JP3801543B2 - Combined transmission structure - Google Patents

Combined transmission structure Download PDF

Info

Publication number
JP3801543B2
JP3801543B2 JP2002224978A JP2002224978A JP3801543B2 JP 3801543 B2 JP3801543 B2 JP 3801543B2 JP 2002224978 A JP2002224978 A JP 2002224978A JP 2002224978 A JP2002224978 A JP 2002224978A JP 3801543 B2 JP3801543 B2 JP 3801543B2
Authority
JP
Japan
Prior art keywords
mode
continuously variable
transmission
mowing
traveling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002224978A
Other languages
Japanese (ja)
Other versions
JP2004065015A (en
Inventor
裕治 加藤
吉弘 上田
繁樹 林
之史 山中
勝秀 加藤
太 池田
幹夫 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2002224978A priority Critical patent/JP3801543B2/en
Publication of JP2004065015A publication Critical patent/JP2004065015A/en
Application granted granted Critical
Publication of JP3801543B2 publication Critical patent/JP3801543B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、左右のクローラ走行装置で走行するよう構成したコンバインの伝動構造に関する。
【0002】
【従来の技術】
コンバインにおいては、走行用の主変速装置として操作性に優れた油圧式の無段変速装置(HST)が多く利用されており、例えば特開2002−104229号公報に開示されているように、エンジンによって駆動される無段変速装置を走行用ミッションケースに連結し、無段変速装置からの変速出力をミッションケース内で走行系と作業系に分岐し、分岐された走行系の動力をギヤ式の副変速機構で複数段に変速したのち左右のクローラ走行装置に分配伝達するとともに、分岐された作業系の動力をミッションケースに備えたPTO軸を介して刈取り作業部に伝達するよう構成したものが知られている。
【0003】
【発明が解決しようとする課題】
走行系と作業系とを共通の無段変速装置で駆動する構成によると、刈取り作業部を走行速度と同調した速度で駆動することができるので、刈取り時点での穀稈引起し姿勢が安定する利点を有するものであるが、低速で走行しながら作業を行うとこれに応じて刈取り作業部の駆動速度が遅くなり、刈取り装置の刈刃速度が遅くなって刈取り性能が低下したり、引起し装置の引起し爪移動速度が遅くなって穀稈の引抜きが発生する、等の不具合が生じやすくなるものであった。また、最高速度で作業走行するとこれに応じて刈取作業部の駆動速度が速くなり、刈取り作業部の各種の作動部での摩耗が進行しやすくなるとともに、駆動騒音が発生しやすくなる、等の不具合が生じやすくなるものであった。
【0004】
また、1枚の圃場は作物の倒伏具合が均一であることは少なく、多くの場合、部分的に立毛状態であったり、倒伏状態であったりするものであり、上記伝動構造のコンバインにおいては、作物の状況に応じて以下のような変速操作を行っている。例えば、全体的には立毛状態で局部的に作物が倒伏しているような場合、立毛域では走行系の副変速機構を標準変速段である高速段に選択しておき、走行速度と同調した標準的な速度で作物を引起こして刈り取る。また、局部的な倒伏域に至ると、走行系の副変速機構を低速段に切換て走行速度に対する刈取り作業部の駆動速度を相対的に速め、ゆっくり走行しながら十分な速度で作物を少づつ無理なく引き起こして刈取る。そして、倒伏域での収穫が終わって立毛域に入ると、再び副変速機構を高速段に切換えて標準的な収穫状態に復帰する。
【0005】
従って、立毛と倒伏が複雑に入り混じっているような圃場においては走行速度の調整と副変速機構の切換えを頻繁に行う必要があり、その操作が煩わしく、かつ、熟練を要するものであった。
【0006】
本発明は、このような点に着目してなされたものであって、立毛と倒伏が入り混じっているような圃場での収穫作業を軽快容易に行うことができるようにすることを目的とするものである。
【0007】
【課題を解決するための手段】
〔請求項1に係る発明の構成、および、作用・効果〕
【0008】
請求項1に係る発明のコンバインの伝動構造は、クローラ走行装置を無段変速装置によって駆動するよう構成するととともに、刈取り作業部を別の無段変速装置によって駆動するよう構成し、走行速度と刈取り作業部の駆動速度が予め設定した所定の関係特性となるように走行系の無段変速装置の変速操作に連動して作業系の無段変速装置を変速制御する制御装置を備え、走行速度と刈取り作業部駆動速度との関係特性を、「立毛モード」と「倒伏モード」の2種類のモードが予め記憶設定されるとともに、両関係特性を人為選択し、選択したモードを維持する刈取りモード選択手段を備え、操作具を操作している間だけ、前記刈取りモード選択手段で選択されているモードと異なる他方のモードに一時的に切換える刈取りモード一時切換え手段を備えてあることを特徴とする。
【0009】
上記構成によると、立毛作物の多い圃場では刈取りモード選択手段を「立毛モード」に設定し、倒伏作物の多い圃場では刈取りモード選択手段を「倒伏モード」に設定して刈取り収穫作業を行う。そして、例えば「立毛モード」での作業中に局部的な倒伏域に入ると、操作具を操作し続けることで、その間だけ「倒伏モード」に一時的に切換えることができ、倒伏域から外れると操作具の操作を解除することで、元の「立毛モード」での作業に復帰することができる。逆に、「倒伏モード」での作業中に局部的な立毛域に入ると、操作具を操作し続けることで、その間だけ「立毛モード」に一時的に切換えることができ、立毛域から外れると操作具の操作を解除することで、元の「倒伏モード」での作業に復帰することができる。
【0010】
従って、請求項1の発明によると、操作具を操作し続けるだけで、予め選択設定した刈取りモードを逆の刈取りモードに一時的に切換えることができるので、局部的な倒伏域や立毛域での刈取り収穫を、軽快かつ容易に行うことができ、経験の浅い作業者でも、立毛と倒伏の混在する圃場での刈取り収穫作業を能率よく行うことができる。
【0011】
〔請求項2に係る発明の構成、および、作用・効果〕
【0012】
請求項2に係る発明のコンバインの伝動構造は、請求項1の発明において、前記刈取りモード一時切換え手段を作動させる前記操作具を、走行系の前記無段変速装置を操作する主変速レバーの握り部に指操作可能に備えてある。
【0013】
上記構成によると、主変速レバーを握って走行速度を任意に変更しながら、主変速レバーを操作している手の指で刈取りモードの一時切換えを行うことができ、レバーの持ち替えを要することなく走行変速と刈取りモード切換えを行うことができ、請求項1の発明の上記効果をもたらすとともに、取り扱いが容易となる。
【0014】
〔請求項3に係る発明の構成、および、作用・効果〕
【0015】
請求項3に係る発明のコンバインの伝動構造は、請求項2の発明において、前記操作具を、前後に揺動操作される前記主変速レバーにおける握り部の前面に押し操作可能に備えてある。
【0016】
上記構成によると、通常の変速操作では主変速レバーの握り部に上方から手を被せるように把持して主変速レバーを前後に揺動操作することになり、握り部の前面に備えた操作具を無意識に操作することはなく、意識的に操作具を指先で押し操作することで、押し操作している間、一時的なモード切換えを行うことができ、請求項2の発明の上記効果を一層助長する。
【0017】
【発明の実施の形態】
図1に、本発明に係る自脱型のコンバインの全体側面が示されている。このコンバインの基本的な構成は、従来と特に変わることはなく、左右のクローラ走行装置1を備えた走行機体2の前部に、収穫作業部として多条刈り仕様の刈取り作業部3が駆動昇降可能に連結されるとともに、走行機体2の前部右側には、運転座席4の下方にエンジン5を搭載配備した操縦部6が設けられ、また、走行機体2の上部左側には脱穀装置7が搭載されるとともに、その右横側にはスクリュー式のアンローダ8を備えた穀粒回収タンク9が配備された構造となっている。前記刈取り作業部3は、走行機体2の前部に支点X周りに上下揺動自在に支持された刈取り作業部フレーム10に、複数の引起し装置11、バリカン型の刈取り装置12、刈取り穀稈を脱穀装置7のフィードチェーン13に向けて搬送する穀稈搬送装置14、等が装備されており、刈取り作業部3全体が油圧シリンダ15よって駆動昇降されるようになっている。
【0018】
本発明は、前記クローラ走行装置1および刈取り作業部3への伝動構造に特徴を備えており、以下のその詳細な構成を図面に基づいて説明する。
【0019】
図2は、伝動構造を機体正面から見た概略構成図、また、図3はミッションケース20の縦断正面図である。これらの図において、ミッションケース20の一方の横側面(機体に対しては右横側面)に、左右のクローラ走行装置1を独立に駆動する一対の油圧式の無段変速装置(HST)21,22と、刈取り作業部3を駆動する油圧式の無段変速装置(HST)23とが装備されている。また、ミッションケース20の他方の横側面(機体に対しては左横側面)には入力軸24が突出され、この入力軸24とエンジン5とがベルト連動されている。
【0020】
各無段変速装置21,22,23は、それぞれミッションケース20の右側壁に一体突設されたケーシング部にアキシャルプランジャ式の可変容量型ポンプP(1),P(2),P(3)と定容量型モータM(1),M(2),M(3)とを組み込むとともに、油圧制御用のポートブロック21c,22c,23cをケース外端に取付けて構成されたものであり、入力軸24に入った動力は、カウンタギヤG1からギヤG2,G3を介して走行系の無段変速装置21,22の各ポンプ軸21a,22aに伝達されるとともに、ギヤG4を介して作業系の無段変速装置23のポンプ軸23aに伝達される。そして、各可変容量型ポンプP(1),P(2),P(3)の斜板角を独自に変更して圧油の吐出方向および吐出量を変更操作することで、各モータ軸21b,22b,23bの回転方向の正逆切換えと零速度からの無段変速が行えるようになっている。
【0021】
そして、無段変速装置21のモータ軸21bからの変速出力は、ギヤ式の副変速機構(左)25を介して第1中間軸(左)26に伝達された後、第2中間軸27に遊嵌支持されたギヤ減速機構28を介して車軸(左)29に伝達されて左側のクローラ走行装置1が駆動される。また、無段変速装置22のモータ軸22bからの変速出力は、ギヤ式の副変速機構(右)30を介して第1中間軸(右)31に伝達された後、第2中間軸27に遊嵌支持されたギヤ減速機構32を介して車軸(右)33に伝達されて右側のクローラ走行装置1が駆動される。
【0022】
前記副変速機構(左)25は、モータ軸21bで駆動される大小のギヤG5,G6、第1中間軸(左)26に遊嵌されるとともに前記ギヤG5,G6に咬合された一対のギヤG7,G8、両ギヤG7,G8の間において第1中間軸(左)26にスプライン連結された伝動ボス35、および、伝動ボス35にスプライン外嵌されたシフトスリーブ36を備え、コンスタントメッシュ形式で高低2段に変速可能に構成されており、シフトスリーブ36を伝動ボス35とギヤG8のボスに亘って咬合するようシフトすることで「低速」が得られ、シフトスリーブ36を伝動ボス35とギヤG7のボスに亘って咬合するようシフトすることで「高速」が得られ、また、シフトスリーブ36を伝動ボス35上に位置させて両ギヤG7,G8のボスとの咬合を解除すると、「中立」をもたらすことができるようになっている。
【0023】
前記副変速機構(右)30も、前記副変速機構(左)25と同一の仕様に構成されており、モータ軸22bで駆動される大小のギヤG9,G10、第1中間軸(右)31に遊嵌されるとともに前記ギヤG9,G10に咬合された一対のギヤG11,G12、両ギヤG11,G12の間において第1中間軸(右)31にスプライン連結された伝動ボス37、および、伝動ボス37にスプライン外嵌されたシフトスリーブ38から構成されており、シフトスリーブ38を伝動ボス37とギヤG12のボスに亘って咬合するようシフトすることで「低速」が得られ、シフトスリーブ38を伝動ボス37とギヤG11のボスに亘って咬合するようシフトすることで「高速」が得られ、また、シフトスリーブ38を伝動ボス37上に位置させて両ギヤG11,G12のボスとの咬合を解除すると、「中立」をもたらすことができるようになっている。
【0024】
図4に示すように、両副変速機構25,30の各シフトスリーブ36,38に係合された一対のシフトフォーク40,41は、ミッションケース20に左右移動可能に支承された共通のシフト軸42に連結されるとともに、シフト軸42はミッションケース20に組付けられた変速操作シリンダ43によって駆動シフトされるように構成されており、シフト軸42が変速操作シリンダ43によって3位置に選択移動されることで、両副変速機構25,30が共に作業走行用の「低速」、移動走行用の「高速」、あるいは「中立」に切換えられることになる。
【0025】
前記変速操作シリンダ43には、シフト軸42に連結されたピストンロッド44とこれに外嵌支持されたリング状ピストン45が組込まれており、圧油供給パターンを制御することでピストンロッドを3位置に出退作動させることが可能となっている。つまり、図7に示すように、変速操作シリンダ43は、一対の電磁開閉バルブ46,47に連通接続されており、操縦部6に配備された副変速レバー48の操作位置を検出するスイッチ機構SWの検出結果に基づいて以下のように切換え制御される。
【0026】
つまり、副変速レバー48が中立位置にあると、図7(イ)に示すように、両電磁開閉バルブ46,47が共に非励磁状態にあり、両電磁開閉バルブ46,47が共に開かれることで変速操作シリンダ43の2つの圧油ポートa,bに共に圧が印加され、ピストンロッド44が圧油ポートaからの圧によって図中左方向に退入操作されるとともに、リング状ピストン45が圧油ポートbからの圧によって図中右方向の限界まで移動され、受圧面積の差によりピストンロッド44はリング状ピストン45によって移動規制された中立位置に保持される。また、副変速レバー48が「低速」位置に操作されると、図7(ロ)に示すように、一方の電磁開閉バルブ47のみが通電励磁されて圧油ポートaがタンクに連通され、圧油ポートbからの圧によってピストンロッド44およびリング状ピストン45が図中右方向の限界まで移動され、ピストンロッド44は作業走行用の「低速」まで進出作動する。また、副変速レバー48が「高速」位置に操作されると、図7(ハ)に示すように、一方の電磁開閉バルブ46のみが通電励磁されて圧油ポートbがタンクに連通され、圧油ポートaからの圧によってピストンロッド44が図中左方向の限界まで移動され、ピストンロッド44は移動走行用の「高速」まで退入作動する。
【0027】
また、第1中間軸(左)26がミッションケース20の左右側壁に亘って支架されるのに対して、第1中間軸(右)31は第1中間軸(左)26に遊嵌支承されており、かつ、第1中間軸(左)26と第1中間軸(右)31との間には油圧操作される多板式の直進クラッチ50が介在されている。この直進クラッチ50は、左走行用の無段変速装置21と右走行用の無段変速装置22が共に同方向に同量操作されている時、つまり、直進操作状態ではクラッチ入り操作されて、第1中間軸(左)26と第1中間軸(右)31が一体化され、両無段変速装置21,22の出力回転速度に多少の差異があっても、車軸(左)29と車軸(右)33とが同速度で駆動されて確実に直進状態がもたらされる。また、左走行用の無段変速装置21と右走行用の無段変速装置22の操作が同一でない時、つまり、機体の操向操作がなされている状態では直進クラッチ50が切り操作されるように、ステアリング操作に連動して直進クラッチ50が作動制御されるようになっている。
【0028】
図4に示すように、直進クラッチ50は、第1中間軸(左)26に固着された大径ドラム51と、第1中間軸(右)31に端部に固着された小径ドラム52との間に摩擦板53を介在装備するとともに、第1中間軸(左)26と大径ドラム51との間に組込んだピストン部材54を、軸内の油路c,dから供給される圧油によって正あるいは逆に作動させることでクラッチ入り切りを行うよう構成されており、クラッチ入り操作用の油路cとクラッチ切り操作用の油路dが、軸端に装着した回転ジョイント55を介して電磁開閉バルブ56,57[図7参照]に接続されている。
【0029】
また、第1中間軸(左)26の端部に、内拡式のブレーキ58が装着されるとともに、直進クラッチ50には、ピストン部材54をクラッチ入り方向に押圧付勢するリング状のバネ59が複数枚重ねて組込まれており、前記油路c,dのいずれにも圧が立っていない状態では、前記摩擦板53がバネ59によって弾性的に押圧されて直進クラッチ50が軽くつながった状態がもたらされるようになっている。
【0030】
従って、直進状態から旋回状態に切換える際、あるいは旋回状態から直進状態に復帰させる場合に、極短時間だけ両油路c,dに圧が立たない状態を現出しておくことで、左右の車軸29,33が直進クラッチ50を介して軽くつながった状態がもたらされ、旋回開始時のショックや、旋回から直進に復帰する場合のショックの発生が抑制される。
【0031】
また、機体を駐車しておく場合には、エンジン5を止めてブレーキ58をかけておくが、エンジン5を止めた状態では油路c,dに圧が立たないので、ピストン部材54は自由となって直進クラッチ50はクラッチ切り状態となり、ブレーキ58は第1中間軸(左)26にのみ作用して左側のクローラ走行装置1だけにしか制動がかからなくなってしまうが、上記のように、第1中間軸(左)26と第1中間軸(右)31とがバネ59を介して適度な摩擦伝動状態にあるので、第1中間軸(左)26に働く制動作用は第1中間軸(右)31にもある程度及ぶことになり、傾斜地で駐車した場合でも、右側のクローラ走行装置1が自由状態になって、機体が自重で勝手に操向してしまうようなことが回避されるようになっている。
【0032】
また、図2,3に示すように、作業系の前記無段変速装置23のモータ軸23bからの変速出力は、ミッションケース20の左横側面に突設された作業用出力軸(PTO軸)60にギヤG12,G13を介して伝達されて、刈取り作業部3に図示しないベルトテンション式の刈取りクラッチを介してベルト伝達される。
【0033】
図6に、前記無段変速装置21,22,23に関する油圧回路が示されている。走行系の無段変速装置21,22の各可変容量ポンプP(1),P(2)は、バルブユニット61,62で作動制御されるサーボシリンダ63,64によって変速操作されるようになっている。各バルブユニット61,62は、それぞれ一対の常閉型の電磁開閉バルブ65,66と一対の常開型の電磁開閉バルブ67,68を組合わせて構成されており、図9に示すように、両バルブユニット61,6は制御装置70に接続され、後述のように制御される。
【0034】
走行系の一方の無段変速装置22におけるポンプ軸22aには、両無段変速装置21,22のチャージ回路e,fにチャージ圧油を供給するチャージポンプCP(1)が装着されるとともに、作業系の無段変速装置23におけるポンプ軸23aには、無段変速装置23のチャージ回路gにのみチャージ圧油を供給するチャージポンプCP(2)が装着されている。ここで、チャージポンプCP(1)からの圧油は、走行系の無段変速装置21,22を変速操作するためのバルブユニット61,62、つまり、負荷のかかる油圧サーボ系にも供給されるようになっており、このため、チャージポンプCP(1)はチャージポンプCP(2)より吐出量が多く、かつ、チャージリリーフ弁CR(1),CR(2)によって走行系のチャージ回路e,fの圧が作業系のチャージ回路gの圧より高くなるように設定されている。
【0035】
また、走行系の無段変速装置21,22のケーシングはケース内配管hで連通接続され、左側走行系の無段変速装置21からのドレン油はケース内配管hを介して右側走行系の無段変速装置22のケーシング内に流入した後、外部ドレン配管iを介して取り出され、オイルクーラOCを経て専用の作動油タンクTに回収される。また、作業系の無段変速装置23のドレン油も、外部ドレン配管jおよびオイルクーラOCを介して前記作動油タンクTに回収されるようになっている。
【0036】
次に、無段変速装置21,22を操作する油圧サーボ系の作動を説明する。なお、両油圧サーボ系は同一仕様に構成されているので、一方の無段変速装置21の油圧サーボ系を用いてその作動を説明する。
【0037】
サーボシリンダ63には一対の復帰バネ69が組み込まれており、図8(イ)に示すように、全ての電磁開閉バルブ65〜68が非通電状態にあると、サーボシリンダ63は両復帰バネ69によって中立位置に復帰付勢される。そして、図8(ロ)に示すように、一方の常閉型電磁開閉バルブ65が通電開路されるとともに、一方の常開型電磁開閉バル67が通電閉路されることで、チャージポンプCP(1)からの圧油が油路m(サーボシリンダ64においては油路n)に供給されて、サーボシリンダ63が中立位置から前進側に作動する。そして、8(ハ)に示すように、サーボシリンダ63が前進側に作動した後に、常閉型電磁開閉バルブ65の通電を停止して閉路位置に復帰させると、油路mからの圧油流出が阻止されてサーボシリンダ63はその前進位置に保持される。
【0038】
逆に、図8(ニ)に示すように、他方の常閉型電磁開閉バルブ66が通電開路されるとともに、他方の常開型電磁開閉バル68が通電閉路されることで、チャージポンプCP(1)からの圧油が油路q(サーボシリンダ64においては油路r)に供給されて、サーボシリンダ63が中立位置から後進側に作動する。そして、図8(ホ)に示すように、サーボシリンダ63が後進側に作動した後に、常閉型電磁開閉バルブ66の通電を停止して閉路位置に復帰させると、油路qからの圧油流出が阻止されてサーボシリンダ63はその後進位置に保持される。
【0039】
前記バルブユニット61,62は、操縦部6に備えられた前後揺動自在な単一の主変速レバー71、および、左右揺動自在な単一の操向レバー72の操作位置に応じてフィードバック制御されるものであり、以下にその制御について説明する。
【0040】
図9のブロック図に示すように、主変速レバー71の操作位置、および、操向レバー72の操作位置がそれぞれポテンショメータPM(1),PM(2)によって検出されるとともに、両無段変速装置21、22における可変容量ポンプP(1),P(2)の操作位置(斜板角度)がポテンショメータPM(3),PM(4)で検出されて制御装置70にフィードバックされるようになっており、主変速レバー71の操作位置、および、操向レバー72の操作位置によっ両無段変速装置21、22の目標変速位置が割り出され、この目標変速位置に向けてフィードバック制御による変速が行われる。なお、ポテンショメータPM(2)によって検出されたステアリング状態に基づいて直進クラッチ制御用の前記電磁開閉バルブ56,57が上述のように通電制御される。
【0041】
主変速レバー71を中立から前方あるいは後方へ操作すると、その操作量に応じた同一の目標変速位置が両無段変速装置21,22に設定され、可変容量ポンプP(1),P(2)が共に目標変速位置に到達するまで前進側あるいは後進側へ操作され、その目標変速位置で保持される。これによって直進での前後進変速を行うことができる。また、前進あるいは後進での直進走行状態から操向レバー72を中立から左方(あるいは右方)へ操作するに連れて左走行用の無段変速装置21(あるいは右走行用の無段変速装置22)の目標変速位置が減速方向に修正され、この修正された目標変速位置に向けての減速制御が行われ、機体は操向レバー66の操作された方向に、レバー操作量に応じた強さの旋回機能で旋回してゆくように連係されている。
【0042】
例えば、主変速レバー71で設定した速度で直進前進を行っている状態で操向レバー72を左方に操作すると、一方の無段変速装置21は減速されて左側のクローラ走行装置1の前進速度が遅くなり、左右の速度差によって機体は左側に旋回してゆく。そして、操向レバー72が大きく左方に操作されて一方の無段変速装置21が中立まで減速されると、旋回内側となる左側のクローラ走行装置1が停止しての信地旋回が行われる。また、さらに操向レバー72が左方に大きく操作されると、一方の無段変速装置21は中立を越えて後進側にまで変速され、旋回内側となる左側のクローラ走行装置1を逆転させての超信地旋回が行われるのである。
【0043】
図9に示すように、刈取り作業部3の駆動を司る無段変速装置23の可変容量ポンプP(3)は、電動モータなどのアクチュエータ73で操作されるようになっており、前進走行速度Vaと刈取り作業部駆動速度Vbとの関係が、マップデータなどのによって予め設定された特性となるように、主変速レバー70の前進変速操作に連動して作業系の無段変速装置23の目標変速位置が自動的に割り出され、この目標変速位置に向けて無段変速装置23がフィードバック制御されるようになっている。なお、無段変速装置23の変速位置は、可変容量ポンプP(3)の操作位置(斜板角度)としてポテンショメータPM(5)で検出される。
【0044】
図10に示すように、前進走行速度Vaと刈取り作業部駆動速度Vbとの関係は、前進走行速度Vaの変化に対して刈取り作業部駆動速度Vbが略直線的に変化する「立毛モード」と、前進走行速度Vaの変化に対して刈取り作業部駆動速度Vbが、低速域では大きく立ち上がり、高速域で変化が少なくなる「倒伏モード」との2種類の刈取りモードに設定されており、刈取りモード選択手段としての刈取りモード選択スイッチS(1)によっていずれかの刈取りモードが選択できるようになっている。
【0045】
また、刈取りモード選択スイッチS(1)によって「立毛モード」あるいは「倒伏モード」が選択されている状態で、刈取りモード一時切換えスイッチS(2)を入り操作すると、その入り操作の間だけ、刈取りモード選択スイッチS(1)によって選択された刈取りモードと異なる他方の刈取りモードが設定され、刈取りモード一時切換えスイッチS(2)の入り操作を解除すると刈取りモード選択スイッチS(1)によって選択された元の刈取りモードに復帰するようになっている。
【0046】
そして、図12に示すように、前記刈取りモード一時切換えスイッチS(2)は、主変速レバー71における握り部71aの前面に備えた操作具としての押しボタン74で操作されるよう構成されており、主変速レバー71の握り部71aの上方から被せるように置いた左手の中指などで押しボタン74を軽く押すことで刈取りモード一時切換えスイッチS(2)が入り操作されるようになっている。
【0047】
従って、立毛作物の多い圃場では刈取りモード選択スイッチS(1)で「立毛モード」に設定し、倒伏作物の多い圃場では刈取りモード選択スイッチS(1)で「倒伏モード」に設定して刈取り収穫作業を行う。そして、例えば「立毛モード」での作業中に局部的な倒伏域に入ると、主変速レバー71の押しボタン74を操作し続けることで、その間だけ「倒伏モード」に一時的に切換えることができ、倒伏域から外れると押しボタン74から指を離すことで、元の「立毛モード」での作業に復帰することができる。逆に、「倒伏モード」での作業中に局部的な立毛域に入ると、押しボタン74を押し操作し続けることで、その間だけ「立毛モード」に一時的に切換えることができ、立毛域から外れると押しボタン74から指を離すことで、元の「倒伏モード」での作業に復帰することができるのである。
【0048】
本発明は、以下のような形態に変形して実施することもできる。
(1)左右のクローラ走行装置1を単一の油圧式無段変速装置で駆動する形態で実施することもできる。
(2)走行系および作業系の無段変速装置をベルト式やその他の機械式のものにして実施することもできる。
【図面の簡単な説明】
【図1】自脱型コンバインを機体左側から見た全体側面図
【図2】伝動構造の概略構成を示す正面図
【図3】ミッションケースの縦断正面図
【図4】直進クラッチ周辺部の縦断正面図
【図5】ミッションケースの軸配置を機体左側から見た側面図
【図6】油圧回路図
【図7】副変速機構および直進クラッチ操作用の油圧回路図
【図8】サーボシリンダの各作動を示す油圧回路図
【図9】無段変速装置の制御系を示すブロック図
【図10】走行速度と刈取り作業部駆動速度との関係を示す特性線図
【図11】走行装置部位の正面図
【図12】主変速レバーの斜視図
【符号の説明】
1 クローラ走行装置
3 刈取り作業部
21 無段変速装置
22 無段変速装置
23 無段変速装置
71 主変速レバー
71a 握り部
74 操作具(押しボタン)
S(1) 刈取りモード選択手段(スイッチ)
S(2) 刈取りモード一時切換え手段(スイッチ)
Va 走行速度
Vb 刈取り作業部の駆動速度
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a power transmission structure for a combine configured to travel with left and right crawler travel devices.
[0002]
[Prior art]
In a combine, a hydraulic continuously variable transmission (HST) excellent in operability is often used as a main transmission for traveling. For example, as disclosed in JP-A-2002-104229, an engine is used. The continuously variable transmission driven by the gear is connected to the traveling transmission case, the shift output from the continuously variable transmission is branched into the traveling system and the working system in the transmission case, and the power of the branched traveling system is The sub-transmission mechanism is shifted to a plurality of stages and then distributed and transmitted to the left and right crawler travel devices, and the power of the branched work system is transmitted to the mowing work section via the PTO shaft provided in the transmission case. Are known.
[0003]
[Problems to be solved by the invention]
According to the configuration in which the traveling system and the working system are driven by a common continuously variable transmission, the mowing operation unit can be driven at a speed synchronized with the traveling speed, so that the posture of raising the grain at the time of mowing is stabilized. Although it has an advantage, if the work is performed while traveling at a low speed, the driving speed of the mowing unit will be slowed accordingly, the cutting blade speed of the mowing device will be slowed, and the mowing performance will be lowered or raised. The apparatus is prone to problems such as the apparatus being pulled up and the claw moving speed slowed down and the cereals are pulled out. In addition, when driving at the maximum speed, the driving speed of the mowing work section is increased accordingly, the wear at various operating parts of the mowing work section is likely to progress, and driving noise is likely to be generated, etc. The problem was likely to occur.
[0004]
In addition, in a single field, the level of crop lodging is rarely uniform, and in many cases, it is partially raised or in a lying state. In the combine of the above transmission structure, The following gear shifting operations are performed according to the conditions of the crop. For example, if the crop is locally lying in the napped state, the sub-transmission mechanism of the traveling system is selected as the standard gear stage in the napped region and synchronized with the traveling speed. Raise and mow crops at standard speed. In addition, when the local lodging area is reached, the sub-transmission mechanism of the traveling system is switched to a low speed stage to relatively increase the driving speed of the mowing operation section with respect to the traveling speed, and the crop is reduced at a sufficient speed while traveling slowly. Cause and reap. Then, when the harvesting in the lodging region is over and the napped region is entered, the auxiliary transmission mechanism is again switched to the high speed stage to return to the standard harvesting state.
[0005]
Therefore, it is necessary to frequently adjust the traveling speed and switch the auxiliary transmission mechanism in a field where napping and lodging are complicated and mixed, and the operation is troublesome and requires skill.
[0006]
The present invention has been made paying attention to such points, and an object thereof is to enable easy and easy harvesting work in a field where napping and lodging are mixed. Is.
[0007]
[Means for Solving the Problems]
[Configuration, Action and Effect of Invention of Claim 1]
[0008]
According to the first aspect of the present invention, there is provided a combine transmission structure configured such that the crawler traveling device is driven by a continuously variable transmission, and the cutting operation unit is driven by another continuously variable transmission, so A control device that controls the shift of the continuously variable transmission of the working system in conjunction with a shift operation of the continuously variable transmission of the traveling system so that the driving speed of the working unit has a predetermined predetermined characteristic is provided. Two types of modes, “napping mode” and “inclination mode”, are pre-stored as the relationship characteristics with the mowing operation unit drive speed, and both modes are selected manually and the selected mode is maintained. And temporarily switching to the other mode different from the mode selected by the cutting mode selection means only while operating the operation tool. Wherein the are provided with a stage.
[0009]
According to the above configuration, the harvesting mode selection unit is set to “puffed mode” in a field with many napped crops, and the harvesting mode selection unit is set to “slung mode” in a field with many lying crops. And, for example, if you enter a local lodging area while working in the “napping mode”, you can temporarily switch to the “lodging mode” by continuing to operate the operation tool, By releasing the operation of the operation tool, it is possible to return to the original work in the “napping mode”. On the other hand, if you enter the local raised area during work in the `` lodging mode '', you can temporarily switch to the `` napped mode '' only during that time by continuing to operate the operation tool. By releasing the operation of the operation tool, it is possible to return to the original work in the “slave mode”.
[0010]
Therefore, according to the first aspect of the present invention, it is possible to temporarily switch the pre-selected mowing mode to the reverse mowing mode simply by continuing to operate the operation tool. The harvesting and harvesting can be performed lightly and easily, and even an inexperienced worker can efficiently perform the harvesting and harvesting work in a field where napping and lodging are mixed.
[0011]
[Configuration, Action and Effect of Invention of Claim 2]
[0012]
According to a second aspect of the present invention, there is provided a transmission mechanism for a combine according to the first aspect, wherein the operating tool for operating the mowing mode temporary switching means is gripped by a main transmission lever for operating the continuously variable transmission of a traveling system. The part is equipped with finger operation.
[0013]
According to the above configuration, the chopping mode can be temporarily switched with the finger of the hand operating the main speed change lever while arbitrarily changing the traveling speed by grasping the main speed change lever, and there is no need to change the lever. Traveling speed change and cutting mode switching can be performed, and the above effect of the invention of claim 1 is brought about and handling becomes easy.
[0014]
[Configuration, Action and Effect of Invention of Claim 3]
[0015]
According to a third aspect of the present invention, there is provided the combine transmission structure according to the second aspect, wherein the operating tool is pushable on the front surface of the grip portion of the main transmission lever that is swung back and forth.
[0016]
According to the above configuration, in a normal speed change operation, the main speed change lever is swung back and forth by gripping the grip part of the main speed change lever from above, and the operating tool provided in front of the grip part The operation mode can be temporarily switched during the pressing operation by consciously pressing the operation tool with the fingertip, and the above effect of the invention of claim 2 can be achieved. Further encourage.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows the entire side surface of the self-removing combine according to the present invention. The basic structure of this combine is not particularly different from the conventional one, and a multi-cutting mowing operation unit 3 is driven ascending and descending as a harvesting operation unit at the front of a traveling machine body 2 equipped with left and right crawler traveling devices 1. In addition to being connected to each other, on the right side of the front part of the traveling machine body 2, there is provided a control unit 6 in which an engine 5 is installed below the driver's seat 4. In addition to being mounted, a grain recovery tank 9 having a screw-type unloader 8 is provided on the right side. The mowing operation unit 3 includes a plurality of pulling device 11, a clipper type mowing device 12, and a mowing cereal basket on a mowing working unit frame 10 supported on the front portion of the traveling machine body 2 so as to swing up and down around a fulcrum X. Is provided with a cereal conveying device 14 that conveys the raw material toward the feed chain 13 of the threshing device 7, and the entire mowing operation unit 3 is driven up and down by a hydraulic cylinder 15.
[0018]
The present invention is characterized by the transmission structure to the crawler traveling device 1 and the mowing unit 3, and the following detailed configuration will be described based on the drawings.
[0019]
FIG. 2 is a schematic configuration diagram of the transmission structure as viewed from the front of the machine body, and FIG. 3 is a longitudinal front view of the mission case 20. In these figures, a pair of hydraulic continuously variable transmissions (HSTs) 21 for independently driving the left and right crawler travel devices 1 are provided on one lateral side of the transmission case 20 (the right lateral side with respect to the aircraft). 22 and a hydraulic continuously variable transmission (HST) 23 that drives the cutting work unit 3. Further, an input shaft 24 projects from the other lateral surface of the mission case 20 (the left lateral surface with respect to the aircraft), and the input shaft 24 and the engine 5 are interlocked with a belt.
[0020]
Each of the continuously variable transmissions 21, 22, and 23 has axial plunger type variable displacement pumps P (1), P (2), and P (3) in a casing part integrally projecting from the right side wall of the transmission case 20, respectively. And constant capacity type motors M (1), M (2), M (3) are installed, and port blocks 21c, 22c, 23c for hydraulic control are attached to the outer end of the case. The power that has entered the shaft 24 is transmitted from the counter gear G1 to the pump shafts 21a and 22a of the continuously variable transmissions 21 and 22 of the traveling system via the gears G2 and G3, and is also transmitted to the working system via the gear G4. It is transmitted to the pump shaft 23a of the continuously variable transmission 23. Each motor shaft 21b is operated by changing the swash plate angle of each variable displacement pump P (1), P (2), P (3) and changing the discharge direction and discharge amount of the pressure oil. , 22b and 23b can be switched between forward and reverse rotations and continuously variable from zero speed.
[0021]
The speed change output from the motor shaft 21b of the continuously variable transmission 21 is transmitted to the first intermediate shaft (left) 26 via the gear-type sub-transmission mechanism (left) 25 and then to the second intermediate shaft 27. The left crawler traveling device 1 is driven by being transmitted to the axle (left) 29 via the gear reduction mechanism 28 that is loosely supported. Further, the shift output from the motor shaft 22 b of the continuously variable transmission 22 is transmitted to the first intermediate shaft (right) 31 via the gear-type sub-transmission mechanism (right) 30 and then to the second intermediate shaft 27. The right crawler traveling device 1 is driven by being transmitted to the axle (right) 33 through the loosely supported gear reduction mechanism 32.
[0022]
The auxiliary transmission mechanism (left) 25 is a pair of gears loosely fitted to the large and small gears G5, G6 and the first intermediate shaft (left) 26 driven by the motor shaft 21b and meshed with the gears G5, G6. G7 and G8, a transmission boss 35 splined to the first intermediate shaft (left) 26 between both gears G7 and G8, and a shift sleeve 36 externally fitted to the transmission boss 35 are provided in a constant mesh form. The shift sleeve 36 is configured so as to be capable of shifting in two steps of high and low, and the shift sleeve 36 is shifted so as to mesh between the transmission boss 35 and the boss of the gear G8, so that "low speed" is obtained. “High speed” is obtained by shifting so as to mesh over the boss of G7, and when the shift sleeve 36 is positioned on the transmission boss 35 and the engagement with the bosses of both gears G7 and G8 is released, Thereby making it possible to bring the neutral ".
[0023]
The auxiliary transmission mechanism (right) 30 is also configured to have the same specifications as the auxiliary transmission mechanism (left) 25, and has large and small gears G9 and G10 driven by a motor shaft 22b and a first intermediate shaft (right) 31. A pair of gears G11 and G12 engaged with the gears G9 and G10, a transmission boss 37 splined to the first intermediate shaft (right) 31 between the gears G11 and G12, and a transmission The shift sleeve 38 is externally fitted to the boss 37 by a spline. By shifting the shift sleeve 38 so as to engage the transmission boss 37 and the boss of the gear G12, "low speed" is obtained. “High speed” is obtained by shifting so as to mesh between the transmission boss 37 and the boss of the gear G11, and the shift sleeve 38 is positioned on the transmission boss 37 to engage the bosses of both the gears G11 and G12. Solution If you divide, you can bring "neutral".
[0024]
As shown in FIG. 4, the pair of shift forks 40 and 41 engaged with the shift sleeves 36 and 38 of the both sub-transmission mechanisms 25 and 30 have a common shift shaft supported by the transmission case 20 so as to be movable left and right. The shift shaft 42 is configured to be driven and shifted by a speed change operation cylinder 43 assembled to the transmission case 20, and the shift shaft 42 is selectively moved to three positions by the speed change operation cylinder 43. Thus, both the sub-transmission mechanisms 25 and 30 are switched to “low speed” for work travel, “high speed” for mobile travel, or “neutral”.
[0025]
A piston rod 44 connected to the shift shaft 42 and a ring-shaped piston 45 fitted and supported by the shift shaft 42 are incorporated in the speed change operation cylinder 43, and the piston rod is moved to three positions by controlling the pressure oil supply pattern. It is possible to move out and in. That is, as shown in FIG. 7, the speed change operation cylinder 43 is connected to a pair of electromagnetic opening and closing valves 46 and 47, and the switch mechanism SW that detects the operation position of the auxiliary speed change lever 48 provided in the control unit 6. Based on the detection result, switching control is performed as follows.
[0026]
That is, when the auxiliary transmission lever 48 is in the neutral position, as shown in FIG. 7 (a), both the electromagnetic opening / closing valves 46, 47 are in a non-excited state, and both the electromagnetic opening / closing valves 46, 47 are both opened. Thus, pressure is applied to the two pressure oil ports a and b of the speed change operation cylinder 43, and the piston rod 44 is retreated in the left direction in the figure by the pressure from the pressure oil port a. The piston rod 44 is moved to the limit in the right direction in the figure by the pressure from the pressure oil port b, and the piston rod 44 is held at the neutral position restricted by the ring-shaped piston 45 due to the difference in pressure receiving area. When the auxiliary transmission lever 48 is operated to the “low speed” position, as shown in FIG. 7 (b), only one electromagnetic opening / closing valve 47 is energized and the pressure oil port a is communicated with the tank. The piston rod 44 and the ring-shaped piston 45 are moved to the limit in the right direction in the figure by the pressure from the oil port b, and the piston rod 44 is advanced to the “low speed” for working travel. Further, when the auxiliary transmission lever 48 is operated to the “high speed” position, as shown in FIG. 7C, only one of the electromagnetic on-off valves 46 is energized and excited, and the pressure oil port b is communicated with the tank. The piston rod 44 is moved to the limit in the left direction in the figure by the pressure from the oil port a, and the piston rod 44 is retracted to the “high speed” for moving travel.
[0027]
The first intermediate shaft (left) 26 is supported over the left and right side walls of the transmission case 20, while the first intermediate shaft (right) 31 is loosely supported by the first intermediate shaft (left) 26. In addition, a multi-plate linear clutch 50 that is hydraulically operated is interposed between the first intermediate shaft (left) 26 and the first intermediate shaft (right) 31. The straight clutch 50 is engaged when the left traveling continuously variable transmission 21 and the right traveling continuously variable transmission 22 are both operated in the same direction in the same direction, that is, in the straight operation state, the clutch is engaged. Even if the first intermediate shaft (left) 26 and the first intermediate shaft (right) 31 are integrated and the output rotational speeds of both continuously variable transmissions 21 and 22 are slightly different, the axle (left) 29 and the axle (Right) 33 is driven at the same speed, and a straight traveling state is surely brought about. Further, when the operation of the continuously variable transmission 21 for the left traveling and the continuously variable transmission 22 for the right traveling is not the same, that is, when the steering operation of the fuselage is performed, the linear clutch 50 is operated to be disconnected. In addition, the linear clutch 50 is controlled to operate in conjunction with the steering operation.
[0028]
As shown in FIG. 4, the linear clutch 50 includes a large-diameter drum 51 fixed to the first intermediate shaft (left) 26 and a small-diameter drum 52 fixed to the end portion of the first intermediate shaft (right) 31. Pressure oil supplied through oil passages c and d in the shaft is provided with a friction plate 53 interposed therebetween and a piston member 54 incorporated between the first intermediate shaft (left) 26 and the large-diameter drum 51. The clutch engaging / disengaging operation is configured to be engaged or disengaged by forward or reverse operation of the clutch, and the clutch engaging operation oil passage c and the clutch disengaging operation oil passage d are electromagnetically connected via a rotary joint 55 attached to the shaft end. It is connected to the open / close valves 56 and 57 [see FIG. 7].
[0029]
Further, an inwardly expanding brake 58 is mounted on the end portion of the first intermediate shaft (left) 26, and a ring-shaped spring 59 that presses and urges the piston member 54 in the clutch engagement direction is attached to the linearly-moving clutch 50. In a state in which a plurality of sheets are assembled and no pressure is applied to any of the oil passages c and d, the friction plate 53 is elastically pressed by the spring 59 and the linear clutch 50 is lightly connected. Has come to be brought.
[0030]
Accordingly, when switching from the straight traveling state to the turning state, or when returning from the turning state to the straight traveling state, a state in which no pressure is generated in both the oil passages c and d is revealed for a very short time. 29 and 33 are brought into a lightly connected state via the straight clutch 50, and the occurrence of a shock at the start of turning and a shock when returning from turning to straight running is suppressed.
[0031]
When the aircraft is parked, the engine 5 is stopped and the brake 58 is applied. However, when the engine 5 is stopped, the oil passages c and d are not pressurized, so the piston member 54 is free. As a result, the straight clutch 50 is disengaged and the brake 58 acts only on the first intermediate shaft (left) 26 and only the left crawler traveling device 1 is braked. Since the first intermediate shaft (left) 26 and the first intermediate shaft (right) 31 are in an appropriate frictional transmission state via the spring 59, the braking action acting on the first intermediate shaft (left) 26 is the first intermediate shaft. (Right) 31 also extends to some extent, and even when parked on a slope, it is avoided that the crawler traveling device 1 on the right side is in a free state and the aircraft is steered by its own weight. It is like that.
[0032]
As shown in FIGS. 2 and 3, the shift output from the motor shaft 23 b of the continuously variable transmission 23 of the work system is a work output shaft (PTO shaft) protruding from the left lateral surface of the transmission case 20. 60 is transmitted through gears G12 and G13, and is transmitted to the mowing unit 3 via a belt tension type mowing clutch (not shown).
[0033]
FIG. 6 shows a hydraulic circuit relating to the continuously variable transmissions 21, 22, and 23. The variable displacement pumps P (1) and P (2) of the continuously variable transmissions 21 and 22 in the traveling system are shifted by servo cylinders 63 and 64 that are controlled by the valve units 61 and 62, respectively. Yes. Each valve unit 61, 62 is configured by combining a pair of normally closed type electromagnetic on-off valves 65, 66 and a pair of normally open type electromagnetic on-off valves 67, 68. As shown in FIG. Both valve units 61 and 6 are connected to a control device 70 and controlled as described later.
[0034]
A charge pump CP (1) for supplying charge pressure oil to the charge circuits e and f of both continuously variable transmissions 21 and 22 is mounted on the pump shaft 22a of one continuously variable transmission 22 of the traveling system. A charge pump CP (2) for supplying charge pressure oil only to the charge circuit g of the continuously variable transmission 23 is mounted on the pump shaft 23a of the continuously variable transmission 23 of the working system. Here, the pressure oil from the charge pump CP (1) is also supplied to valve units 61 and 62 for shifting the traveling continuously variable transmissions 21 and 22, that is, a hydraulic servo system to which a load is applied. For this reason, the charge pump CP (1) has a larger discharge amount than the charge pump CP (2), and the charge relief valves CR (1) and CR (2) are used for the charge circuit e, The pressure of f is set to be higher than the pressure of the charge circuit g in the work system.
[0035]
Further, the casings of the traveling continuously variable transmissions 21 and 22 are connected to each other by a pipe h in the case, and the drain oil from the continuously variable transmission 21 in the left traveling system is connected to the right traveling system through the casing h. After flowing into the casing of the step transmission 22, it is taken out via the external drain pipe i, and collected in a dedicated hydraulic oil tank T via the oil cooler OC. Further, the drain oil of the continuously variable transmission 23 of the working system is also collected in the hydraulic oil tank T via the external drain pipe j and the oil cooler OC.
[0036]
Next, the operation of the hydraulic servo system that operates the continuously variable transmissions 21 and 22 will be described. Since both hydraulic servo systems have the same specifications, the operation will be described using the hydraulic servo system of one continuously variable transmission 21.
[0037]
A pair of return springs 69 are incorporated in the servo cylinder 63, and as shown in FIG. 8 (a), when all the electromagnetic on-off valves 65 to 68 are in a non-energized state, the servo cylinder 63 has both return springs 69. To return to the neutral position. Then, as shown in FIG. 8B, one normally closed electromagnetic switching valve 65 is energized and opened, and one normally open electromagnetic switching valve 67 is energized and closed, so that the charge pump CP (1 ) Is supplied to the oil passage m (oil passage n in the servo cylinder 64), and the servo cylinder 63 operates from the neutral position to the forward side. Then, as shown in 8 (c), when the servo cylinder 63 is operated forward, the energization of the normally closed electromagnetic on-off valve 65 is stopped and returned to the closed position. Is prevented and the servo cylinder 63 is held in its forward position.
[0038]
Conversely, as shown in FIG. 8 (d), the other normally closed electromagnetic on-off valve 66 is energized and the other normally open electromagnetic on / off valve 68 is energized, so that the charge pump CP ( The pressure oil from 1) is supplied to the oil path q (oil path r in the servo cylinder 64), and the servo cylinder 63 operates from the neutral position to the reverse side. Then, as shown in FIG. 8 (e), when the normally closed electromagnetic on-off valve 66 is de-energized and returned to the closed position after the servo cylinder 63 is operated to the reverse side, the pressure oil from the oil path q is restored. The outflow is prevented and the servo cylinder 63 is held in the backward position.
[0039]
The valve units 61 and 62 are feedback-controlled in accordance with the operation positions of a single main transmission lever 71 provided in the control unit 6 that can swing back and forth and a single steering lever 72 that can swing left and right. The control will be described below.
[0040]
As shown in the block diagram of FIG. 9, the operation position of the main transmission lever 71 and the operation position of the steering lever 72 are detected by potentiometers PM (1) and PM (2), respectively, and both continuously variable transmissions are detected. The operation positions (swash plate angles) of the variable displacement pumps P (1) and P (2) in 21 and 22 are detected by the potentiometers PM (3) and PM (4) and fed back to the control device 70. The target shift positions of the continuously variable transmissions 21 and 22 are determined by the operation position of the main shift lever 71 and the operation position of the steering lever 72, and the shift by feedback control is performed toward the target shift position. Done. The electromagnetic on-off valves 56 and 57 for linear clutch control are energized as described above based on the steering state detected by the potentiometer PM (2).
[0041]
When the main shift lever 71 is operated from neutral to forward or backward, the same target shift position corresponding to the amount of operation is set in both continuously variable transmissions 21 and 22, and the variable displacement pumps P (1) and P (2) Are operated forward or backward until they reach the target shift position, and are held at the target shift position. As a result, it is possible to perform forward / reverse shifting in a straight line. In addition, when the steering lever 72 is operated from the neutral position to the left (or right) from the forward or reverse straight traveling state, the left traveling continuously variable transmission 21 (or the right traveling continuously variable transmission). 22) the target shift position is corrected in the deceleration direction, deceleration control is performed toward the corrected target shift position, and the aircraft is strengthened according to the lever operation amount in the direction in which the steering lever 66 is operated. It is linked so that it may turn with the turning function.
[0042]
For example, when the steering lever 72 is operated to the left while the vehicle is moving straight forward at the speed set by the main transmission lever 71, the one continuously variable transmission 21 is decelerated and the forward speed of the crawler traveling device 1 on the left side is reduced. The aircraft will turn to the left due to the difference in speed between the left and right sides. Then, when the steering lever 72 is largely operated to the left and the one continuously variable transmission 21 is decelerated to the neutral position, the left crawler traveling device 1 on the inner side of the turn is stopped and the belief turn is performed. . Further, when the steering lever 72 is further operated to the left, one continuously variable transmission 21 is shifted to the reverse side beyond the neutral position, and the left crawler traveling device 1 on the inside of the turn is reversed. This is a super-sounding turn.
[0043]
As shown in FIG. 9, the variable displacement pump P (3) of the continuously variable transmission 23 that controls the cutting work unit 3 is operated by an actuator 73 such as an electric motor, and the forward travel speed Va. In relation to the forward shifting operation of the main transmission lever 70 so that the relationship between the cutting speed and the cutting portion drive speed Vb becomes a characteristic preset by map data or the like. The position is automatically determined, and the continuously variable transmission 23 is feedback-controlled toward the target shift position. The speed change position of the continuously variable transmission 23 is detected by the potentiometer PM (5) as the operation position (swash plate angle) of the variable displacement pump P (3).
[0044]
As shown in FIG. 10, the relationship between the forward travel speed Va and the mowing operation unit drive speed Vb is “a napped mode” in which the mowing operation unit drive speed Vb changes substantially linearly with respect to the change in the forward travel speed Va. The cutting operation unit driving speed Vb is set to two types of cutting modes, “falling mode” in which the cutting operation unit driving speed Vb rises significantly in the low speed range and decreases less in the high speed range. Any of the cutting modes can be selected by the cutting mode selection switch S (1) as the selection means.
[0045]
In addition, when the napping mode temporary changeover switch S (2) is turned on while the “napping mode” or the “inclination mode” is selected by the mowing mode selection switch S (1), the mowing is performed only during the turning operation. When the other cutting mode different from the cutting mode selected by the mode selection switch S (1) is set and the on / off operation of the temporary cutting mode switch S (2) is canceled, the cutting mode selection switch S (1) is selected. It returns to the original mowing mode.
[0046]
As shown in FIG. 12, the reaping mode temporary changeover switch S (2) is configured to be operated by a push button 74 as an operation tool provided on the front surface of the grip portion 71a of the main transmission lever 71. The mowing mode temporary changeover switch S (2) is turned on and operated by lightly pressing the push button 74 with the middle finger or the like of the left hand placed so as to cover the grip 71a of the main transmission lever 71.
[0047]
Therefore, in the field with many napped crops, the cutting mode selection switch S (1) is set to “Napping mode”, and in the field with many lying crops, the cutting mode selection switch S (1) is set to “Striking mode”. Do work. And, for example, when entering the local lodging area during the work in the “napped mode”, the push button 74 of the main speed change lever 71 can be continuously operated, so that it can be temporarily switched to the “lodging mode” only during that time. When the user falls out of the lying area, the operator can return to the original work in the “napping mode” by releasing the finger from the push button 74. On the other hand, when entering the local raised region during work in the “liedown mode”, by continuing to push the push button 74, it is possible to temporarily switch to the “raised mode” only during that time. When released, the finger can be released from the push button 74 to return to the original work in the “inclination mode”.
[0048]
The present invention can also be carried out by being modified into the following forms.
(1) The left and right crawler traveling devices 1 may be driven by a single hydraulic continuously variable transmission.
(2) The continuously variable transmission of the traveling system and the working system can be implemented by a belt type or other mechanical type.
[Brief description of the drawings]
[Fig. 1] Overall side view of the self-removing combine as seen from the left side of the fuselage [Fig. 2] Front view showing the schematic configuration of the transmission structure [Fig. 3] Vertical front view of the transmission case [Fig. Front view [Fig.5] Side view of the shaft arrangement of the transmission case as seen from the left side of the fuselage [Fig.6] Hydraulic circuit diagram [Fig.7] Hydraulic circuit diagram for operating the sub-transmission mechanism and linear clutch [Fig.8] Each servo cylinder FIG. 9 is a block diagram showing the control system of the continuously variable transmission. FIG. 10 is a characteristic diagram showing the relationship between the running speed and the mowing operation unit driving speed. [Fig. 12] Perspective view of main transmission lever [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Crawler traveling apparatus 3 Cutting work part 21 Continuously variable transmission 22 Continuously variable transmission 23 Continuously variable transmission 71 Main transmission lever 71a Grip part 74 Operating tool (push button)
S (1) Mowing mode selection means (switch)
S (2) Mowing mode temporary switching means (switch)
Va Traveling speed Vb Cutting speed of cutting section

Claims (3)

クローラ走行装置を無段変速装置によって駆動するよう構成するととともに、刈取り作業部を別の無段変速装置によって駆動するよう構成し、
走行速度と刈取り作業部の駆動速度が予め設定した所定の関係特性となるように走行系の無段変速装置の変速操作に連動して作業系の無段変速装置を変速制御する制御装置を備え、
走行速度と刈取り作業部駆動速度との関係特性を、「立毛モード」と「倒伏モード」の2種類のモードが予め記憶設定されるとともに、両関係特性を人為選択し、選択したモードを維持する刈取りモード選択手段を備え、
操作具を操作している間だけ、前記刈取りモード選択手段で選択されているモードと異なる他方のモードに一時的に切換える刈取りモード一時切換え手段を備えてあることを特徴とするコンバインの伝動構造。
The crawler traveling device is configured to be driven by a continuously variable transmission, and the mowing working unit is configured to be driven by another continuously variable transmission,
Provided with a control device for controlling the shift of the continuously variable transmission of the working system in conjunction with the shifting operation of the continuously variable transmission of the traveling system so that the traveling speed and the driving speed of the cutting working unit have a predetermined predetermined characteristic. ,
As for the relational characteristics between the running speed and the cutting unit driving speed, two types of modes, “Napping mode” and “Laying mode”, are stored in advance, and both relational characteristics are selected artificially, and the selected mode is maintained . A cutting mode selection means,
A combine transmission structure characterized by comprising a mowing mode temporary switching means for temporarily switching to the other mode different from the mode selected by the mowing mode selection means only while operating the operating tool.
前記刈取りモード一時切換え手段を作動させる前記操作具を、走行系の前記無段変速装置を操作する主変速レバーの握り部に指操作可能に備えてある請求項1記載のコンバインの伝動構造。  The combine transmission structure according to claim 1, wherein the operating tool for operating the mowing mode temporary switching means is provided so as to be operated by a finger on a grip portion of a main transmission lever that operates the continuously variable transmission of a traveling system. 前記操作具を、前後に揺動操作される前記主変速レバーにおける握り部の前面に押し操作可能に備えてある請求項2記載のコンバインの伝動構造。  The combine transmission structure according to claim 2, wherein the operation tool is provided so as to be pressed on a front surface of a grip portion of the main transmission lever that is swingably operated back and forth.
JP2002224978A 2002-08-01 2002-08-01 Combined transmission structure Expired - Fee Related JP3801543B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002224978A JP3801543B2 (en) 2002-08-01 2002-08-01 Combined transmission structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002224978A JP3801543B2 (en) 2002-08-01 2002-08-01 Combined transmission structure

Publications (2)

Publication Number Publication Date
JP2004065015A JP2004065015A (en) 2004-03-04
JP3801543B2 true JP3801543B2 (en) 2006-07-26

Family

ID=32012790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002224978A Expired - Fee Related JP3801543B2 (en) 2002-08-01 2002-08-01 Combined transmission structure

Country Status (1)

Country Link
JP (1) JP3801543B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4529898B2 (en) * 2005-12-28 2010-08-25 井関農機株式会社 Combine
JP4529920B2 (en) * 2006-02-28 2010-08-25 井関農機株式会社 Combine

Also Published As

Publication number Publication date
JP2004065015A (en) 2004-03-04

Similar Documents

Publication Publication Date Title
JP3801543B2 (en) Combined transmission structure
JP5249888B2 (en) Movable harvester travel transmission
JP2007297050A (en) Steering structure for working machine
JP3784350B2 (en) Work machine traveling structure
JP3717434B2 (en) Work machine transmission structure
JP4423163B2 (en) Combine
JP4960625B2 (en) Shifting structure of work equipment
JP3926222B2 (en) Combined transmission structure
KR100506435B1 (en) Harvester
JP3963834B2 (en) Power transmission structure of mowing harvester
JP2004066859A (en) Driving structure for harvester
JP2004074883A (en) Steering structure of operating machine
JP5108699B2 (en) Mowing harvester
JP5457792B2 (en) Control device for traveling transmission
JP2004217071A (en) Turning control device for traveling vehicle
JP4413169B2 (en) Agricultural vehicle power transmission
JP2010164109A (en) Driving control device for work vehicle
JP4585373B2 (en) Work vehicle travel transmission device
JP3765754B2 (en) Work machine operation structure
JP3702876B2 (en) Combine harvester gearing
JP4475006B2 (en) Combine
JP5134557B2 (en) Combine traveling control device
JP5805022B2 (en) Work vehicle turning operation structure
JP5543095B2 (en) Mowing harvester
JP2004090799A (en) Steering operation structure for working machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060413

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060425

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090512

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130512

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130512

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140512

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees