyst packed bed height becomes longer but also the methacrolein yield decreases.
[0047]
[Comparative Example 8]
The same tableting catalyst as in Example 1 was placed in a stainless steel reaction tube (made of SUS304) with a jacket having an outer diameter of 50.7 (mm) and an inner diameter of 46.7 (mm), with T1 = 1000 and L1 = 3.6. The reaction was carried out in the same manner as in Example 1 except that it was filled as described above. As a result, the reaction temperature became 450 ° C. or higher, and the reaction could not be continued.
[0048]
[Example 8]
The same tableting catalyst as in Example 1, outer diameter 50.7 (mm), inner diameter 46.7 (mm) stainless steel reaction tube with jacket (made of SUS304), C1 = 800, C2 = 400, C3 = 1000 , L1 = 0.4, L2 = 1.4, and L3 = 2.5. A mixed gas of 5.44 vol% isobutylene, 7.92 vol% oxygen, 9.39 vol% water vapor and 77.25 vol% nitrogen was introduced at a heating medium temperature of the jacket portion of 320 (° C), and the space velocity (SV) 950 hr.-1The reaction was carried out. As a result, when the conversion of isobutylene was 98.0%, methacrolein selectivity was 85.6% and the yield of methacrolein was 83.9%. Further, T1 = 387, T2 = 387, and T3 = 383.
[0049]
Under these conditions, the reaction results after 4000 hours were as follows. When the conversion of isobutylene was 98.0%, methacrolein selectivity was 87.6% and methacrolein yield was 85.8%. . Moreover, T1, T2, and T3 did not change.
[0050]
[Comparative Example 9]
The same tableting catalyst as in Example 1 was applied to a stainless steel reaction tube (made of SUS304) with a jacket having an outer diameter of 50.7 (mm) and an inner diameter of 46.7 (mm) from the gas inlet to the outlet. Example 8 except that the layer was divided into two reaction zones, and the catalyst packing density was sequentially set to C1 = 400 and C2 = 1000 from the inlet to make L1 = 2.5 and L2 = 2.5. The reaction was carried out in the same manner as above. As a result, the conversion of isobutylene was 97.9%, the methacrolein selectivity was 84.0%, and the methacrolein yield was 82.2%. Further, T1 = 380 and T2 = 391.
[0051]
[Comparative Example 10]
The same tableting catalyst as in Example 1 was placed in a stainless steel reaction tube (made of SUS304) with a jacket having an outer diameter of 50.7 (mm) and an inner diameter of 46.7 (mm), C1 = 200, C2 = 400, C3 = 1000. The reaction was carried out in the same manner as in Example 8 except that the packing layers in each reaction zone were filled such that L1 = 1.2, L2 = 1.8, and L3 = 2.5. . As a result, the conversion of isobutylene was 98.1%, methacrolein selectivity was 83.6%, and the methacrolein yield was 82.0%. T1 = 342, T2 = 365, T3 = 391.
[0052]
When Example 8 is compared with Comparative Example 9 and Comparative Example 10, even in the case of isobutylene raw material, as with the t-butyl alcohol, increasing the catalyst packing density at the inlet portion increases the methacrolein yield. It was found that the effect of the filling method was high.
[0053]
[Example 9]
The same tableting catalyst as in Example 1 was placed in a stainless steel reaction tube (made of SUS304) with a jacket having an outer diameter of 38.1 (mm) and an inner diameter of 34.1 (mm), C1 = 800, C2 = 400, C3 = 1000. And L1 = 0.5, L2 = 1.4, and L3 = 2.1. The heating medium temperature of the jacket portion was 320 (° C), and a mixed gas of 5.75 vol% t-butyl alcohol, 8.37 vol% oxygen, 4.17 vol% water vapor and 81.71 vol% nitrogen was introduced at 290 (° C). , Space velocity (SV) 1200hr-1The reaction was carried out. As a result, the methacrolein selectivity was 85.3% and the methacrolein yield was 85.3% at a t-butyl alcohol conversion of 100.0%. Further, T1 = 387, T2 = 391, and T3 = 391. Under these conditions, the reaction results after 6000 hours were as follows: t-butyl alcohol conversion was 100.0%, methacrolein selectivity was 85.3%, and methacrolein yield was 85.3%. Met. Further, T1 = 387, T2 = 391, and T3 = 391.
[0054]
[Comparative Example 11]
The same tableting catalyst as in Example 1 was placed in a jacketed stainless steel reaction tube (made of SUS304) with an outer diameter of 38.1 (mm) and an inner diameter of 34.1 (mm), with C1 = 400 and C2 = 1000. The reaction was carried out in the same manner as in Example 9 except that the height of the band packing layer was filled so that L1 = 2.6 and L2 = 2.3, respectively. As a result, the methacrolein selectivity was 82.2% and the methacrolein yield was 82.2% at a t-butyl alcohol conversion of 100.0%. Further, T1 = 386 and T2 = 393.
[0055]
[Example 10]
The same tableting catalyst as in Example 1 was placed in a stainless steel reaction tube (made of SUS304) with jacket having an outer diameter of 21.7 (mm) and an inner diameter of 18.4 (mm), C1 = 1000, C2 = 500, C3 = 1000. And L1 = 0.4, L2 = 0.7, and L3 = 1.1. The heating medium temperature of the jacket portion was 330 (° C.), and a mixed gas of t-butyl alcohol 5.75 vol%, oxygen 8.37 vol%, water vapor 4.17 vol% and nitrogen 81.71 vol% was introduced at 290 (° C.). , Space velocity (SV) 1600hr-1The reaction was carried out. As a result, the t-butyl alcohol conversion was 100.0%, the methacrolein selectivity was 85.0%, the methacrolein yield was 85.0%, and T1 = 379, T2 = 389, T3 = 388. there were.
[0056]
Example 9, Example 10, and Comparative Example 11 are cases where the reaction tube diameter was made thinner than that of Example 1, but as can be seen from Examples 9 and 10, increasing the catalyst packing density at the inlet portion. It was found that methacrolein was obtained in high yield.
[0057]
Example 11
The same tableting catalyst as in Example 1 was placed in a stainless steel reaction tube (made of SUS304) with a jacket having an outer diameter of 60.5 (mm) and an inner diameter of 54.9 (mm), C1 = 100, C2 = 450, C3 = 1000. And L1 = 0.6, L2 = 1.8, and L3 = 2.4. The heating medium temperature of the jacket portion was 320 (° C.), and a mixed gas of t-butyl alcohol 5.75 vol%, oxygen 8.37 vol%, water vapor 4.17 vol% and nitrogen 81.7 vol% was introduced at 290 (° C.). , Space velocity (SV) 600hr-1The reaction was carried out. As a result, the methacrolein selectivity was 84.8% and the methacrolein yield was 84.8% at a t-butyl alcohol conversion of 100.0%. T1 = 395, T2 = 397, T3 = 397.
[0058]
Example 12
The same catalyst as in Example 1 was set to C1 = 1000, C2 = 450, C3 = 1000 in a stainless steel reaction tube with a jacket (made of SUS304) having an outer diameter of 60.5 (mm) and an inner diameter of 54.9 (mm). The height of the packed bed in each reaction zone is filled so that L1 = 0.9, L2 = 2.1, L3 = 3.0, the heating medium temperature of the jacket portion is 310 (° C.), and the space Speed (SV) 950hr-1The reaction was performed in the same manner as in Example 11 except for the above. As a result, the methacrolein selectivity was 84.2% and the methacrolein yield was 84.2% when the conversion of t-butyl alcohol was 100%. T1 = 391, T2 = 394, and T3 = 395.
[0059]
[Comparative Example 12]
The same tableting catalyst as in Example 1 was placed in a stainless steel reaction tube (made of SUS304) with a jacket having an outer diameter of 60.5 (mm) and an inner diameter of 54.9 (mm), C1 = 500, C2 = 1000, and L1 = The reaction was performed in the same manner as in Example 11 except that packing was performed so that 3.0 and L2 = 2.6. As a result, the t-butyl alcohol conversion was 100.0%, the methacrolein selectivity was 81.5%, and the methacrolein yield was 81.5%. Further, T1 = 393 and T2 = 395.
[0060]
Example 11, Example 12, and Comparative Example 12 are examples in which the reaction tube diameter was increased compared to Example 1, but Example 8 obtained methacrolein in a high yield. The space velocity is small compared. In Example 12, it was found that the yield of methacrolein decreases when the space velocity is large. Further, from Example 11 and Comparative Example 12, even if the reaction tube diameter is increased, if the catalyst packing density at the inlet portion is increased, methacrolein is obtained in high yield, and the effect of the packing method of the present invention is high. understood.
[0061]
【The invention's effect】
By the method of the present invention, methacrolein can be obtained in high yield. Further, by using one type of catalyst, methacrolein is obtained in a high yield, so that the complexity of the production process that occurs when industrially producing a plurality of catalysts is eliminated.
With the filling method of the present invention, it was found that methacrolein can be obtained in a high yield even in a reaction tube with a large reaction tube diameter compared to a reaction tube with a thin reaction tube diameter, and further, methacrolein can be produced stably for a long time. .
[0062]
When the raw material is TBA, the catalyst packed bed height can be shortened compared to the conventional method, methacrolein can be obtained in a high yield, and long-term operation has high stability.

Claims (4)

固定床多管式反応器を用いて原料ガスイソブチレンおよび/又はt−ブチルアルコールを分子状酸素含有ガスを用いて気相接触酸化し、メタクロレインを製造する方法に於いて、各反応管内の触媒層を管軸方向に3層以上に分割して設けた複数個の反応帯に於いて、原料ガス入口部の1層目に充填する触媒の単位容積当たりの活性を2層目の反応帯に充填する単位容積当たりの活性より高くし、かつ3層目以降に充填する触媒の単位体積当たりの活性を2層目の単位容積当たりの活性より高く充填することを特徴とするメタクロレインの製造方法。In a method for producing methacrolein by gas-phase catalytic oxidation of isobutylene and / or t-butyl alcohol using molecular oxygen-containing gas using a fixed bed multitubular reactor, catalyst in each reaction tube In a plurality of reaction zones provided by dividing the layer into three or more layers in the tube axis direction, the activity per unit volume of the catalyst charged in the first layer of the raw material gas inlet is set as the second layer reaction zone. A method for producing methacrolein, characterized in that the activity per unit volume of the catalyst filled in the third and subsequent layers is higher than the activity per unit volume of the second layer and higher than the activity per unit volume to be filled. . 請求項1記載の方法に於いて、固定床多管式反応器の内径をR(mm)とし、充填した触媒層の全長をL0(m)とし、原料ガス入口部から反応管内の触媒層を管軸方向に3層以上に分割した反応帯の長さを原料ガス入口部から順次、L1(m)、L2(m)、L3(m)・・・とし、原料ガス入口部から反応管内の触媒層を管軸方向に3層以上に分割した反応帯の各触媒層の触媒充填密度C(Kg/cm3 )を、原料ガス入口部から順次C1、C2、C3・・・とし、3層目以降で最も触媒充填密度が高い触媒層の触媒充填密度をChとした場合、(1)反応管内径R(mm)が18.0<R<55.0、(2)1層目の反応帯L1(m)が全長L0(m)に対して、0.01<L1/L0<0.3、0.1<L2/L0<0.6、1(m)<L0<10(m)、(3)2層目の充填密度C2、C1、Chの関係がC1/C2>1.9、Ch/C2>2.0であることを特徴とするメタクロレインの製造方法。2. The method according to claim 1, wherein the inner diameter of the fixed bed multitubular reactor is R (mm), the total length of the packed catalyst layer is L0 (m), and the catalyst layer in the reaction tube is formed from the raw material gas inlet. The length of the reaction zone divided into three or more layers in the tube axis direction is set to L1 (m), L2 (m), L3 (m)... Sequentially from the raw material gas inlet, and from the raw material gas inlet to the inside of the reaction tube. The catalyst packing density C (Kg / cm 3 ) of each catalyst layer in the reaction zone obtained by dividing the catalyst layer into three or more layers in the tube axis direction is set to C1, C2, C3. When the catalyst packing density of the catalyst layer with the highest catalyst packing density after the first is Ch, (1) reaction tube inner diameter R (mm) is 18.0 <R <55.0, (2) first layer reaction The band L1 (m) is 0.01 <L1 / L0 <0.3, 0.1 <L2 / L0 <0.6, 1 (m) with respect to the total length L0 (m). <L0 <10 (m), (3) The relationship between the packing density C2, C1, and Ch of the second layer is C1 / C2> 1.9 and Ch / C2> 2.0. Production method. 請求項2記載の方法に於いて、0.018<L1/L0<0.26、0.2<L2/L0<0.5であることを特徴とするメタクロレインの製造方法。3. The method for producing methacrolein according to claim 2, wherein 0.018 <L1 / L0 <0.26 and 0.2 <L2 / L0 <0.5. 請求項1、2又は3記載の方法において、原料ガスがt−ブチルアルコールであることを特徴とするメタクロレインの製造方法。4. The method for producing methacrolein according to claim 1, 2, or 3, wherein the source gas is t-butyl alcohol.
JP14245896A 1996-06-05 1996-06-05 Method for producing methacrolein Expired - Lifetime JP3804875B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14245896A JP3804875B2 (en) 1996-06-05 1996-06-05 Method for producing methacrolein

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14245896A JP3804875B2 (en) 1996-06-05 1996-06-05 Method for producing methacrolein

Publications (2)

Publication Number Publication Date
JPH09323950A JPH09323950A (en) 1997-12-16
JP3804875B2 true JP3804875B2 (en) 2006-08-02

Family

ID=15315792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14245896A Expired - Lifetime JP3804875B2 (en) 1996-06-05 1996-06-05 Method for producing methacrolein

Country Status (1)

Country Link
JP (1) JP3804875B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ZA200200048B (en) 2001-01-25 2002-07-16 Nippon Catalytic Chem Ind Process for extracting sold material from shell-and-tube reactor.
CN1238326C (en) * 2001-12-06 2006-01-25 三菱化学株式会社 Oxidation reactor, method for producing (meth)acrylic acid or the like
BR0214811A (en) * 2001-12-27 2004-12-14 Mitsubishi Chem Corp Process for catalytic gas phase oxidation and process for the production of (meth) acrolein or (meth) acrylic acid
TWI302147B (en) * 2003-09-01 2008-10-21 Lg Chemical Ltd Method of producing unsaturated aldehyde and unsaturated acid in fixed-bed catalytic partial oxidation reactor with enhanced heat control system

Also Published As

Publication number Publication date
JPH09323950A (en) 1997-12-16

Similar Documents

Publication Publication Date Title
JP3775872B2 (en) Method for producing acrolein and acrylic acid
JP3793317B2 (en) Catalyst and method for producing unsaturated aldehyde and unsaturated acid
JPH0784400B2 (en) Process for producing unsaturated aldehyde and unsaturated acid
JP2001048817A (en) Method for producing acrolein and acrylic acid
JP4813758B2 (en) Composite oxide catalyst and method for producing acrylic acid using the same
KR100661727B1 (en) Method of producing unsaturated aldehyde and/or unsaturated fatty acid
JP5134745B2 (en) Acrylic acid production method
WO2003055835A1 (en) Process for vapor-phase catalytic oxidation and process for production of (meth)acrolein or (meth)acrylic acid
JP2809476B2 (en) Method for producing acrolein and acrylic acid
KR101265357B1 (en) Method for the production of at least one organic target compound by means of heterogeneously catalyzed partial gas phase oxidation
KR101065106B1 (en) Method for the heterogeneously catalyzed partial gas phase oxidation of propene into acrolein
JP2001011010A (en) Production of methacrylic acid
JP4058270B2 (en) Method for producing methacrylic acid
US4209640A (en) Catalysts for the oxidation of unsaturated aldehydes
JP4497442B2 (en) Method for producing methacrolein and methacrylic acid
JP3804875B2 (en) Method for producing methacrolein
JP4824867B2 (en) Method for producing methacrolein and methacrylic acid
JP3939187B2 (en) Process for producing unsaturated aldehyde
JPWO2009057463A1 (en) Gas phase catalytic oxidation reaction method
JP2003171340A (en) Method for producing acrylic acid
WO2002098827A1 (en) Process for producing (meth)acrolein and/or (meth)acrylic acid
JP3028327B2 (en) Method for producing methacrolein and methacrylic acid
JP4824871B2 (en) Method for producing acrolein and acrylic acid
JP2638241B2 (en) Method for producing methacrolein and methacrylic acid
JPH09202741A (en) Production of methacrolein and methacrylic acid

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060502

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060508

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090519

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090519

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090519

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100519

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110519

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110519

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120519

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120519

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130519

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130519

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140519

Year of fee payment: 8

EXPY Cancellation because of completion of term