JP3802190B2 - Refrigeration equipment - Google Patents

Refrigeration equipment Download PDF

Info

Publication number
JP3802190B2
JP3802190B2 JP09313397A JP9313397A JP3802190B2 JP 3802190 B2 JP3802190 B2 JP 3802190B2 JP 09313397 A JP09313397 A JP 09313397A JP 9313397 A JP9313397 A JP 9313397A JP 3802190 B2 JP3802190 B2 JP 3802190B2
Authority
JP
Japan
Prior art keywords
pipe
refrigerant
condenser
flash gas
supercooling coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09313397A
Other languages
Japanese (ja)
Other versions
JPH10267465A (en
Inventor
晴行 帰山
直樹 黒葛野
賢二 小林
和吉 山口
哲雄 西山
道也 原田
勝弘 津田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP09313397A priority Critical patent/JP3802190B2/en
Publication of JPH10267465A publication Critical patent/JPH10267465A/en
Application granted granted Critical
Publication of JP3802190B2 publication Critical patent/JP3802190B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、凝縮器で発生する気泡(以下、フラッシュガスという。)を凝縮器内で消滅させる構造に関する。
【0002】
【従来の技術】
空気調和装置等の冷凍装置においてはフィン・チューブ形の凝縮器が一般的に用いられている。この種の凝縮器は、複数パスに区分される熱交換部と各熱交換部の出口管に接続される合流管とこの合流管に接続される過冷却コイルとを一体に備えている。各熱交換部にはガス冷媒が供給され、このガス冷媒は各熱交換部で凝縮されて液冷媒となり、この液冷媒は合流管を介して過冷却コイルに流入し、この過冷却コイルで十分に過冷却された後、下流に位置するキャピラリーチューブ等の減圧装置に供給される。
【0003】
【発明が解決しようとする課題】
上述した凝縮器では、ガス冷媒の供給量が少ない場合、ガス冷媒が凝縮器内で凝縮しきれず、その一部が液冷媒中にフラッシュガスとして残るという問題がある。また過冷却コイルを用いて過冷却を行う場合でも、液冷媒の流れが速いときにはフラッシュガスがそのまま残るという問題がある。そしてフラッシュガスが液冷媒に混入したままキャピラリーチューブや蒸発器に流入すると、冷媒音(冷媒の流れによる異常音)が発生するという問題がある。
【0004】
そこで、本発明の目的は、フラッシュガスを効果的に消滅させることができる冷凍装置を提供することにある。
【0005】
【課題を解決するための手段】
上記課題を解決するために、請求項1の発明は、圧縮機、凝縮器、減圧装置および蒸発器を備える冷凍装置において、前記凝縮器は複数パスに区分される熱交換部と、各熱交換部の出口管に接続される合流管と、この合流管に接続される過冷却コイルとを一体に備え、前記合流管の管径は前記出口管および前記過冷却コイルの管径よりも大きく形成され、且つ前記過冷却コイルの接続位置とこの過冷却コイルに最も近い前記出口管の接続位置との間の距離は前記合流管の管径の3倍以上に設定されていることを特徴とするものである。
【0006】
この発明によれば、フラッシュガスが合流管内に留まる時間が長くなり、液冷媒に冷却されることにより、フラッシュガスの凝縮が促進され、したがって、フラッシュガスが減圧装置や蒸発器に流入することがなくなり、冷媒音の発生が抑えられる。
【0007】
請求項2の発明は、請求項1に記載のものにおいて、合流管の内部に網状部材を設けたことを特徴とするものである。
【0008】
この発明によれば、所定の大きさ以上のフラッシュガスが網状部材により細分化されるため、フラッシュガスが消滅しやすくなる。
【0017】
【発明の実施の形態】
以下、本発明の一実施形態を図面に基づいて詳細に説明する。
【0018】
図1は、本発明の一実施形態に係る冷媒回路図である。図1に示すように、この空気調和装置は室外ユニット1と室内ユニット2とで構成される。室外ユニット1には、ガス冷媒から液冷媒を除去するアキュムレータ11と、冷媒ガスを所定の凝縮圧力まで圧縮する圧縮機12と、高温高圧のガス冷媒を冷却して液化させる凝縮器(室外熱交換器)13と、凝縮器13に送風を行う室外ファン14と、液冷媒を再冷却する過冷却コイル13Fとが収容されている。
【0019】
室内ユニット2には、液冷媒を減圧するキャピラリーチューブ(減圧装置)16と、液冷媒を分流する分流器17と、減圧された液冷媒を蒸発させる蒸発器(室内熱交換器)18とが収容されている。
【0020】
図1において、圧縮機12を駆動すると、冷媒は実線矢印で示すように、凝縮器13、過冷却コイル13F、キャピラリーチューブ(減圧装置)16、分流器17、室内熱交換器(蒸発器)18およびアキュムレータ11の順に流れる。このときには室外熱交換器13で放熱が行われ、室内熱交換器18で吸熱が行われることにより冷房運転が行われる。
【0021】
図2は、図1の室外ユニット1の平面図である。この室外ユニット1の内部には、圧縮機12と凝縮器13と室外ファン14とが配置される。この凝縮器13はいわゆるフィン・チューブ形の熱交換器であり図3Aまたは図3Cに示すようにそれぞれが蛇行状に曲げられた5つのチューブ(熱交換部)13A〜13Eと、過冷却コイル13Fとを備え、各熱交換部13A〜13Eと過冷却コイル13Fとの間に多数のフィンを一体に設けて構成される。
【0022】
各熱交換部13A〜13Eの5本の入口管b1 〜b5 は入口側合流管21に接続され、この合流管21はガス管100に接続される。また、図3Bに示すように、各熱交換部13A〜13Eの5本の出口管c1 〜c5 は出口側合流管22に接続され、この合流管22は過冷却コイル13Fの入口に接続され、この過冷却コイル13Fの出口は液管200に接続される。各熱交換部13A〜13Eの5本の出口管c1 〜c5 の管径は、各熱交換部13A〜13Eのチューブの管径よりも小さく、この出口管c1 〜c5 では流路が一旦狭められ、合流管22に入ると流路は急拡大するように構成される。
【0023】
この実施形態では、合流管22の管径Dを設定する場合、図4に示すように合流管21内を流れる冷媒流速vが当該合流管22内の気泡の上昇速度Vよりも遅くなるように(V>v)合流管22の管径Dが設定される。具体的には出口管c1 〜c5 の管径d1がd1=7.92mmの場合、合流管22の管径DはD=19.05mmに設定される。また合流管22の管径Dは出口管c1 〜c5 の管径d1よりも大きく形成されるばかりでなく過冷却コイル13Fの管径d2よりも大きく形成される。具体的にはd2=9.52mmに設定される。さらに過冷却コイル13Fの接続位置とこの過冷却コイル13Fに最も近い出口管c5 の接続位置との間の距離Lは、合流管22の管径Dの3倍以上に設定される。この実施形態ではL=58.95mm以上に設定される。
【0024】
つぎに、この実施形態の作用を説明する。
【0025】
圧縮機12から吐出された高温高圧のガス冷媒は図3Aに示すようにガス管100を介して合流管21に流入し、そこから5本のチューブ13A〜13Eに分流される。分流されたガス冷媒は、フィンに接触するチューブの中で熱の放散を行いながら蛇行を繰り返す間に、徐々に液化凝縮して液冷媒となる。その後、液化凝縮がほぼ完了した液冷媒は図3Bに示すように各熱交換部13A〜13Eの出口管c1 〜c5 を通じて出口側の合流管22に流入する。
【0026】
この実施形態では、冷媒量や温度等の諸条件により凝縮器13で冷媒の凝縮が完全に行われない場合、液冷媒中にフラッシュガスが残存する。このフラッシュガスは合流管22に液冷媒とともに流入するが、この合流管22は従来の合流管よりも管径が太くD=19.65mmに設定されるので、図4に示すように合流管21内を流れる冷媒流速vが当該合流管22内の気泡の上昇速度Vよりも遅くなるので、フラッシュガスは合流管22内を上昇する。
【0027】
したがって、合流管22に合流する液冷媒はこの合流管22内でフラッシュガスが取り除かれた後、過冷却コイル13Fに流入し、ここで十分に過冷却された後、過冷却コイル13Fの出口から液管200に入り、この液管200を介してキャピラリーチューブ16、蒸発器18に供給される。
【0028】
この実施形態によれば、合流管22内でフラッシュガスが取り除かれ、キャピラリーチューブ16、蒸発器18に供給される液冷媒中にはフラッシュガスがほとんど残存しなくなるので、このフラッシュガスに起因する冷媒音等の発生をほぼ完全に抑制することができる。
【0029】
種々の試験を繰り返し行った結果、合流管22内で効率よくフラッシュガスを取り除くためには前記のように(1)合流管22の管径Dを出口管c1 〜c5 の管径d1よりも大きく、好ましくは流路面積で4倍以上にし、且つ過冷却コイル13Fの管径d2よりも大きく形成すること(2)過冷却コイル13Fの接続位置とこの過冷却コイル13Fに最も近い(最下部の)出口管c5 の接続位置との間の距離Lを、合流管22の管径Dの3倍以上に設定することが望ましいことが解った。この場合、合流管22内のフラッシュガスはほとんど上昇し、このフラッシュガスは合流管22内に長時間滞留し、その間に液冷媒に接触して凝縮し、液化して合流管22内でほとんど消滅することが解った。
【0030】
別の実施形態として、図4に示すように合流管22の内部に網状部材23を設けてもよいことが解った。これによれば網状部材23の網目より大きいフラッシュガスは分割され、小さくなったフラッシュガスは、表面積/体積が大きいために、比較的液冷媒になりやすい状態になる。したがって、フラッシュガスは早く液冷媒になって消滅することが解った。
【0031】
以上、一実施形態に基づいて本発明を説明したが、本発明はこれに限定されるものでないことは明らかである。例えば、本実施形態ではフィン・チューブ形の凝縮器について説明したが、これに限定されるものではなく、ほかの形式の凝縮器に本発明を適用することは可能である。
【0032】
【発明の効果】
以上説明したように、本発明によれば、フラッシュガスは合流管内に長時間滞留し、この間に液冷媒に接触し、これによってフラッシュガスは液化して消滅する。その結果、フラッシュガスは液管に流出せず、フラッシュガスによる減圧装置や蒸発器における冷媒音の発生を防止することができる。
【0033】
また、網状部材を合流管内に設けることにより、フラッシュガスを細分化することができ、その分液冷媒に変わりやすくなるため、効果的にフラッシュガスを消滅させることができる等の効果を奏する。
【図面の簡単な説明】
【図1】本発明の一実施形態を示す冷媒回路図である。
【図2】室外ユニットを示す平面図である。
【図3】Aは本実施形態に係る5パス凝縮器の側面図、Bは合流管を示す図、Cは本実施形態に係る5パス凝縮器の平面図である。
【図4】合流管内をフラッシュガスが上昇する状態を示す図である。
【符号の説明】
1 室外ユニット
2 室内ユニット
11 アキュムレータ
12 圧縮機
13 凝縮器(室外熱交換器)
14 室外ファン
15 過冷却コイル
16 キャピラリーチューブ(減圧装置)
17 分流器
18 蒸発器(室内熱交換器)
21 入口側合流管
22 出口側合流管
23 網状部材
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a structure for eliminating bubbles (hereinafter referred to as flash gas) generated in a condenser in the condenser.
[0002]
[Prior art]
In a refrigeration apparatus such as an air conditioner, a fin / tube condenser is generally used. This type of condenser is integrally provided with a heat exchange section divided into a plurality of paths, a junction pipe connected to an outlet pipe of each heat exchange section, and a supercooling coil connected to the junction pipe. A gas refrigerant is supplied to each heat exchange unit, and the gas refrigerant is condensed in each heat exchange unit to become a liquid refrigerant. This liquid refrigerant flows into the supercooling coil through the junction pipe, and this supercooling coil is sufficient. After being supercooled, it is supplied to a decompression device such as a capillary tube located downstream.
[0003]
[Problems to be solved by the invention]
In the above-described condenser, when the supply amount of the gas refrigerant is small, the gas refrigerant cannot be completely condensed in the condenser, and there is a problem that a part of the refrigerant remains as flash gas in the liquid refrigerant. Even when supercooling is performed using a supercooling coil, there is a problem that the flash gas remains as it is when the flow of the liquid refrigerant is fast. When the flash gas flows into the capillary tube or the evaporator while being mixed in the liquid refrigerant, there is a problem that refrigerant noise (abnormal noise due to the refrigerant flow) is generated.
[0004]
Therefore, an object of the present invention is to provide a refrigeration apparatus that can effectively eliminate flash gas.
[0005]
[Means for Solving the Problems]
In order to solve the above problems, the invention of claim 1 is a refrigeration apparatus comprising a compressor, a condenser, a decompression device, and an evaporator, wherein the condenser is divided into a plurality of passes, and each heat exchange. A merging pipe connected to the outlet pipe of the unit and a supercooling coil connected to the merging pipe are integrally formed, and the pipe diameter of the merging pipe is larger than the pipe diameters of the outlet pipe and the supercooling coil And the distance between the connection position of the supercooling coil and the connection position of the outlet pipe closest to the supercooling coil is set to be not less than three times the tube diameter of the junction pipe. Is.
[0006]
According to the present invention, the flash gas stays in the junction pipe for a long time, and is cooled by the liquid refrigerant, whereby the condensation of the flash gas is promoted, and therefore the flash gas can flow into the decompression device and the evaporator. This eliminates the generation of refrigerant noise.
[0007]
According to a second aspect of the present invention, in the first aspect of the present invention , a mesh member is provided inside the junction pipe.
[0008]
According to the present invention, since the flash gas having a predetermined size or more is subdivided by the mesh member, the flash gas is likely to disappear.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.
[0018]
FIG. 1 is a refrigerant circuit diagram according to an embodiment of the present invention. As shown in FIG. 1, the air conditioner includes an outdoor unit 1 and an indoor unit 2. The outdoor unit 1 includes an accumulator 11 that removes the liquid refrigerant from the gas refrigerant, a compressor 12 that compresses the refrigerant gas to a predetermined condensation pressure, and a condenser that cools and liquefies the high-temperature and high-pressure gas refrigerant (outdoor heat exchange). ) 13, an outdoor fan 14 that blows air to the condenser 13, and a supercooling coil 13 </ b> F that recools the liquid refrigerant.
[0019]
The indoor unit 2 accommodates a capillary tube (decompression device) 16 that depressurizes the liquid refrigerant, a flow divider 17 that diverts the liquid refrigerant, and an evaporator (indoor heat exchanger) 18 that evaporates the depressurized liquid refrigerant. Has been.
[0020]
In FIG. 1, when the compressor 12 is driven, as indicated by solid arrows, the refrigerant is a condenser 13, a supercooling coil 13 </ b> F, a capillary tube (decompression device) 16, a flow divider 17, and an indoor heat exchanger (evaporator) 18. And in the order of the accumulator 11. At this time, the outdoor heat exchanger 13 radiates heat and the indoor heat exchanger 18 absorbs heat to perform cooling operation.
[0021]
FIG. 2 is a plan view of the outdoor unit 1 of FIG. Inside the outdoor unit 1, a compressor 12, a condenser 13, and an outdoor fan 14 are arranged. The condenser 13 is a so-called fin-tube heat exchanger, and as shown in FIG. 3A or 3C, five tubes (heat exchange portions) 13A to 13E each bent in a meandering manner, and a supercooling coil 13F. And a plurality of fins are integrally provided between the heat exchange units 13A to 13E and the supercooling coil 13F.
[0022]
The five inlet pipes b 1 to b 5 of each of the heat exchange units 13A to 13E are connected to the inlet side merging pipe 21, and the merging pipe 21 is connected to the gas pipe 100. Further, as shown in FIG. 3B, the five outlet pipes c 1 to c 5 of each heat exchange section 13A to 13E are connected to the outlet side junction pipe 22, and this junction pipe 22 is connected to the inlet of the supercooling coil 13F. The outlet of the supercooling coil 13F is connected to the liquid pipe 200. Five pipe diameters of the outlet pipe c 1 to c 5 of the heat exchange portion 13A-13E is smaller than the tube diameter of the tube of the heat exchange portion 13A-13E, in the outlet tube c 1 to c 5 passage Is narrowed once, and the flow path is configured to expand rapidly when entering the junction tube 22.
[0023]
In this embodiment, when setting the tube diameter D of the merging pipe 22, the refrigerant flow velocity v flowing in the merging pipe 21 is slower than the rising speed V of the bubbles in the merging pipe 22, as shown in FIG. (V> v) The tube diameter D of the merging tube 22 is set. Specifically, when the pipe diameter d1 of the outlet pipes c 1 to c 5 is d1 = 7.92 mm, the pipe diameter D of the merge pipe 22 is set to D = 19.05 mm. The pipe diameter D of the collecting pipe 22 is larger than the tube diameter d2 of the supercooling coil 13F as well be larger than the tube diameter d1 of the outlet tube c 1 to c 5. Specifically, d2 = 9.52 mm. Further the distance L between the connection position of the supercooling coil 13F and connection position of the outlet tube c 5 closest to the supercooling coil 13F is set to be more than three times the pipe diameter D of the collecting pipe 22. In this embodiment, L is set to 58.95 mm or more.
[0024]
Next, the operation of this embodiment will be described.
[0025]
The high-temperature and high-pressure gas refrigerant discharged from the compressor 12 flows into the merging pipe 21 via the gas pipe 100 as shown in FIG. 3A, and is divided into five tubes 13A to 13E therefrom. The diverted gas refrigerant gradually liquefies and condenses into a liquid refrigerant while repeating meandering while dissipating heat in the tubes in contact with the fins. Thereafter, the liquid refrigerant liquefied condensation is substantially completed flowing into the collecting pipe 22 on the outlet side through the outlet pipe c 1 to c 5 of the heat exchange unit 13A~13E as shown in Figure 3B.
[0026]
In this embodiment, when the refrigerant is not completely condensed by the condenser 13 due to various conditions such as the refrigerant amount and temperature, the flash gas remains in the liquid refrigerant. This flush gas flows into the merging pipe 22 together with the liquid refrigerant. The merging pipe 22 has a diameter larger than that of the conventional merging pipe and is set to D = 19.65 mm. Therefore, as shown in FIG. Since the refrigerant flow velocity v flowing inside becomes slower than the rising speed V of the bubbles in the merging pipe 22, the flash gas rises in the merging pipe 22.
[0027]
Accordingly, after the flash gas is removed from the joining pipe 22, the liquid refrigerant joining the joining pipe 22 flows into the supercooling coil 13F, where it is sufficiently subcooled, and then from the outlet of the supercooling coil 13F. The liquid enters the liquid pipe 200 and is supplied to the capillary tube 16 and the evaporator 18 through the liquid pipe 200.
[0028]
According to this embodiment, the flash gas is removed in the junction tube 22, and almost no flash gas remains in the liquid refrigerant supplied to the capillary tube 16 and the evaporator 18. Therefore, the refrigerant caused by the flash gas Generation of sound or the like can be suppressed almost completely.
[0029]
Various results were repeated testing, the pipe diameter D of the (1) the collecting pipe 22 as described above is to remove efficiently flash gas in the collecting pipe 22 from the pipe diameter d1 of the outlet tube c 1 to c 5 (2) The position where the supercooling coil 13F is connected and the closest to the supercooling coil 13F (the closest) It has been found that it is desirable to set the distance L between the connection position of the outlet pipe c 5 at the lower part to be not less than three times the pipe diameter D of the merging pipe 22. In this case, the flash gas in the merging pipe 22 almost rises, this flash gas stays in the merging pipe 22 for a long time, condenses in contact with the liquid refrigerant in the meantime, liquefies and almost disappears in the merging pipe 22. I understood that
[0030]
As another embodiment, it has been found that a mesh member 23 may be provided inside the merging pipe 22 as shown in FIG. According to this, the flash gas larger than the mesh of the mesh member 23 is divided, and the reduced flash gas has a large surface area / volume, so that it becomes relatively easy to become a liquid refrigerant. Therefore, it was found that the flash gas quickly becomes a liquid refrigerant and disappears.
[0031]
As mentioned above, although this invention was demonstrated based on one Embodiment, it is clear that this invention is not limited to this. For example, in the present embodiment, the fin-tube condenser has been described. However, the present invention is not limited to this, and the present invention can be applied to other types of condensers.
[0032]
【The invention's effect】
As described above, according to the present invention, the flash gas stays in the merging pipe for a long time and contacts the liquid refrigerant during this time, whereby the flash gas is liquefied and disappears. As a result, the flash gas does not flow out into the liquid pipe, and it is possible to prevent generation of refrigerant noise in the decompression device or the evaporator due to the flash gas.
[0033]
Further, by providing the mesh member in the junction pipe, the flash gas can be subdivided and easily changed into a separated refrigerant, so that the flash gas can be effectively extinguished.
[Brief description of the drawings]
FIG. 1 is a refrigerant circuit diagram showing an embodiment of the present invention.
FIG. 2 is a plan view showing an outdoor unit.
FIG. 3A is a side view of a 5-pass condenser according to the present embodiment, FIG. 3B is a diagram illustrating a junction tube, and C is a plan view of the 5-pass condenser according to the present embodiment.
FIG. 4 is a diagram showing a state in which flash gas rises in a merge pipe.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Outdoor unit 2 Indoor unit 11 Accumulator 12 Compressor 13 Condenser (Outdoor heat exchanger)
14 Outdoor fan 15 Supercooling coil 16 Capillary tube (pressure reduction device)
17 Shunt 18 Evaporator (Indoor heat exchanger)
21 Inlet side merging pipe 22 Outlet side merging pipe 23 Mesh member

Claims (2)

圧縮機、凝縮器、減圧装置および蒸発器を備える冷凍装置において、前記凝縮器は複数パスに区分される熱交換部と、各熱交換部の出口管に接続される合流管と、この合流管に接続される過冷却コイルとを一体に備え、前記合流管の管径は前記出口管および前記過冷却コイルの管径よりも大きく形成され、且つ前記過冷却コイルの接続位置とこの過冷却コイルに最も近い前記出口管の接続位置との間の距離は前記合流管の管径の3倍以上に設定されていることを特徴とする冷凍装置。  In a refrigeration apparatus including a compressor, a condenser, a decompression device, and an evaporator, the condenser is divided into a plurality of paths, a confluence pipe connected to an outlet pipe of each heat exchange section, and the confluence pipe And a supercooling coil connected to the subcooling coil, wherein the tube diameter of the merging pipe is larger than the pipe diameters of the outlet pipe and the supercooling coil, and the connection position of the supercooling coil and the supercooling coil The distance between the connection position of the outlet pipe nearest to the pipe is set to be three times or more the pipe diameter of the merge pipe. 前記合流管の内部に網状部材を設けたことを特徴とする請求項に記載の冷凍装置。The refrigerating apparatus according to claim 1 , wherein a net-like member is provided inside the junction pipe.
JP09313397A 1997-03-27 1997-03-27 Refrigeration equipment Expired - Fee Related JP3802190B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09313397A JP3802190B2 (en) 1997-03-27 1997-03-27 Refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09313397A JP3802190B2 (en) 1997-03-27 1997-03-27 Refrigeration equipment

Publications (2)

Publication Number Publication Date
JPH10267465A JPH10267465A (en) 1998-10-09
JP3802190B2 true JP3802190B2 (en) 2006-07-26

Family

ID=14074034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09313397A Expired - Fee Related JP3802190B2 (en) 1997-03-27 1997-03-27 Refrigeration equipment

Country Status (1)

Country Link
JP (1) JP3802190B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4801810B2 (en) * 2006-05-30 2011-10-26 株式会社デンソー Refrigeration equipment with waste heat utilization device
JP2008025884A (en) * 2006-07-19 2008-02-07 Denso Corp Ebullient cooling type heat exchange device

Also Published As

Publication number Publication date
JPH10267465A (en) 1998-10-09

Similar Documents

Publication Publication Date Title
JP3965387B2 (en) Split fin for heat exchanger
US5592830A (en) Refrigerant condenser with integral receiver
JP3627382B2 (en) Refrigerant condensing device and refrigerant condenser
JP2001091104A (en) Assembled body of evaporator/accumulator/suction line heat exchanger
KR101319198B1 (en) Thermal converter for condensation and refrigeration system using the same
US6557371B1 (en) Apparatus and method for discharging fluid
JP2010048473A (en) Heat exchanger unit and air conditioner equipped therewith
JP3802190B2 (en) Refrigeration equipment
US6289691B1 (en) Refrigerator
JP4023373B2 (en) Refrigeration equipment
JP4249380B2 (en) Air conditioner
JP2007278541A (en) Cooling system
JP2886544B2 (en) Indoor heat exchanger of air conditioner
JP3007455B2 (en) Refrigeration cycle device
KR20000031340A (en) Indoor heat exchanger
JP2001336861A (en) Air conditioner
JP2002013840A (en) Parallel flow type heat exchanger for air-conditioning
JP2008133994A (en) Heat exchanger
JP2005009808A (en) Heat exchanger for air conditioner
JPH09310925A (en) Air conditioner
KR101416936B1 (en) Air conditioner
KR20110035422A (en) A condenser
JP2002022307A (en) Air conditioner
JP2003090646A (en) Heat exchanger for air conditioner
JPH10318618A (en) Air conditioner

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060427

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090512

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees