JP3801904B2 - Cleaning device and cleaning method - Google Patents

Cleaning device and cleaning method Download PDF

Info

Publication number
JP3801904B2
JP3801904B2 JP2001340904A JP2001340904A JP3801904B2 JP 3801904 B2 JP3801904 B2 JP 3801904B2 JP 2001340904 A JP2001340904 A JP 2001340904A JP 2001340904 A JP2001340904 A JP 2001340904A JP 3801904 B2 JP3801904 B2 JP 3801904B2
Authority
JP
Japan
Prior art keywords
cleaning
pressure
state
cleaned
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001340904A
Other languages
Japanese (ja)
Other versions
JP2003145071A (en
Inventor
健 山本
龍一 和田
Original Assignee
アクア化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アクア化学株式会社 filed Critical アクア化学株式会社
Priority to JP2001340904A priority Critical patent/JP3801904B2/en
Publication of JP2003145071A publication Critical patent/JP2003145071A/en
Application granted granted Critical
Publication of JP3801904B2 publication Critical patent/JP3801904B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
  • Cleaning By Liquid Or Steam (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電子部品や機械部品等を洗浄する洗浄装置及び洗浄方法に関し、特に炭化水素系溶剤によって高性能の真空超音波洗浄を実現する洗浄装置及び洗浄方法に関するものである。
【0002】
【従来の技術】
従来、洗浄液を貯留した洗浄槽内に被洗浄物を浸漬し、被洗浄物を真空超音波洗浄することが知られている。超音波とは、一般に20kHz以上の音波を意味し、このような高周波数の音波を利用して水や溶剤を振動させ、複雑な形状物の洗浄や、傷つきやすい物体を安全に丸洗いするのが超音波洗浄である。
【0003】
超音波洗浄の効果は、キャビテーションによるもの、水分子などの加速度によるもの、被洗浄物の微小信号など物理的化学的反応促進の3つにあると言われており、特に、キャビテーション作用の効果が高いと言われている。キャビテーションとは、洗浄液に所定レベル以上の圧力が加わった際に生じる無数の空洞であり、溶存酸素などの気泡が核となって発生する。
【0004】
そして、洗浄液中では、超音波信号が定常波を形成しているので、大振幅の超音波信号の位置で発生した無数のキャビテーションが浮上過程で内向きに破壊され、この時の強力な衝撃力が洗浄作用を発揮することになる。
【0005】
【発明が解決しようとする課題】
このように、超音波洗浄は、専ら、発生したキャビテーションの破壊に基づくものであるから、洗浄槽を減圧することはその効果を半減するものでしかなかった。それは、減圧条件下では、発生したキャビテーションが常に外向きに引っ張られているため、内向きに破壊されることがなく、単なる気泡となって浮上するからである。
【0006】
しかしながら、被洗浄物にも多種の形状のもの、及び、互いに密着して洗浄しにくいものもあり、従来までの常識的な洗浄方式では有効に洗浄できないものがある。例えば、洗浄槽に導入状態で、鉛直上方に開放孔を有しない被洗浄物は、エアポケットが生じることになり、このエアポケットには洗浄液が行き渡らないので全く洗浄されないことになる。また、油分などによって接着状態となっている板材についても、その接着面には洗浄液が至らないので洗浄効果が発揮できないおそれがある。
【0007】
本発明は、上記事情に鑑みてなされたものであり、その主たる目的は、被洗浄物の形状や密着度合いにかかわらず、効果的な洗浄が可能な洗浄装置及び洗浄方法を提供することにある。
【0008】
【課題を解決するための手段】
上記目的を達成するために、本発明に係る洗浄装置は、被洗浄物を洗浄液に浸漬可能な洗浄槽と、前記洗浄槽を減圧可能な減圧機構と、前記洗浄槽の減圧状態を瞬間的に破壊可能な復圧機構とを備え、前記被洗浄物を浸漬した状態で、洗浄液に超音波振動を加えつつ前記洗浄槽の減圧状態と復圧状態とを繰り返す洗浄工程を含んで動作し、所定レベルの減圧状態に達した後、この減圧状態を維持する第1時間T1と、復圧状態を維持する第2時間T2とは、T2≧T1に設定されていることを特徴とする。使用する洗浄液は特に限定されないが、塩素系溶剤のように微減圧で沸騰する溶剤は使用が困難であり、炭化水素溶剤や水溶性溶剤が好適である。なお、この点は、以下の発明でも同様である。
【0009】
また、減圧状態は、当該洗浄液が沸騰しない圧力に設定されており、具体的には、当該洗浄液の蒸気圧−液温度特性に従って決定される。
【0011】
また、本発明に係る洗浄方法は、被洗浄物を洗浄液に浸漬可能な洗浄槽と、前記洗浄槽を減圧可能な減圧機構と、前記洗浄槽の減圧状態を瞬間的に破壊可能な復圧機構とを備え、前記被洗浄物を浸漬した状態で、洗浄液に超音波振動を加えつつ前記洗浄槽の減圧状態と復圧状態とを繰り返すバブリング洗浄工程を含み、所定レベルの減圧状態に達した後、この減圧状態を維持する第1時間T1と、復圧状態を維持する第2時間T2とは、T2≧T1に設定されている。
【0012】
【発明の実施の形態】
以下、本発明の洗浄装置について、実施例に基づき更に詳細に説明する。
図1は、実施例に係る洗浄装置及び洗浄方法を説明する図面である。
【0013】
この図に示すように、洗浄装置は、被洗浄物7を入れて洗浄するための洗浄槽1を備える。本実施例の洗浄槽1は、上方に開口した箱形状であって、その上部開口は蓋2が開閉可能とされている。この蓋2がされることで、洗浄槽1内は密閉状態に維持可能とされる。洗浄槽1は、1Toll以下の真空度の減圧に耐え得る構造とされている。
【0014】
このような構成の洗浄槽1には、真空超音波洗浄を行うために、洗浄液6が内部に貯留され、被洗浄物7が洗浄液6に浸漬される。その際、洗浄液6は洗浄槽1の上端までではなく、途中まで入れられる。なお、洗浄液6の種類は特に問わないが、可燃性液体である炭化水素溶剤を用いることができる。
【0015】
洗浄槽1には、槽内に貯留された洗浄液6に超音波を与える超音波発振器9が設けられる。本実施例の超音波発振器9は、減圧に耐え得る構造の超音波振動子が、洗浄槽1の下部に設けられている。
【0016】
洗浄槽1には、槽内を減圧させるための減圧機構として、真空ポンプ8が接続される。この真空ポンプ8は、減圧弁3を介して洗浄槽1に接続され、減圧弁3の操作により洗浄槽1との連通を開閉される。なお、減圧弁3は、洗浄槽1の液面より上部位置に接続される。
【0017】
洗浄槽1には、更に、洗浄槽1内の減圧を破壊可能な復圧弁4が接続される。本実施例では、復圧弁4を開くことで、洗浄槽1内の圧力は大気圧に開放されることになる。なお、この復圧弁4は、洗浄槽1の液面より上部位置に接続される。
【0018】
前記洗浄槽1には、槽内の圧力を計測し、それに基づき減圧弁3や復圧弁4の開閉を制御するための減圧センサー(圧力センサー)5が設けられている。この減圧センサー5は、洗浄槽1の液面より上部位置に設けられる。この減圧センサー5を用いることで、洗浄槽1の圧力が所定レベルになるまで、真空ポンプ8にて槽内を減圧することが可能となる。
【0019】
次に、上記実施例の洗浄装置による特徴的な洗浄方法についてピストン洗浄とバブリング洗浄と命名して説明する。
[ピストン洗浄]
ここで、ピストン洗浄とは、被洗浄物を洗浄液に浸漬した状態で減圧状態と復圧状態を複数回繰り返す洗浄方法を意味し、浸漬状態で鉛直上方に開放孔を有しない被洗浄物の洗浄に好適に適用される。以下、図2を参照しつつ洗浄手順を説明する。
【0020】
先ず、洗浄液6を貯留された洗浄槽1に被洗浄物7を浸漬して、洗浄槽1の蓋2をする。次に、復圧弁4を閉じ、且つ減圧弁3を開いた状態で、真空ポンプ8を作動させて、槽の液面から上部の空間を減圧にする。このようにして洗浄槽1内を減圧すると、エアポケット部7aから空気が抜けて同様の真空になる(図2(a),(b))。どの程度まで減圧させるかは適宜に設定されるが、例えば本実施例では、洗浄槽1内の気圧を60mmHg(−700mmHg)程度まで減圧させる。なお、圧力レベルは、洗浄槽1に設置した減圧センサー5にて把握される。
【0021】
減圧センサー5にて所定レベルまで減圧がなされると、減圧弁3を閉じ、且つ復圧弁4を開けばよい。これにより、槽内は大気圧に転じるため、被洗浄物7内の真空となったエアポケット部7aも復圧されるため、エアポケット部7aには洗浄液6が強制的に流入する(図2(c))。減圧は、例えば10秒程度かけて行われるが、復圧は、例えば0.5秒程度の微小時間にて一気に行うのが好ましい。なお、本実施例では、真空ポンプ8の運転は継続した状態のままで、復圧動作を行うようにしている。
【0022】
その後、再度、上述の手法で洗浄槽1内を減圧にすると、エアポケット7aに浸入した洗浄液6は圧力に従いポケット部7aから抜け出し、元の真空空間となる。本発明の洗浄装置では、このような真空ポンプ8による減圧と、復圧弁4による復圧とが1回ではなく、複数回にわたって交互に繰り返し行われる。繰り返し回数は特に問わないが、例えば通常3〜4回程度以上行われる。
【0023】
以上のようにして減圧と復圧を複数回繰り返した後、大気圧状態で超音波発振器9を動作させて、超音波洗浄を開始する。なお、ピストン洗浄に先立って、超音波洗浄をしても良いのは勿論である。
【0024】
本実施例のピストン洗浄によれば、被洗浄物7にエアポケット7aがあっても、確実な洗浄を達成することができる。つまり、大気圧下では、図2(a)に示すように、エアポケット7aが洗浄液6に触れていないが、槽内を減圧すると、同図(b)に示すように、エアが膨張してポケット7a内から抜け、空間が真空になる。そして、その後、槽内を復圧すると、同図(c)に示すように、真空のエアポケット7aに洗浄液が充填されることになる。
【0025】
しかも、真空状態から復圧する際に、微小時間で一気に復圧することで、復圧しても実際には若干の空気が残るが、復圧時に洗浄液6が勢いよく戻ることで、一時的にしろエアポケット7a内のほぼ全域が洗浄液6にて満たされることになる。さらに、復圧する際の洗浄液6の勢いが、エアポケット面を摺動して洗浄する効果も期待できる。しかも、このような減圧と復圧とが交互に繰り返し行われることで、エアポケット部(止まり穴や、部品間の密着した隙間)7aに洗浄液6を強制的に確実に浸透させる効果がある。
【0026】
このように洗浄槽1の減圧と復圧を行うことによって、エアポケット状で洗浄液6が接触できなかった部分も洗浄できることになり、更にこの一連の工程には再現性があるため、繰り返し運転することで、エアポケット内部に浸入した洗浄液6を出し入れすることで異物を洗い出す効果がある。
【0027】
[バブリング洗浄]
続いて、実施例に係るバブリング洗浄について説明する。なお、ここでバブリング洗浄とは、被洗浄物を洗浄液に浸漬した状態で超音波振動を与えつつ、減圧状態と復圧状態を複数回繰り返す洗浄方法を意味し、接着状態になっている板状の被洗浄物の洗浄に好適に適用される。以下、図3を参照しつつ洗浄手順を説明する。
【0028】
超音波振動は、洗浄槽1下部に設けられた減圧に耐え得る超音波振動子にて実現される。本来、超音波洗浄は、液中で発生した超音波振動によって、真空の気泡(キャビテーション)を発生させることで行われている。つまり、この気泡は真空のために内部に向かって力が働き破壊されようとするが、それが洗浄効果となって現れる。
【0029】
しかし、減圧下で超音波振動を加えると、ほぼ均一に発生したキャビテーションが気泡と化し、被洗浄物7同士の隙間を押し広げ、洗浄液6との接触を助長するから、効率的なバブリング効果が期待される。また、減圧下においては、気泡は膨らんだままであるが、復圧すると気泡が小さくなり破壊することになるので、例えば密着している板状ワーク7,7間に微小な気泡を浸入させ、その気泡を膨張させることで、板状ワーク7,7間を引き離しつつ洗浄液6を浸入させて効果的に洗浄することが可能となる。このように、減圧下では、超音波洗浄の持つ本来の効果は、大気圧状態より低くなる反面、密着部品や薄板の場合には、強力な効果が期待される。
【0030】
図3はこの関係を図示したものである。図3(a)に示すように、大気圧下においては、密着した板状ワーク7,7の隙間には洗浄液6が入り込みづらく、超音波でも密着面を引き離すのに時間がかかり、洗浄効果が期待できない。ところが、同図(b)に示すように、槽内を減圧にして超音波発振すると、液全体に高密度な気泡が無数に発生し、密着面の隙間を広げることができる。そして、このような減圧下におけるバブリング洗浄と、同図(c)に示すように槽内を復圧した状態で行う超音波洗浄とを周期的に繰り返すのがよい。減圧と復圧を繰り返すことで、上述したように、密着面の隙間に入り込んだ微小気泡の膨張作用により、密着面の隙間の拡張がより効率的になされる。よって、同図(c)に示すように、密着から十分に開放され被洗浄物7,7同士の隙間は、超音波本来のキャビテーション効果によって強力に洗浄される。
【0031】
このように、バブリング洗浄方法によれば、被洗浄物7の密着面を気泡の膨張力によって引き離すことができるため、洗浄液6の浸透を補助し、均一な気泡によって攪拌作用も得られる。また、減圧と復圧を超音波振動下で繰り返すことで、効果的なバブリングと、本来の超音波洗浄が交互に被洗浄物に与えられ、より高精度な洗浄効果が得られる。なお、このようなバブリング洗浄によって浸漬洗浄を終えても良いが、図3に示すように、途中から大気圧状態に固定して通常の超音波洗浄に移行させても良い。この場合、減圧と復圧を4〜5回繰り返した後、超音波洗浄に移行させるのが好適である。
【0032】
ここで減圧に要する時間は通常5秒程度であるが、所定の減圧レベルに達するとその状態をT1だけ維持し、瞬間的な復圧の後、復圧状態をT2維持する場合、T2≧T1に設定するのが好適である。より好適にはT2≧2×T1、典型的には、T1=5秒程度、T2=10秒程度以上である。
【0033】
なお、真空超音波の使用を満足させるためには、槽内圧力の制御が必要であり、その理由として洗浄液6は圧力を低下させることで沸騰点も低下してしまう点が挙げられる。真空超音波の圧力を過剰に低下させると洗浄液6は沸騰し、超音波振動子が液に触れないで運転してしまう、いわゆる空発振により超音波装置の故障の原因となる。また超音波によって発生する微細で均一な気泡は、洗浄液6の沸騰によって阻害され均一な洗浄効果も得られない。よって、真空超音波を使用する場合には、減圧力の制御が必要であり、洗浄液6のもつ蒸気圧−液温度特性に従って、圧力を制御(減圧レベルを決定)する必要がある。
【0034】
なお、本発明の洗浄装置は、上記実施例の構成に限らず、適宜変更可能である。例えば、上記実施例では、主として袋穴(エアポケット)部品・密着部品・薄板部品の洗浄について述べたが、本発明の洗浄装置に適用される被洗浄物7は、これらに限らず、例えば小径パイプ部品や多孔質部品などの各種の形状のものに対応可能である。
【0035】
【発明の効果】
以上詳述したように、本発明によれば、被洗浄物の形状や密着度合いにかかわらず、効果的な洗浄が可能な洗浄装置及び洗浄方法を実現できる。
【図面の簡単な説明】
【図1】本発明の実施例を説明する概略図である。
【図2】実施例に係る洗浄方法を説明する図面である。
【図3】実施例に係る別の洗浄方法を説明する図面である。
【符号の説明】
1 洗浄槽
2 蓋
3 減圧弁
4 復圧弁
5 圧力センサー(減圧センサー)
6 洗浄液
7 被洗浄物
8 減圧機構(真空ポンプ)
9 超音波発振器
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a cleaning apparatus and a cleaning method for cleaning electronic parts, mechanical parts, and the like, and more particularly to a cleaning apparatus and a cleaning method for realizing high-performance vacuum ultrasonic cleaning with a hydrocarbon solvent.
[0002]
[Prior art]
Conventionally, it is known to immerse an object to be cleaned in a cleaning tank in which a cleaning liquid is stored, and to vacuum-clean the object to be cleaned. The ultrasonic wave generally means a sound wave of 20 kHz or higher. By using such a high frequency sound wave, water or a solvent is vibrated to wash a complicated shape object or to wash a vulnerable object safely. Ultrasonic cleaning.
[0003]
It is said that there are three effects of ultrasonic cleaning: cavitation, acceleration due to water molecules, etc., and acceleration of physical and chemical reactions such as minute signals of the object to be cleaned. It is said to be expensive. Cavitation is an infinite number of cavities generated when a pressure of a predetermined level or higher is applied to the cleaning liquid, and bubbles such as dissolved oxygen are generated as nuclei.
[0004]
And since the ultrasonic signal forms a standing wave in the cleaning liquid, countless cavitations generated at the position of the large amplitude ultrasonic signal are destroyed inward during the ascent process, and the strong impact force at this time is The cleaning action will be demonstrated.
[0005]
[Problems to be solved by the invention]
Thus, since ultrasonic cleaning is exclusively based on the destruction of the generated cavitation, reducing the pressure of the cleaning tank has only halved its effect. This is because, under reduced pressure conditions, the generated cavitation is always pulled outward, so that it does not break inward but rises as simple bubbles.
[0006]
However, some objects to be cleaned have various shapes and those that are in close contact with each other and are difficult to clean, and there are some that cannot be effectively cleaned by conventional common-sense cleaning methods. For example, an object to be cleaned that does not have an open hole vertically above in the state where it is introduced into the cleaning tank will generate an air pocket, and the cleaning liquid will not reach the air pocket, so that it will not be cleaned at all. Also, the plate material that is in an adhesive state due to oil or the like may not be able to exhibit the cleaning effect because the cleaning liquid does not reach the bonding surface.
[0007]
The present invention has been made in view of the above circumstances, and a main object thereof is to provide a cleaning apparatus and a cleaning method capable of effective cleaning regardless of the shape and the degree of adhesion of an object to be cleaned. .
[0008]
[Means for Solving the Problems]
In order to achieve the above object, a cleaning apparatus according to the present invention includes a cleaning tank capable of immersing an object to be cleaned in a cleaning liquid, a pressure reducing mechanism capable of depressurizing the cleaning tank, and a reduced pressure state of the cleaning tank instantaneously. A depressurizing return pressure mechanism, and in a state in which the object to be cleaned is immersed, operates including a cleaning step of repeating a depressurization state and a return pressure state of the cleaning tank while applying ultrasonic vibration to the cleaning liquid. After reaching the level of the reduced pressure state, the first time T1 for maintaining the reduced pressure state and the second time T2 for maintaining the recovered pressure state are set such that T2 ≧ T1 . The cleaning liquid to be used is not particularly limited, but a solvent that boils at a low pressure such as a chlorinated solvent is difficult to use, and a hydrocarbon solvent or a water-soluble solvent is preferable. This point is the same in the following inventions.
[0009]
The reduced pressure state is set to a pressure at which the cleaning liquid does not boil, and is specifically determined according to the vapor pressure-liquid temperature characteristic of the cleaning liquid.
[0011]
The cleaning method according to the present invention includes a cleaning tank capable of immersing an object to be cleaned in a cleaning liquid, a pressure reducing mechanism capable of depressurizing the cleaning tank, and a pressure-reducing mechanism capable of instantaneously destroying the reduced pressure state of the cleaning tank. And a bubbling cleaning step that repeats the depressurization state and the return pressure state of the cleaning tank while applying ultrasonic vibration to the cleaning liquid in a state where the object to be cleaned is immersed, and after reaching a predetermined level of depressurization state The first time T1 for maintaining the decompressed state and the second time T2 for maintaining the decompressed state are set such that T2 ≧ T1.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the cleaning apparatus of the present invention will be described in more detail based on examples.
FIG. 1 is a diagram illustrating a cleaning apparatus and a cleaning method according to an embodiment.
[0013]
As shown in this figure, the cleaning apparatus includes a cleaning tank 1 for cleaning an object 7 to be cleaned. The cleaning tank 1 of the present embodiment has a box shape opened upward, and the lid 2 can be opened and closed at the upper opening. Since the lid 2 is closed, the inside of the cleaning tank 1 can be maintained in a sealed state. The cleaning tank 1 has a structure capable of withstanding a reduced pressure of a vacuum level of 1 Toll or less.
[0014]
In the cleaning tank 1 having such a configuration, in order to perform vacuum ultrasonic cleaning, a cleaning liquid 6 is stored inside, and an object to be cleaned 7 is immersed in the cleaning liquid 6. At that time, the cleaning liquid 6 is not put up to the upper end of the cleaning tank 1 but halfway. The type of the cleaning liquid 6 is not particularly limited, but a hydrocarbon solvent that is a flammable liquid can be used.
[0015]
The cleaning tank 1 is provided with an ultrasonic oscillator 9 that applies ultrasonic waves to the cleaning liquid 6 stored in the tank. In the ultrasonic oscillator 9 of the present embodiment, an ultrasonic vibrator having a structure capable of withstanding decompression is provided at the lower portion of the cleaning tank 1.
[0016]
A vacuum pump 8 is connected to the cleaning tank 1 as a pressure reducing mechanism for reducing the pressure in the tank. The vacuum pump 8 is connected to the cleaning tank 1 via the pressure reducing valve 3, and the communication with the cleaning tank 1 is opened and closed by operating the pressure reducing valve 3. The pressure reducing valve 3 is connected to a position above the liquid level of the cleaning tank 1.
[0017]
The cleaning tank 1 is further connected with a return pressure valve 4 that can destroy the reduced pressure in the cleaning tank 1. In this embodiment, the pressure in the cleaning tank 1 is released to the atmospheric pressure by opening the return pressure valve 4. The return pressure valve 4 is connected to a position above the liquid level of the cleaning tank 1.
[0018]
The cleaning tank 1 is provided with a pressure reducing sensor (pressure sensor) 5 for measuring the pressure in the tank and controlling the opening and closing of the pressure reducing valve 3 and the pressure-reducing valve 4 based on the measured pressure. The decompression sensor 5 is provided at a position above the liquid level of the cleaning tank 1. By using the decompression sensor 5, the inside of the tank can be decompressed by the vacuum pump 8 until the pressure of the cleaning tank 1 reaches a predetermined level.
[0019]
Next, a characteristic cleaning method by the cleaning device of the above embodiment will be described by naming it piston cleaning and bubbling cleaning.
[Piston cleaning]
Here, piston cleaning means a cleaning method in which the object to be cleaned is immersed in the cleaning liquid and the pressure reduction state and the pressure-recovery state are repeated a plurality of times, and the object to be cleaned that does not have an open hole vertically above in the immersion state. It is preferably applied to. Hereinafter, the cleaning procedure will be described with reference to FIG.
[0020]
First, the cleaning object 7 is immersed in the cleaning tank 1 in which the cleaning liquid 6 is stored, and the lid 2 of the cleaning tank 1 is covered. Next, the vacuum pump 8 is operated in a state where the pressure-reducing valve 4 is closed and the pressure-reducing valve 3 is opened, and the space above the liquid level in the tank is depressurized. When the pressure in the cleaning tank 1 is reduced in this manner, air is released from the air pocket portion 7a and a similar vacuum is obtained (FIGS. 2A and 2B). To what extent the pressure is reduced is appropriately set. For example, in this embodiment, the pressure in the cleaning tank 1 is reduced to about 60 mmHg (−700 mmHg). The pressure level is grasped by the decompression sensor 5 installed in the cleaning tank 1.
[0021]
When the pressure is reduced to a predetermined level by the pressure reducing sensor 5, the pressure reducing valve 3 is closed and the pressure return valve 4 is opened. Thereby, since the inside of the tank is changed to the atmospheric pressure, the air pocket portion 7a in the object 7 to be cleaned is also decompressed, and thus the cleaning liquid 6 is forced to flow into the air pocket portion 7a (FIG. 2). (C)). The decompression is performed over about 10 seconds, for example, and the decompression is preferably performed all at once in a minute time of about 0.5 seconds, for example. In the present embodiment, the operation of the vacuum pump 8 is continued and the return pressure operation is performed.
[0022]
After that, when the pressure inside the cleaning tank 1 is reduced again by the above-described method, the cleaning liquid 6 that has entered the air pocket 7a escapes from the pocket portion 7a according to the pressure, and becomes the original vacuum space. In the cleaning apparatus of the present invention, the pressure reduction by the vacuum pump 8 and the pressure return by the pressure-reducing valve 4 are repeated alternately over a plurality of times instead of once. Although the number of repetitions is not particularly limited, for example, it is usually performed 3 to 4 times or more.
[0023]
After repeating depressurization and return pressure a plurality of times as described above, the ultrasonic oscillator 9 is operated in an atmospheric pressure state to start ultrasonic cleaning. Of course, ultrasonic cleaning may be performed prior to piston cleaning.
[0024]
According to the piston cleaning of the present embodiment, reliable cleaning can be achieved even if the object to be cleaned 7 has the air pocket 7a. That is, under atmospheric pressure, the air pocket 7a is not in contact with the cleaning liquid 6 as shown in FIG. 2 (a), but when the inside of the tank is depressurized, the air expands as shown in FIG. 2 (b). It escapes from the inside of the pocket 7a, and the space is evacuated. Then, when the inside of the tank is restored, the cleaning liquid is filled in the vacuum air pocket 7a as shown in FIG.
[0025]
Moreover, when the pressure is restored from the vacuum state, a slight amount of air remains even if the pressure is restored by returning the pressure at a stretch in a short time. Almost the entire area in the pocket 7 a is filled with the cleaning liquid 6. Further, the effect of the cleaning liquid 6 at the time of returning pressure to slide and clean the air pocket surface can be expected. In addition, by alternately and repeatedly performing such pressure reduction and return pressure, there is an effect that the cleaning liquid 6 is forcibly and surely permeated into the air pocket portion (a blind hole or a close gap between parts) 7a.
[0026]
In this way, by performing decompression and decompression of the cleaning tank 1, it is possible to clean the portion of the air pocket that the cleaning liquid 6 was not able to contact, and this series of processes is reproducible, so it is operated repeatedly. Thus, there is an effect of washing out foreign matter by taking in and out the cleaning liquid 6 that has entered the air pocket.
[0027]
[Bubbling cleaning]
Next, bubbling cleaning according to the embodiment will be described. Here, bubbling cleaning refers to a cleaning method in which the object to be cleaned is immersed in a cleaning liquid and subjected to ultrasonic vibration while repeating a reduced pressure state and a return pressure state a plurality of times. It is suitably applied to the cleaning of the object to be cleaned. Hereinafter, the cleaning procedure will be described with reference to FIG.
[0028]
The ultrasonic vibration is realized by an ultrasonic vibrator that can withstand the reduced pressure provided in the lower part of the cleaning tank 1. Originally, ultrasonic cleaning is performed by generating vacuum bubbles (cavitation) by ultrasonic vibration generated in the liquid. In other words, the air bubbles tend to break down due to the vacuum, which appears as a cleaning effect.
[0029]
However, when ultrasonic vibration is applied under reduced pressure, the cavitation that occurs almost uniformly turns into bubbles, which widens the gaps between the objects 7 to be cleaned and promotes contact with the cleaning liquid 6. Be expected. In addition, the bubbles remain inflated under reduced pressure. However, when the pressure is restored, the bubbles become smaller and are destroyed. For example, minute bubbles are infiltrated between the plate-like workpieces 7 and 7 that are in close contact with each other. By expanding the bubbles, it is possible to effectively wash by allowing the cleaning liquid 6 to enter while separating the plate-like workpieces 7 from each other. Thus, under the reduced pressure, the original effect of ultrasonic cleaning is lower than the atmospheric pressure state, but a strong effect is expected in the case of a close contact part or a thin plate.
[0030]
FIG. 3 illustrates this relationship. As shown in FIG. 3 (a), under atmospheric pressure, the cleaning liquid 6 does not easily enter the space between the plate-like workpieces 7 and 7 that are in close contact with each other, and it takes time to separate the close contact surface even with ultrasonic waves. I can't expect it. However, as shown in FIG. 5B, when the inside of the tank is depressurized and ultrasonically oscillated, an infinite number of high-density bubbles are generated in the entire liquid, and the gap between the contact surfaces can be widened. Then, it is preferable to periodically repeat such bubbling cleaning under reduced pressure and ultrasonic cleaning performed in a state where the inside of the tank is decompressed as shown in FIG. By repeating the depressurization and the return pressure, as described above, the expansion of the gap between the contact surfaces is more efficiently performed by the expansion action of the microbubbles that have entered the clearance between the contact surfaces. Therefore, as shown in FIG. 2C, the gap between the objects 7 and 7 which are sufficiently released from the close contact is strongly cleaned by the original cavitation effect of the ultrasonic waves.
[0031]
Thus, according to the bubbling cleaning method, the contact surface of the object 7 to be cleaned can be separated by the expansion force of the bubbles, so that the penetration of the cleaning liquid 6 is assisted and a stirring action is also obtained by uniform bubbles. Further, by repeating the depressurization and return pressure under ultrasonic vibration, effective bubbling and original ultrasonic cleaning are alternately applied to the object to be cleaned, and a more accurate cleaning effect can be obtained. In addition, although immersion cleaning may be completed by such bubbling cleaning, as shown in FIG. 3, it may be fixed to an atmospheric pressure state from the middle and may be shifted to normal ultrasonic cleaning. In this case, it is preferable to shift to ultrasonic cleaning after repeating the decompression and the decompression 4 to 5 times.
[0032]
Here, the time required for decompression is normally about 5 seconds, but when the predetermined decompression level is reached, the state is maintained by T1, and after the instantaneous decompression, the decompressed state is maintained by T2, T2 ≧ T1 It is preferable to set to. More preferably, T2 ≧ 2 × T1, typically T1 = about 5 seconds and T2 = about 10 seconds or more.
[0033]
In addition, in order to satisfy the use of vacuum ultrasonic waves, it is necessary to control the pressure in the tank, and the reason is that the boiling point of the cleaning liquid 6 is lowered by reducing the pressure. When the pressure of the vacuum ultrasonic wave is excessively reduced, the cleaning liquid 6 boils, and the ultrasonic vibrator is operated without touching the liquid. Further, the fine and uniform bubbles generated by the ultrasonic waves are hindered by the boiling of the cleaning liquid 6 and a uniform cleaning effect cannot be obtained. Therefore, when using vacuum ultrasonic waves, it is necessary to control the decompression force, and it is necessary to control the pressure (determine the decompression level) according to the vapor pressure-liquid temperature characteristic of the cleaning liquid 6.
[0034]
The cleaning apparatus of the present invention is not limited to the configuration of the above embodiment, and can be changed as appropriate. For example, in the above embodiment, the cleaning of the bag hole (air pocket) part, the close contact part, and the thin plate part has been mainly described. However, the cleaning object 7 applied to the cleaning apparatus of the present invention is not limited to these, and for example, a small diameter. Applicable to various shapes such as pipe parts and porous parts.
[0035]
【The invention's effect】
As described above in detail, according to the present invention, it is possible to realize a cleaning apparatus and a cleaning method capable of effective cleaning regardless of the shape and the degree of close contact of an object to be cleaned.
[Brief description of the drawings]
FIG. 1 is a schematic diagram illustrating an embodiment of the present invention.
FIG. 2 is a diagram illustrating a cleaning method according to an embodiment.
FIG. 3 is a drawing for explaining another cleaning method according to the embodiment.
[Explanation of symbols]
1 Washing tank 2 Lid 3 Pressure reducing valve 4 Pressure reducing valve 5 Pressure sensor (pressure reducing sensor)
6 Cleaning liquid 7 Object to be cleaned 8 Depressurization mechanism (vacuum pump)
9 Ultrasonic oscillator

Claims (4)

被洗浄物を洗浄液に浸漬可能な洗浄槽と、前記洗浄槽を減圧可能な減圧機構と、前記洗浄槽の減圧状態を瞬間的に破壊可能な復圧機構とを備え、
前記被洗浄物を浸漬した状態で、洗浄液に超音波振動を加えつつ前記洗浄槽の減圧状態と復圧状態とを繰り返す洗浄工程を含んで動作し、
所定レベルの減圧状態に達した後、この減圧状態を維持する第1時間T1と、復圧状態を維持する第2時間T2とは、T2≧T1に設定されていることを特徴とする洗浄装置。
A cleaning tank capable of immersing an object to be cleaned in a cleaning liquid, a decompression mechanism capable of depressurizing the cleaning tank, and a return pressure mechanism capable of instantaneously destroying the decompressed state of the cleaning tank,
In a state where the object to be cleaned is immersed, it operates including a cleaning step that repeats the reduced pressure state and the return pressure state of the cleaning tank while applying ultrasonic vibration to the cleaning liquid,
A cleaning apparatus characterized in that, after reaching a reduced pressure state of a predetermined level, a first time T1 for maintaining the reduced pressure state and a second time T2 for maintaining the recovered pressure state are set to T2 ≧ T1. .
互いに密着する被洗浄物を洗浄対象に含む請求項1に記載の洗浄装置。  The cleaning apparatus according to claim 1, wherein objects to be cleaned that are in close contact with each other are included in the cleaning target. 被洗浄物を洗浄液に浸漬可能な洗浄槽と、前記洗浄槽を減圧可能な減圧機構と、前記洗浄槽の減圧状態を瞬間的に破壊可能な復圧機構とを備え、前記被洗浄物を浸漬した状態で、洗浄液に超音波振動を加えつつ前記洗浄槽の減圧状態と復圧状態とを繰り返す洗浄工程を含み、所定レベルの減圧状態に達した後、この減圧状態を維持する第1時間T1と、復圧状態を維持する第2時間T2とは、T2≧T1に設定されている洗浄方法。  A cleaning tank capable of immersing an object to be cleaned in a cleaning liquid, a pressure reducing mechanism capable of depressurizing the cleaning tank, and a pressure-reducing mechanism capable of instantaneously destroying the reduced pressure state of the cleaning tank, and immersing the object to be cleaned In this state, a cleaning step of repeating the pressure reduction state and the pressure recovery state of the cleaning tank while applying ultrasonic vibration to the cleaning liquid is included. After reaching a predetermined level of the pressure reduction state, the first time T1 for maintaining the pressure reduction state And the 2nd time T2 which maintains a return pressure state is the washing | cleaning method set to T2> = T1. 互いに密着する被洗浄物を洗浄対象に含む請求項3に記載の洗浄方法。  The cleaning method according to claim 3, wherein the objects to be cleaned are in close contact with each other.
JP2001340904A 2001-11-06 2001-11-06 Cleaning device and cleaning method Expired - Lifetime JP3801904B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001340904A JP3801904B2 (en) 2001-11-06 2001-11-06 Cleaning device and cleaning method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001340904A JP3801904B2 (en) 2001-11-06 2001-11-06 Cleaning device and cleaning method

Publications (2)

Publication Number Publication Date
JP2003145071A JP2003145071A (en) 2003-05-20
JP3801904B2 true JP3801904B2 (en) 2006-07-26

Family

ID=19155038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001340904A Expired - Lifetime JP3801904B2 (en) 2001-11-06 2001-11-06 Cleaning device and cleaning method

Country Status (1)

Country Link
JP (1) JP3801904B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101371007B1 (en) * 2009-03-10 2014-03-10 미우라고교 가부시키카이샤 Cleaning equipment and cleaning method
US11610467B2 (en) 2020-10-08 2023-03-21 Ecolab Usa Inc. System and technique for detecting cleaning chemical usage to control cleaning efficacy

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7287179B2 (en) * 2003-05-15 2007-10-23 International Business Machines Corporation Autonomic failover of grid-based services
JP5463970B2 (en) * 2010-03-10 2014-04-09 三浦工業株式会社 Cleaning device
JP5483260B2 (en) * 2010-05-07 2014-05-07 三浦工業株式会社 Cleaning device
CN113058931A (en) * 2021-03-24 2021-07-02 西湖未来智造(杭州)科技发展有限公司 Full-automatic combined multi-frequency ultrasonic vacuum cleaning and drying device and using method thereof
CN113731937B (en) * 2021-09-10 2023-04-14 山东新华医疗器械股份有限公司 Pressure control optimization method for vacuum ultrasonic cleaning machine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101371007B1 (en) * 2009-03-10 2014-03-10 미우라고교 가부시키카이샤 Cleaning equipment and cleaning method
US11610467B2 (en) 2020-10-08 2023-03-21 Ecolab Usa Inc. System and technique for detecting cleaning chemical usage to control cleaning efficacy
US12100285B2 (en) 2020-10-08 2024-09-24 Ecolab Usa Inc. System and technique for detecting cleaning chemical usage to control cleaning efficacy

Also Published As

Publication number Publication date
JP2003145071A (en) 2003-05-20

Similar Documents

Publication Publication Date Title
US7604011B2 (en) Method and apparatus for semiconductor wafer cleaning using high-frequency acoustic energy with supercritical fluid
JP3801904B2 (en) Cleaning device and cleaning method
JPH02214581A (en) Washing method with cavitation utilized therefor
Fuchs Ultrasonic cleaning: Fundamental theory and application
US20070283985A1 (en) Ultrasonic Processing Method and Apparatus with Multiple Frequency Transducers
JP3336323B2 (en) Ultrasonic cleaning method and apparatus
JP2008021672A (en) Ultrasonic cleaning method and cleaning device using gas supersaturation solution
JP6171240B2 (en) Ultrasonic treatment equipment
JP2007059868A (en) Substrate processing equipment
US20030192571A1 (en) Apparatus and method for cleaning a semiconductor wafer
CN109791899B (en) Substrate cleaning method and cleaning device
JP5574092B2 (en) Cleaning device
JP2984445B2 (en) Ultrasonic cleaning method
JP4036626B2 (en) Ultrasonic cleaning method and ultrasonic cleaning apparatus
JP3515668B2 (en) Ultrasonic cleaning method and ultrasonic cleaning device
JP2004241754A (en) Substrate treatment method and substrate treatment apparatus
US6827791B2 (en) Method for removing paint from a substrate
Fuchs 2 The Fundamental Theory and Application of Ultrasonics for Cleaning
JPH10137705A (en) Washing device
JP5449706B2 (en) SOI substrate manufacturing method and manufacturing apparatus
JPH0739833A (en) Detergent
KR930005564B1 (en) Liquid crystal injection method of lcd
JP6043084B2 (en) Semiconductor substrate cleaning method and cleaning apparatus
JPH05152277A (en) Wet etching device
JP2785022B2 (en) Cleaning method using cavitation

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050208

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20050208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060426

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3801904

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130512

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130512

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140512

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term