JP2004066859A - Driving structure for harvester - Google Patents

Driving structure for harvester Download PDF

Info

Publication number
JP2004066859A
JP2004066859A JP2002224979A JP2002224979A JP2004066859A JP 2004066859 A JP2004066859 A JP 2004066859A JP 2002224979 A JP2002224979 A JP 2002224979A JP 2002224979 A JP2002224979 A JP 2002224979A JP 2004066859 A JP2004066859 A JP 2004066859A
Authority
JP
Japan
Prior art keywords
continuously variable
traveling
transmission
variable transmission
hydraulic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002224979A
Other languages
Japanese (ja)
Inventor
Yuji Kato
加藤 裕治
Minoru Hiraoka
平岡 実
Yoshiro Takao
高尾 吉郎
Shinichi Morita
森田 慎一
Yukikazu Yamagishi
山岸 雪員
Yoshihiro Ueda
上田  吉弘
Yukifumi Yamanaka
山中  之史
Shigeki Hayashi
林 繁樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2002224979A priority Critical patent/JP2004066859A/en
Publication of JP2004066859A publication Critical patent/JP2004066859A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a driving structure for a harvester capable of simplifying a hydraulic circuit structure and capable of lightly operating a continuously variable transmission. <P>SOLUTION: A crawler traveling device at right and left is driven by hydraulic continuously variable transmissions 21 and 22, and a harvest work part is driven by another hydraulic continuously variable transmission 23. A charge pump CP (1) of the continuously variable transmissions 21 and 22 of a traveling system and a charge pump CP (2) of the continuously variable transmission 23 of a work system are independently provided. The continuously variable transmissions 21 and 22 of the traveling system are shift-operated by servo cylinders 63 and 64. The servo cylinders 63 and 64 are driven by pressure oil from the charge pump CP (1) of the traveling system. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、左右のクローラ走行装置で走行するよう構成したコンバインなどの収穫機の駆動構造に関する。
【0002】
【従来の技術】
コンバインにおいては、走行用の主変速装置として操作性に優れた油圧式の無段変速装置(HST)が多く利用されており、例えば特開2002−104229号公報に開示されているように、エンジンによって駆動される無段変速装置を走行用ミッションケースに連結し、無段変速装置からの変速出力をミッションケース内で走行系と作業系に分岐し、分岐された走行系の動力をギヤ式の副変速機構で複数段に変速したのち左右のクローラ走行装置に分配伝達するとともに、分岐された作業系の動力をミッションケースに備えたPTO軸を介して刈取り作業部に伝達するよう構成したものが知られている。
【0003】
【発明が解決しようとする課題】
走行系と作業系とを共通の無段変速装置で駆動する構成によると、刈取り作業部を走行速度と同調した速度で駆動することができるので、刈取り時点での穀稈引起し姿勢が安定する利点を有するものであるが、低速で走行しながら作業を行うとこれに応じて刈取り作業部の駆動速度が遅くなり、刈取り装置の刈刃速度が遅くなって刈取り性能が低下したり、引起し装置の引起し爪移動速度が遅くなって穀稈の引抜きが発生する、等の不具合が生じやすくなるものであった。また、最高速度で作業走行するとこれに応じて刈取作業部の駆動速度が速くなり、刈取り作業部の各種の作動部での摩耗が進行しやすくなるとともに、駆動騒音が発生しやすくなる、等の不具合が生じやすくなるものであった。
【0004】
そこで、上記不具合を軽減する手段として、走行系と作業系とを別個の油圧式の無段変速装置で駆動することが研究されているのであるが、この場合、複数の無段変速装置における油圧回路構造を簡素化することが実用上重要な事項となる。
【0005】
また、油圧式の無段変速装置はその概してその変速操作に比較的大きい力を必要としており、特に操作頻度に高い走行系の操作を軽くすることが望まれている。
【0006】
本発明は、このような点に着目してなされたものであって、油圧回路構造の簡素化を図るとともに、無段変速装置を軽快に操作できる作業機の駆動構造を提供することを主たる目的とするものである。
【0007】
【課題を解決するための手段】
〔請求項1に係る発明の構成、および、作用・効果〕
【0008】
請求項1に係る発明の作業機の駆動構造は、左右のクローラ走行装置を油圧式の無段変速装置によって駆動するよう構成するととともに、収穫作業部を別の油圧式の無段変速装置によって駆動するよう構成し、走行系の前記無段変速装置のチャージポンプと、作業系の前記無段変速装置のチャージポンプとを別個に備え、走行系の無段変速装置をサーボシリンダで変速操作するよう構成するとともに、このサーボシリンダを走行系のチャージポンプからの圧油で駆動するよう構成してあることを特徴とする。
【0009】
上記構成によると、走行系の無段変速装置のチャージポンプを、走行系の無段変速装置を操作するサーボシリンダの油圧源として利用するので、油圧サーボ系をチャージ系と別途の設ける場合に比較して油圧回路構を簡素化することが可能となる。
この場合、走行系チャージ回路圧は、サーボ系の負荷を考慮して高い圧に設定する必要があるので、低圧でよい作業系チャージ回路と高圧の走行系チャージ回路とは別個に構成する方が圧力損失が少なく合理的となる。
【0010】
〔請求項2に係る発明の構成、および、作用・効果〕
【0011】
請求項2に係る発明のコンバインの伝動構造は、請求項1の発明において、走行系の前記無段変速装置を一対備えて左右のクローラ走行装置を独立して変速駆動するよう構成し、走行系および作業系の前記無段変速装置の作動油を専用の作動油タンクに貯留し、走行系の両無段変速装置のドレン回路を連通接続するとともに、走行系の一方の無段変速装置から前記作動油タンクに排油するよう構成してある。
【0012】
上記構成によると、走行系および作業系の無段変速装置の作動油は専用油となるので、常に清浄な作動油を無段変速装置に供給することができ、長期間に亘って3つの無段変速装置を円滑に作動させることができる。
また、走行系の一対の無段変速装置のドレン油を一方の無段変速装置に集めてから作動油タンクに排油するので、走行系の無段変速装置と作動油タンクとを連通接続する長いドレンパイプは1本ですみ、走行系の両無段変速装置それぞれと作動油タンクとを独立してドレンパイプで連通接続する場合に比べてドレン回路構造が簡素化でき、コスト低減にも有効となる。
【0013】
【発明の実施の形態】
図1に、本発明に係る自脱型のコンバインの全体側面が示されている。このコンバインの基本的な構成は、従来と特に変わることはなく、左右のクローラ走行装置1を備えた走行機体2の前部に、収穫作業部として多条刈り仕様の刈取り作業部3が駆動昇降可能に連結されるとともに、走行機体2の前部右側には、運転座席4の下方にエンジン5を搭載配備した操縦部6が設けられ、また、走行機体2の上部左側には脱穀装置7が搭載されるとともに、その右横側にはスクリュー式のアンローダ8を備えた穀粒回収タンク9が配備された構造となっている。前記刈取り作業部3は、走行機体2の前部に支点X周りに上下揺動自在に支持された刈取り作業部フレーム10に、複数の引起し装置11、バリカン型の刈取り装置12、刈取り穀稈を脱穀装置7のフィードチェーン13に向けて搬送する穀稈搬送装置14、等が装備されており、刈取り作業部3全体が油圧シリンダ15よって駆動昇降されるようになっている。
【0014】
本発明は、前記クローラ走行装置1および刈取り作業部3への伝動構造に特徴を備えており、以下のその詳細な構成を図面に基づいて説明する。
【0015】
図2は、伝動構造を機体正面から見た概略構成図、また、図3はミッションケース20の縦断正面図である。これらの図において、ミッションケース20の一方の横側面(機体に対しては右横側面)に、左右のクローラ走行装置1を独立に駆動する一対の油圧式の無段変速装置(HST)21,22と、刈取り作業部3を駆動する油圧式の無段変速装置(HST)23とが装備されている。また、ミッションケース20の他方の横側面(機体に対しては左横側面)には入力軸24が突出され、この入力軸24とエンジン5とがベルト連動されている。
【0016】
各無段変速装置21,22,23は、それぞれミッションケース20の右側壁に一体突設されたケーシング部にアキシャルプランジャ式の可変容量型ポンプP(1),P(2),P(3)と定容量型モータM(1),M(2),M(3)とを組み込むとともに、油圧制御用のポートブロック21c,22c,23cをケース外端に取付けて構成されたものであり、入力軸24に入った動力は、カウンタギヤG1からギヤG2,G3を介して走行系の無段変速装置21,22の各ポンプ軸21a,22aに伝達されるとともに、ギヤG4を介して作業系の無段変速装置23のポンプ軸23aに伝達される。そして、各可変容量型ポンプP(1),P(2),P(3)の斜板角を独自に変更して圧油の吐出方向および吐出量を変更操作することで、各モータ軸21b,22b,23bの回転方向の正逆切換えと零速度からの無段変速が行えるようになっている。
【0017】
そして、無段変速装置21のモータ軸21bからの変速出力は、ギヤ式の副変速機構(左)25を介して第1中間軸(左)26に伝達された後、第2中間軸27に遊嵌支持されたギヤ減速機構28を介して車軸(左)29に伝達されて左側のクローラ走行装置1が駆動される。また、無段変速装置22のモータ軸22bからの変速出力は、ギヤ式の副変速機構(右)30を介して第1中間軸(右)31に伝達された後、第2中間軸27に遊嵌支持されたギヤ減速機構32を介して車軸(右)33に伝達されて右側のクローラ走行装置1が駆動される。
【0018】
前記副変速機構(左)25は、モータ軸21bで駆動される大小のギヤG5,G6、第1中間軸(左)26に遊嵌されるとともに前記ギヤG5,G6に咬合された一対のギヤG7,G8、両ギヤG7,G8の間において第1中間軸(左)26にスプライン連結された伝動ボス35、および、伝動ボス35にスプライン外嵌されたシフトスリーブ36を備え、コンスタントメッシュ形式で高低2段に変速可能に構成されており、シフトスリーブ36を伝動ボス35とギヤG8のボスに亘って咬合するようシフトすることで「低速」が得られ、シフトスリーブ36を伝動ボス35とギヤG7のボスに亘って咬合するようシフトすることで「高速」が得られ、また、シフトスリーブ36を伝動ボス35上に位置させて両ギヤG7,G8のボスとの咬合を解除すると、「中立」をもたらすことができるようになっている。
【0019】
前記副変速機構(右)30も、前記副変速機構(左)25と同一の仕様に構成されており、モータ軸22bで駆動される大小のギヤG9,G10、第1中間軸(右)31に遊嵌されるとともに前記ギヤG9,G10に咬合された一対のギヤG11,G12、両ギヤG11,G12の間において第1中間軸(右)31にスプライン連結された伝動ボス37、および、伝動ボス37にスプライン外嵌されたシフトスリーブ38から構成されており、シフトスリーブ38を伝動ボス37とギヤG12のボスに亘って咬合するようシフトすることで「低速」が得られ、シフトスリーブ38を伝動ボス37とギヤG11のボスに亘って咬合するようシフトすることで「高速」が得られ、また、シフトスリーブ38を伝動ボス37上に位置させて両ギヤG11,G12のボスとの咬合を解除すると、「中立」をもたらすことができるようになっている。
【0020】
図4に示すように、両副変速機構25,30の各シフトスリーブ36,38に係合された一対のシフトフォーク40,41は、ミッションケース20に左右移動可能に支承された共通のシフト軸42に連結されるとともに、シフト軸42はミッションケース20に組付けられた変速操作シリンダ43によって駆動シフトされるように構成されており、シフト軸42が変速操作シリンダ43によって3位置に選択移動されることで、両副変速機構25,30が共に作業走行用の「低速」、移動走行用の「高速」、あるいは「中立」に切換えられることになる。
【0021】
前記変速操作シリンダ43には、シフト軸42に連結されたピストンロッド44とこれに外嵌支持されたリング状ピストン45が組込まれており、圧油供給パターンを制御することでピストンロッドを3位置に出退作動させることが可能となっている。つまり、図7に示すように、変速操作シリンダ43は、一対の電磁開閉バルブ46,47に連通接続されており、操縦部6に配備された副変速レバー48の操作位置を検出するスイッチ機構SWの検出結果に基づいて以下のように切換え制御される。
【0022】
つまり、副変速レバー48が中立位置にあると、図7(イ)に示すように、両電磁開閉バルブ46,47が共に非励磁状態にあり、両電磁開閉バルブ46,47が共に開かれることで変速操作シリンダ43の2つの圧油ポートa,bに共に圧が印加され、ピストンロッド44が圧油ポートaからの圧によって図中左方向に退入操作されるとともに、リング状ピストン45が圧油ポートbからの圧によって図中右方向の限界まで移動され、受圧面積の差によりピストンロッド44はリング状ピストン45によって移動規制された中立位置に保持される。また、副変速レバー48が「低速」位置に操作されると、図7(ロ)に示すように、一方の電磁開閉バルブ47のみが通電励磁されて圧油ポートaがタンクに連通され、圧油ポートbからの圧によってピストンロッド44およびリング状ピストン45が図中右方向の限界まで移動され、ピストンロッド44は作業走行用の「低速」まで進出作動する。また、副変速レバー48が「高速」位置に操作されると、図7(ハ)に示すように、一方の電磁開閉バルブ46のみが通電励磁されて圧油ポートbがタンクに連通され、圧油ポートaからの圧によってピストンロッド44が図中左方向の限界まで移動され、ピストンロッド44は移動走行用の「高速」まで退入作動する。
【0023】
また、第1中間軸(左)26がミッションケース20の左右側壁に亘って支架されるのに対して、第1中間軸(右)31は第1中間軸(左)26に遊嵌支承されており、かつ、第1中間軸(左)26と第1中間軸(右)31との間には油圧操作される多板式の直進クラッチ50が介在されている。この直進クラッチ50は、左走行用の無段変速装置21と右走行用の無段変速装置22が共に同方向に同量操作されている時、つまり、直進操作状態ではクラッチ入り操作されて、第1中間軸(左)26と第1中間軸(右)31が一体化され、両無段変速装置21,22の出力回転速度に多少の差異があっても、車軸(左)29と車軸(右)33とが同速度で駆動されて確実に直進状態がもたらされる。また、左走行用の無段変速装置21と右走行用の無段変速装置22の操作が同一でない時、つまり、機体の操向操作がなされている状態では直進クラッチ50が切り操作されるように、ステアリング操作に連動して直進クラッチ50が作動制御されるようになっている。
【0024】
図4に示すように、直進クラッチ50は、第1中間軸(左)26に固着された大径ドラム51と、第1中間軸(右)31に端部に固着された小径ドラム52との間に摩擦板53を介在装備するとともに、第1中間軸(左)26と大径ドラム51との間に組込んだピストン部材54を、軸内の油路c,dから供給される圧油によって正あるいは逆に作動させることでクラッチ入り切りを行うよう構成されており、クラッチ入り操作用の油路cとクラッチ切り操作用の油路dが、軸端に装着した回転ジョイント55を介して電磁開閉バルブ56,57[図7参照]に接続されている。
【0025】
また、第1中間軸(左)26の端部に、内拡式のブレーキ58が装着されるとともに、直進クラッチ50には、ピストン部材54をクラッチ入り方向に押圧付勢するリング状のバネ59が複数枚重ねて組込まれており、前記油路c,dのいずれにも圧が立っていない状態では、前記摩擦板53がバネ59によって弾性的に押圧されて直進クラッチ50が軽くつながった状態がもたらされるようになっている。
【0026】
従って、直進状態から旋回状態に切換える際、あるいは旋回状態から直進状態に復帰させる場合に、極短時間だけ両油路c,dに圧が立たない状態を現出しておくことで、左右の車軸29,33が直進クラッチ50を介して軽くつながった状態がもたらされ、旋回開始時のショックや、旋回から直進に復帰する場合のショックの発生が抑制される。
【0027】
また、機体を駐車しておく場合には、エンジン5を止めてブレーキ58をかけておくが、エンジン5を止めた状態では油路c,dに圧が立たないので、ピストン部材54は自由となって直進クラッチ50はクラッチ切り状態となり、ブレーキ58は第1中間軸(左)26にのみ作用して左側のクローラ走行装置1だけにしか制動がかからなくなってしまうが、上記のように、第1中間軸(左)26と第1中間軸(右)31とがバネ59を介して適度な摩擦伝動状態にあるので、第1中間軸(左)26に働く制動作用は第1中間軸(右)31にもある程度及ぶことになり、傾斜地で駐車した場合でも、右側のクローラ走行装置1が自由状態になって、機体が自重で勝手に操向してしまうようなことが回避されるようになっている。
【0028】
また、図2,3に示すように、作業系の前記無段変速装置23のモータ軸23bからの変速出力は、ミッションケース20の左横側面に突設された作業用出力軸(PTO軸)60にギヤG12,G13を介して伝達されて、刈取り作業部3に図示しないベルトテンション式の刈取りクラッチを介してベルト伝達される。
【0029】
図6に、前記無段変速装置21,22,23に関する油圧回路が示されている。走行系の無段変速装置21,22の各可変容量ポンプP(1),P(2)は、バルブユニット61,62で作動制御されるサーボシリンダ63,64によって変速操作されるようになっている。各バルブユニット61,62は、それぞれ一対の常閉型の電磁開閉バルブ65,66と一対の常開型の電磁開閉バルブ67,68を組合わせて構成されており、図9に示すように、両バルブユニット61,6は制御装置70に接続され、後述のように制御される。
【0030】
走行系の一方の無段変速装置22におけるポンプ軸22aには、両無段変速装置21,22のチャージ回路e,fにチャージ圧油を供給するチャージポンプCP(1)が装着されるとともに、作業系の無段変速装置23におけるポンプ軸23aには、無段変速装置23のチャージ回路gにのみチャージ圧油を供給するチャージポンプCP(2)が装着されている。ここで、チャージポンプCP(1)からの圧油は、走行系の無段変速装置21,22を変速操作するためのバルブユニット61,62、つまり、負荷のかかる油圧サーボ系にも供給されるようになっており、このため、チャージポンプCP(1)はチャージポンプCP(2)より吐出量が多く、かつ、チャージリリーフ弁CR(1),CR(2)によって走行系のチャージ回路e,fの圧が作業系のチャージ回路gの圧より高くなるように設定されている。
【0031】
また、走行系の無段変速装置21,22のケーシングはケース内配管hで連通接続され、左側走行系の無段変速装置21からのドレン油はケース内配管hを介して右側走行系の無段変速装置22のケーシング内に流入した後、外部ドレン配管iを介して取り出され、オイルクーラOCを経て専用の作動油タンクTに回収される。また、作業系の無段変速装置23のドレン油も、外部ドレン配管jおよびオイルクーラOCを介して前記作動油タンクTに回収されるようになっている。
【0032】
次に、無段変速装置21,22を操作する油圧サーボ系の作動を説明する。なお、両油圧サーボ系は同一仕様に構成されているので、一方の無段変速装置21の油圧サーボ系を用いてその作動を説明する。
【0033】
サーボシリンダ63には一対の復帰バネ69が組み込まれており、図8(イ)に示すように、全ての電磁開閉バルブ65〜68が非通電状態にあると、サーボシリンダ63は両復帰バネ69によって中立位置に復帰付勢される。そして、図8(ロ)に示すように、一方の常閉型電磁開閉バルブ65が通電開路されるとともに、一方の常開型電磁開閉バル67が通電閉路されることで、チャージポンプCP(1)からの圧油が油路m(サーボシリンダ64においては油路n)に供給されて、サーボシリンダ63が中立位置から前進側に作動する。そして、8(ハ)に示すように、サーボシリンダ63が前進側に作動した後に、常閉型電磁開閉バルブ65の通電を停止して閉路位置に復帰させると、油路mからの圧油流出が阻止されてサーボシリンダ63はその前進位置に保持される。
【0034】
逆に、図8(ニ)に示すように、他方の常閉型電磁開閉バルブ66が通電開路されるとともに、他方の常開型電磁開閉バル68が通電閉路されることで、チャージポンプCP(1)からの圧油が油路q(サーボシリンダ64においては油路r)に供給されて、サーボシリンダ63が中立位置から後進側に作動する。そして、図8(ホ)に示すように、サーボシリンダ63が後進側に作動した後に、常閉型電磁開閉バルブ66の通電を停止して閉路位置に復帰させると、油路qからの圧油流出が阻止されてサーボシリンダ63はその後進位置に保持される。
【0035】
前記バルブユニット61,62は、操縦部6に備えられた前後揺動自在な単一の主変速レバー71、および、左右揺動自在な単一の操向レバー72の操作位置に応じてフィードバック制御されるものであり、以下にその制御について説明する。
【0036】
図9のブロック図に示すように、主変速レバー71の操作位置、および、操向レバー72の操作位置がそれぞれポテンショメータPM(1),PM(2)によって検出されるとともに、両無段変速装置21、22における可変容量ポンプP(1),P(2)の操作位置(斜板角度)がポテンショメータPM(3),PM(4)で検出されて制御装置70にフィードバックされるようになっており、主変速レバー71の操作位置、および、操向レバー72の操作位置によっ両無段変速装置21、22の目標変速位置が割り出され、この目標変速位置に向けてフィードバック制御による変速が行われる。なお、ポテンショメータPM(2)によって検出されたステアリング状態に基づいて直進クラッチ制御用の前記電磁開閉バルブ56,57が上述のように通電制御される。
【0037】
主変速レバー71を中立から前方あるいは後方へ操作すると、その操作量に応じた同一の目標変速位置が両無段変速装置21,22に設定され、可変容量ポンプP(1),P(2)が共に目標変速位置に到達するまで前進側あるいは後進側へ操作され、その目標変速位置で保持される。これによって直進での前後進変速を行うことができる。また、前進あるいは後進での直進走行状態から操向レバー72を中立から左方(あるいは右方)へ操作するに連れて左走行用の無段変速装置21(あるいは右走行用の無段変速装置22)の目標変速位置が減速方向に修正され、この修正された目標変速位置に向けての減速制御が行われ、機体は操向レバー66の操作された方向に、レバー操作量に応じた強さの旋回機能で旋回してゆくように連係されている。
【0038】
例えば、主変速レバー71で設定した速度で直進前進を行っている状態で操向レバー72を左方に操作すると、一方の無段変速装置21は減速されて左側のクローラ走行装置1の前進速度が遅くなり、左右の速度差によって機体は左側に旋回してゆく。そして、操向レバー72が大きく左方に操作されて一方の無段変速装置21が中立まで減速されると、旋回内側となる左側のクローラ走行装置1が停止しての信地旋回が行われる。また、さらに操向レバー72が左方に大きく操作されると、一方の無段変速装置21は中立を越えて後進側にまで変速され、旋回内側となる左側のクローラ走行装置1を逆転させての超信地旋回が行われるのである。
【0039】
但し、高速走行時に急旋回が行われないように、上記旋回制御は走行速度によって牽制される。つまり、左右のクローラ走行装置1の車軸29,33の回転速度が回転センサS(1),S(2)で検出され、走行速度が速いほど旋回内側のクローラ走行装置1の減速できる度合いが小さくなるように設定されており、図12にその一例が示されている。図12は、旋回操作可能な内外速度比Rを走行速度Vに対応させたものであり、図中のハッチングを付した領域が旋回操作可能な内外速度比の領域である。そして、その領域の下端に設定された限界線Lが旋回操作可能な最大内外速度比となる。
【0040】
つまり、最高速Vmaxでは旋回内側の速度を最大で旋回外側の速度の1/3までしか減速することができず、走行速度Vが遅くなるほど旋回内側の速度を大きく減速することができ、中間速度Vm 以下の速度範囲でないと信地旋回および超信地旋回ができなくなる。また、超信地旋回を行うにしても、旋回内側の速度を最大で旋回外側の速度の−1/3までしか減速できなくなるのである。
【0041】
図9に示すように、刈取り作業部3の駆動を司る無段変速装置23の可変容量ポンプP(3)は、電動モータなどのアクチュエータ73で操作されるようになっており、前進走行速度と刈取り作業部駆動速度との関係が、例えば図10に示す特性となるように、主変速レバー70の前進変速操作に連動して作業系の無段変速装置23が自動的に変速操作されるようになっている。なお、無段変速装置23における可変容量ポンプP(3)の操作位置(斜板角度)がポテンショメータPM(5)で検出されてフィードバックされる。
【0042】
〔別実施形態〕
本発明は、以下のような形態で実施することもできる。
(1)左右のクローラ走行装置1を単一の油圧式無段変速装置で駆動する形態で実施することもできる。
(2)走行系の油圧式無段変速装置を操作するサーボシリンダをサーボバルブによって制御するとともに、このサーボバルブと操向レバー72を機械式に連係した形態で実施することもできる。
【図面の簡単な説明】
【図1】自脱型コンバインを機体左側から見た全体側面図
【図2】伝動構造の概略構成を示す正面図
【図3】ミッションケースの縦断正面図
【図4】直進クラッチ周辺部の縦断正面図
【図5】ミッションケースの軸配置を機体左側から見た側面図
【図6】油圧回路図
【図7】副変速機構および直進クラッチ操作用の油圧回路図
【図8】サーボシリンダの各作動を示す油圧回路図
【図9】無段変速装置の制御系を示すブロック図
【図10】走行速度と刈取り作業部駆動速度との関係を示す特性線図
【図11】走行装置部位の正面図
【図12】旋回制御における牽制特性を示す線図
【符号の説明】
1        クローラ走行装置
3        収穫作業部(刈取り部)
21       油圧式の無段変速装置
22       油圧式の無段変速装置
23       油圧式の無段変速装置
63       サーボシリンダ
64       サーボシリンダ
CP(1)           走行系のチャージポンプ
CP(2)           作業系のチャージポンプ
T        作動油タンク
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a drive structure of a harvester, such as a combine, configured to run on left and right crawler running devices.
[0002]
[Prior art]
In a combine, a hydraulic continuously variable transmission (HST) having excellent operability is often used as a main transmission for traveling. For example, as disclosed in Japanese Patent Application Laid-Open No. 2002-104229, an engine is used. The continuously variable transmission driven by the transmission is connected to the traveling transmission case, the shift output from the continuously variable transmission is branched into the traveling system and the working system in the transmission case, and the power of the branched traveling system is transmitted to the gear type. After the gears are shifted to a plurality of speeds by the subtransmission mechanism, the power is distributed to the left and right crawler traveling devices, and the power of the branched working system is transmitted to the mowing work unit via the PTO shaft provided in the transmission case. Are known.
[0003]
[Problems to be solved by the invention]
According to the configuration in which the traveling system and the working system are driven by the common continuously variable transmission, the mowing work unit can be driven at a speed synchronized with the traveling speed, so that the grain stem raising posture at the time of mowing is stable. Although it has an advantage, if the work is performed while traveling at a low speed, the driving speed of the mowing work unit is correspondingly reduced, the cutting blade speed of the mowing device is reduced, and the mowing performance is reduced, or Problems such as the raising of the claw moving speed of the raising device and the pulling out of the grain stalk are likely to occur. In addition, when the vehicle travels at the maximum speed, the driving speed of the reaping work unit is correspondingly increased, and wear in the various operating parts of the reaping work unit is easily advanced, and drive noise is easily generated. Problems were likely to occur.
[0004]
Therefore, as means for reducing the above-mentioned inconveniences, it has been studied to drive the traveling system and the working system by separate hydraulic continuously variable transmissions. Simplifying the circuit structure is a practically important matter.
[0005]
Further, a hydraulic type continuously variable transmission generally requires a relatively large force for its speed change operation, and it is desired to reduce the operation of a traveling system, which is particularly frequently operated.
[0006]
SUMMARY OF THE INVENTION The present invention has been made in view of such a point, and has as its main object to provide a drive mechanism of a working machine capable of simplifying a hydraulic circuit structure and lightly operating a continuously variable transmission. It is assumed that.
[0007]
[Means for Solving the Problems]
[Structure, operation and effect of the invention according to claim 1]
[0008]
The drive structure of the working machine according to the first aspect of the present invention is configured such that the left and right crawler traveling devices are driven by a hydraulic stepless transmission, and the harvesting unit is driven by another hydraulic stepless transmission. And a charge pump for the continuously variable transmission of the traveling system and a charge pump of the continuously variable transmission for the working system are separately provided, and the speed of the continuously variable transmission of the traveling system is shifted by a servo cylinder. The servo cylinder is configured to be driven by pressure oil from a charge pump of a traveling system.
[0009]
According to the above configuration, since the charge pump of the continuously variable transmission of the traveling system is used as a hydraulic source of the servo cylinder that operates the continuously variable transmission of the traveling system, it is compared with the case where the hydraulic servo system is provided separately from the charging system. Thus, the hydraulic circuit structure can be simplified.
In this case, it is necessary to set the traveling system charge circuit pressure to a high pressure in consideration of the load of the servo system. Therefore, it is better to separately configure the work system charge circuit which can be operated at a low pressure and the high system traveling circuit charge circuit. The pressure loss is small and rational.
[0010]
[Structure, operation and effect of the invention according to claim 2]
[0011]
According to a second aspect of the present invention, there is provided a transmission structure for a combine according to the first aspect of the present invention, wherein a pair of the continuously variable transmissions of the traveling system is provided, and the left and right crawler traveling devices are independently driven for speed change. And, the working oil of the continuously variable transmission of the working system is stored in a dedicated hydraulic oil tank, and the drain circuits of both continuously variable transmissions of the traveling system are connected and connected. It is configured to drain oil to the hydraulic oil tank.
[0012]
According to the above configuration, the operating oil of the continuously variable transmission for the traveling system and the working system is a dedicated oil, so that clean operating oil can always be supplied to the continuously variable transmission. The step transmission can be operated smoothly.
In addition, since the drain oil of the pair of continuously variable transmissions of the traveling system is collected in one of the continuously variable transmissions and then drained to the hydraulic oil tank, the communication between the continuously variable transmission of the traveling system and the hydraulic oil tank is connected. Only one long drain pipe is required, and the drain circuit structure can be simplified compared to the case where both continuously variable transmissions of the traveling system and the hydraulic oil tank are connected independently by a drain pipe, which is also effective for cost reduction. It becomes.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 shows an overall side view of a self-contained combine according to the present invention. The basic configuration of this combine is not particularly different from the conventional one. A harvesting work unit 3 of a multi-row cutting specification is driven up and down as a harvesting work unit at a front part of a traveling machine body 2 having left and right crawler traveling devices 1. A control unit 6 equipped with an engine 5 below the driver's seat 4 is provided on the front right side of the traveling body 2 and a threshing device 7 is provided on the upper left side of the traveling body 2. A grain recovery tank 9 equipped with a screw-type unloader 8 is provided on the right side on the right side. The cutting unit 3 includes a plurality of raising devices 11, a clipper-type cutting device 12, a cutting grain culm, and a cutting unit frame 10 supported at the front of the traveling machine body 2 so as to be able to swing up and down around a fulcrum X. And a culm conveying device 14 for conveying the stalks toward the feed chain 13 of the threshing device 7, and the entire cutting work unit 3 is driven up and down by a hydraulic cylinder 15.
[0014]
The present invention is characterized by a transmission structure to the crawler traveling device 1 and the mowing work unit 3, and the detailed configuration thereof will be described below with reference to the drawings.
[0015]
FIG. 2 is a schematic configuration diagram of the transmission structure as viewed from the front of the fuselage, and FIG. 3 is a vertical sectional front view of the transmission case 20. In these figures, a pair of hydraulic continuously variable transmissions (HST) 21 that independently drive the left and right crawler traveling devices 1 are provided on one lateral side (right lateral side with respect to the fuselage) of the transmission case 20. 22 and a hydraulic continuously variable transmission (HST) 23 that drives the mowing unit 3. An input shaft 24 protrudes from the other lateral surface of the transmission case 20 (left lateral surface with respect to the fuselage), and the input shaft 24 and the engine 5 are belt-linked.
[0016]
Each of the continuously variable transmissions 21, 22, 23 has an axial plunger type variable displacement pump P (1), P (2), P (3) provided in a casing part integrally protruded from a right side wall of the transmission case 20. And fixed-capacity motors M (1), M (2), M (3), and port blocks 21c, 22c, 23c for hydraulic control are attached to the outer end of the case. The power that has entered the shaft 24 is transmitted from the counter gear G1 via the gears G2 and G3 to the pump shafts 21a and 22a of the continuously variable transmissions 21 and 22 of the traveling system, and also transmitted to the working system via the gear G4. The power is transmitted to the pump shaft 23a of the continuously variable transmission 23. Then, the swash plate angle of each of the variable displacement pumps P (1), P (2), and P (3) is independently changed to change the discharge direction and discharge amount of the pressure oil, so that each motor shaft 21b , 22b, and 23b can be switched between forward and reverse rotation directions and continuously variable transmission from zero speed.
[0017]
The transmission output from the motor shaft 21b of the continuously variable transmission 21 is transmitted to a first intermediate shaft (left) 26 via a gear type auxiliary transmission mechanism (left) 25, and then transmitted to a second intermediate shaft 27. The signal is transmitted to an axle (left) 29 via a gear reduction mechanism 28 that is loosely supported to drive the left crawler traveling device 1. The shift output from the motor shaft 22b of the continuously variable transmission 22 is transmitted to the first intermediate shaft (right) 31 via the gear type auxiliary transmission mechanism (right) 30 and then transmitted to the second intermediate shaft 27. It is transmitted to the axle (right) 33 via the gear reduction mechanism 32 that is loosely supported, and the right crawler traveling device 1 is driven.
[0018]
The subtransmission mechanism (left) 25 is loosely fitted to large and small gears G5, G6 driven by a motor shaft 21b, and a first intermediate shaft (left) 26 and a pair of gears meshed with the gears G5, G6. G7, G8, a transmission boss 35 spline-connected to the first intermediate shaft (left) 26 between the two gears G7, G8, and a shift sleeve 36 fitted outside the spline to the transmission boss 35, in a constant mesh form. It is configured to be able to shift in two stages of high and low. By shifting the shift sleeve 36 so as to mesh with the transmission boss 35 and the boss of the gear G8, “low speed” is obtained, and the shift sleeve 36 is shifted to the transmission boss 35 and the gear G8. By shifting to engage with the boss of G7, "high speed" is obtained, and the shift sleeve 36 is positioned on the transmission boss 35 so that the gears G7 and G8 engage with the boss. When you release the, so that it is possible to bring about the "neutral".
[0019]
The auxiliary transmission mechanism (right) 30 is also configured to have the same specifications as the auxiliary transmission mechanism (left) 25, large and small gears G9 and G10 driven by the motor shaft 22b, and a first intermediate shaft (right) 31. And a transmission boss 37 spline-connected to the first intermediate shaft (right) 31 between the pair of gears G11 and G12, and between the gears G11 and G12. The shift sleeve 38 is composed of a shift sleeve 38 fitted outside the spline on the boss 37, and the shift sleeve 38 is shifted so as to be engaged with the transmission boss 37 and the boss of the gear G12, so that "low speed" is obtained. "High speed" can be obtained by shifting the transmission boss 37 so as to mesh with the boss of the gear G11, and the shift sleeve 38 is positioned on the transmission boss 37 so that both gears G When you release the bite of the boss of the 1, G12, thereby making it possible to bring about the "neutral".
[0020]
As shown in FIG. 4, a pair of shift forks 40, 41 engaged with the shift sleeves 36, 38 of the two subtransmission mechanisms 25, 30 share a common shift shaft supported by the transmission case 20 so as to be movable left and right. The shift shaft 42 is connected to the transmission case 42 and is configured to be driven and shifted by a shift operation cylinder 43 mounted on the transmission case 20. The shift shaft 42 is selectively moved to three positions by the shift operation cylinder 43. As a result, both the sub transmission mechanisms 25 and 30 are switched to "low speed" for work traveling, "high speed" for traveling traveling, or "neutral".
[0021]
The shift operation cylinder 43 incorporates a piston rod 44 connected to a shift shaft 42 and a ring-shaped piston 45 fitted and supported on the piston rod 44. The piston rod 44 is moved to three positions by controlling a pressure oil supply pattern. It is possible to move out and on. That is, as shown in FIG. 7, the speed change operation cylinder 43 is connected to the pair of electromagnetic opening / closing valves 46, 47 and is connected to the switch mechanism SW for detecting the operation position of the auxiliary speed change lever 48 provided in the control section 6. Is controlled as follows based on the detection result of
[0022]
That is, when the auxiliary transmission lever 48 is at the neutral position, as shown in FIG. 7A, both the electromagnetic opening and closing valves 46 and 47 are both in the non-excited state, and both the electromagnetic opening and closing valves 46 and 47 are opened. As a result, pressure is applied to both the pressure oil ports a and b of the speed change operation cylinder 43, the piston rod 44 is retracted leftward in the figure by the pressure from the pressure oil port a, and the ring-shaped piston 45 is moved. The piston rod 44 is moved to the rightward limit in the drawing by the pressure from the pressure oil port b, and the piston rod 44 is held at the neutral position restricted by the ring-shaped piston 45 due to the difference in the pressure receiving area. When the sub shift lever 48 is operated to the "low speed" position, as shown in FIG. 7B, only one of the electromagnetic opening and closing valves 47 is energized and the hydraulic oil port a is communicated with the tank, and The piston rod 44 and the ring-shaped piston 45 are moved to the rightward limit in the drawing by the pressure from the oil port b, and the piston rod 44 advances to the "low speed" for work traveling. When the sub shift lever 48 is operated to the "high speed" position, as shown in FIG. 7 (c), only one of the electromagnetic opening and closing valves 46 is energized and energized, and the pressure oil port b is communicated with the tank. The piston rod 44 is moved to the leftward limit in the figure by the pressure from the oil port a, and the piston rod 44 retreats to "high speed" for traveling.
[0023]
Further, while the first intermediate shaft (left) 26 is supported across the left and right side walls of the transmission case 20, the first intermediate shaft (right) 31 is loosely supported by the first intermediate shaft (left) 26. A hydraulically operated multi-plate linear clutch 50 is interposed between the first intermediate shaft (left) 26 and the first intermediate shaft (right) 31. This straight clutch 50 is operated when the continuously variable transmission 21 for the left running and the continuously variable transmission 22 for the right running are operated in the same direction by the same amount, that is, in the straight running state, the clutch is engaged. The first intermediate shaft (left) 26 and the first intermediate shaft (right) 31 are integrated, and the axle (left) 29 and the axle are provided even if the output rotational speeds of the two continuously variable transmissions 21 and 22 are slightly different. (Right) 33 are driven at the same speed, and a straight traveling state is reliably achieved. Further, when the operation of the continuously variable transmission 21 for left traveling and the operation of the continuously variable transmission 22 for right traveling are not the same, that is, when the steering operation of the fuselage is being performed, the straight-ahead clutch 50 is disengaged. In addition, the operation of the straight traveling clutch 50 is controlled in conjunction with the steering operation.
[0024]
As shown in FIG. 4, the straight-running clutch 50 includes a large-diameter drum 51 fixed to a first intermediate shaft (left) 26 and a small-diameter drum 52 fixed to an end of the first intermediate shaft (right) 31. A friction plate 53 is interposed between the first intermediate shaft (left) 26 and the large-diameter drum 51, and a piston member 54 is provided between the oil passages c and d in the shaft. The clutch engagement / disengagement is performed by operating the clutch in reverse or forward, and an oil passage c for clutch engagement operation and an oil passage d for clutch disconnection operation are electromagnetically coupled via a rotary joint 55 attached to the shaft end. Opening / closing valves 56 and 57 (see FIG. 7) are connected.
[0025]
An inwardly expanding brake 58 is mounted on the end of the first intermediate shaft (left) 26, and a ring-shaped spring 59 that presses and urges the piston member 54 in the clutch engagement direction is provided on the rectilinear clutch 50. In a state where no pressure is applied to any of the oil passages c and d, the friction plate 53 is elastically pressed by a spring 59 and the straight-running clutch 50 is lightly connected. Is to be brought.
[0026]
Therefore, when switching from the straight running state to the turning state, or when returning from the turning state to the straight running state, the state in which the pressures do not rise in both oil passages c and d for an extremely short period of time appears, so that the left and right axles can be seen. 29 and 33 are lightly connected via the straight-ahead clutch 50, and the occurrence of a shock at the start of turning and a shock when returning from turning to straight running are suppressed.
[0027]
When the aircraft is parked, the engine 5 is stopped and the brake 58 is applied. However, when the engine 5 is stopped, no pressure is generated in the oil passages c and d. As a result, the straight traveling clutch 50 is in the clutch disengaged state, and the brake 58 acts only on the first intermediate shaft (left) 26, so that braking is applied only to the left crawler traveling device 1, but as described above, Since the first intermediate shaft (left) 26 and the first intermediate shaft (right) 31 are in an appropriate frictional transmission state via the spring 59, the braking action acting on the first intermediate shaft (left) 26 is the first intermediate shaft. (Right) 31 to some extent, and even if the vehicle is parked on a slope, the crawler traveling device 1 on the right side is in a free state, and it is possible to prevent the aircraft from being steered by its own weight. It has become.
[0028]
As shown in FIGS. 2 and 3, the shift output from the motor shaft 23b of the continuously variable transmission 23 of the working system is output from a working output shaft (PTO shaft) protruding from the left lateral side of the transmission case 20. The belt is transmitted to the cutting unit 3 via a belt tension type cutting clutch (not shown).
[0029]
FIG. 6 shows a hydraulic circuit related to the continuously variable transmissions 21, 22, and 23. The variable displacement pumps P (1) and P (2) of the continuously variable transmissions 21 and 22 of the traveling system are shifted by servo cylinders 63 and 64 that are operated and controlled by valve units 61 and 62. I have. Each of the valve units 61 and 62 is configured by combining a pair of normally closed electromagnetic opening and closing valves 65 and 66 and a pair of normally open electromagnetic opening and closing valves 67 and 68, respectively, as shown in FIG. Both valve units 61 and 6 are connected to the control device 70 and are controlled as described later.
[0030]
A charge pump CP (1) for supplying charge pressure oil to charge circuits e and f of the continuously variable transmissions 21 and 22 is mounted on a pump shaft 22a of one of the continuously variable transmissions 22 of the traveling system. A charge pump CP (2) for supplying charge pressure oil only to the charge circuit g of the continuously variable transmission 23 is mounted on the pump shaft 23a of the continuously variable transmission 23 of the working system. Here, the pressure oil from the charge pump CP (1) is also supplied to the valve units 61 and 62 for performing the speed change operation of the continuously variable transmissions 21 and 22 of the traveling system, that is, the hydraulic servo system which is loaded. Therefore, the discharge amount of the charge pump CP (1) is larger than that of the charge pump CP (2), and the charge circuits e, の of the traveling system are controlled by the charge relief valves CR (1), CR (2). The pressure of f is set to be higher than the pressure of the charging circuit g of the working system.
[0031]
The casings of the continuously variable transmissions 21 and 22 of the traveling system are connected to each other via a pipe h in the case, and the drain oil from the continuously variable transmission 21 in the left traveling system is supplied through the piping h in the case. After flowing into the casing of the stepped transmission 22, it is taken out via the external drain pipe i and collected in the dedicated hydraulic oil tank T via the oil cooler OC. The drain oil of the continuously variable transmission 23 of the working system is also collected in the hydraulic oil tank T via the external drain pipe j and the oil cooler OC.
[0032]
Next, the operation of the hydraulic servo system that operates the continuously variable transmissions 21 and 22 will be described. Since both hydraulic servo systems are configured to have the same specifications, the operation will be described using the hydraulic servo system of one of the continuously variable transmissions 21.
[0033]
A pair of return springs 69 are incorporated in the servo cylinder 63, and as shown in FIG. To return to the neutral position. Then, as shown in FIG. 8B, the one normally closed electromagnetic on / off valve 65 is energized and opened, and the one normally opened electromagnetic on / off valve 67 is energized and closed, so that the charge pump CP (1) is opened. ) Is supplied to the oil passage m (oil passage n in the servo cylinder 64), and the servo cylinder 63 operates from the neutral position to the forward side. Then, as shown in FIG. 8 (c), when the energization of the normally-closed electromagnetic on-off valve 65 is stopped after the servo cylinder 63 is operated to the forward side and returned to the closed position, the pressure oil outflows from the oil passage m. And the servo cylinder 63 is held at its forward position.
[0034]
Conversely, as shown in FIG. 8D, when the other normally-closed electromagnetic on-off valve 66 is energized and opened, and the other normally-opened electromagnetic on-off valve 68 is energized and closed, the charge pump CP ( The pressure oil from 1) is supplied to the oil passage q (the oil passage r in the servo cylinder 64), and the servo cylinder 63 operates from the neutral position to the reverse side. Then, as shown in FIG. 8 (e), after the servo cylinder 63 is operated in the reverse direction, the energization of the normally closed electromagnetic on-off valve 66 is stopped to return to the closed position. The outflow is prevented, and the servo cylinder 63 is held at the backward position.
[0035]
The valve units 61 and 62 are feedback-controlled in accordance with the operating positions of a single main shift lever 71 provided in the control unit 6 and swingable back and forth and a single steering lever 72 swingable left and right. The control will be described below.
[0036]
As shown in the block diagram of FIG. 9, the operation position of the main transmission lever 71 and the operation position of the steering lever 72 are detected by potentiometers PM (1) and PM (2), respectively. The operating positions (swash plate angles) of the variable displacement pumps P (1) and P (2) in the pumps 21 and 22 are detected by the potentiometers PM (3) and PM (4) and fed back to the controller 70. The target shift positions of the continuously variable transmissions 21 and 22 are determined based on the operation position of the main shift lever 71 and the operation position of the steering lever 72, and gear shifting by feedback control is performed toward the target shift position. Done. Note that, based on the steering state detected by the potentiometer PM (2), the energization control of the electromagnetic opening / closing valves 56 and 57 for controlling the straight traveling clutch is performed as described above.
[0037]
When the main shift lever 71 is operated forward or backward from neutral, the same target shift position corresponding to the operation amount is set in both the continuously variable transmissions 21 and 22, and the variable displacement pumps P (1) and P (2) Are operated forward or backward until both of them reach the target shift position, and are held at the target shift position. As a result, it is possible to perform a forward / reverse shift in a straight line. Further, as the steering lever 72 is operated from neutral to left (or right) from the straight traveling state of forward or reverse traveling, the continuously variable transmission 21 for left traveling (or the continuously variable transmission for right traveling). 22) The target shift position is corrected in the deceleration direction, deceleration control is performed toward the corrected target shift position, and the aircraft moves in the direction in which the steering lever 66 is operated in the direction corresponding to the lever operation amount. They are linked so that they can be turned by the turning function.
[0038]
For example, when the steering lever 72 is operated to the left while the vehicle is traveling straight ahead at the speed set by the main transmission lever 71, one of the continuously variable transmissions 21 is decelerated and the forward speed of the left crawler traveling device 1 is reduced. And the aircraft turns to the left due to the speed difference between the left and right. Then, when the steering lever 72 is largely operated to the left and one of the continuously variable transmissions 21 is decelerated to neutral, the left crawler traveling device 1, which is on the inside of the turn, stops, and a pivot turn is performed. . Further, when the steering lever 72 is further largely operated to the left, one of the continuously variable transmissions 21 is shifted to the reverse side beyond neutral, and the left crawler traveling device 1 on the inner side of the turning is reversely rotated. Is performed.
[0039]
However, the above-mentioned turning control is restrained by the running speed so as not to make a sharp turn during high-speed running. In other words, the rotational speeds of the axles 29 and 33 of the left and right crawler traveling devices 1 are detected by the rotation sensors S (1) and S (2), and the higher the traveling speed, the smaller the degree of deceleration of the crawler traveling device 1 inside the turn is reduced. FIG. 12 shows an example thereof. FIG. 12 shows the relationship between the inside / outside speed ratio R at which the turning operation is possible and the traveling speed V, and the hatched area in the figure is the region at the inside / outside speed ratio at which the turning operation is possible. Then, the limit line L set at the lower end of the area is the maximum internal / external speed ratio at which the turning operation can be performed.
[0040]
In other words, at the maximum speed Vmax, the speed inside the turn can be reduced to a maximum of only 1/3 of the speed outside the turn, and as the traveling speed V decreases, the speed inside the turn can be greatly reduced. If it is not within the speed range of Vm or less, the pivot turn and the super pivot turn cannot be performed. In addition, even when performing a spin turn, the speed inside the turn can be reduced to at most -−1 of the speed outside the turn.
[0041]
As shown in FIG. 9, the variable displacement pump P (3) of the continuously variable transmission 23 that drives the mowing work unit 3 is operated by an actuator 73 such as an electric motor. The continuously variable transmission 23 of the working system is automatically shifted in conjunction with the forward shift operation of the main shift lever 70 so that the relationship with the mowing work unit drive speed has, for example, the characteristic shown in FIG. It has become. The operation position (swash plate angle) of the variable displacement pump P (3) in the continuously variable transmission 23 is detected by the potentiometer PM (5) and fed back.
[0042]
[Another embodiment]
The present invention can be implemented in the following forms.
(1) The left and right crawler traveling devices 1 may be driven by a single hydraulic continuously variable transmission.
(2) The servo cylinder for operating the hydraulic type continuously variable transmission of the traveling system may be controlled by a servo valve, and the servo valve and the steering lever 72 may be mechanically linked.
[Brief description of the drawings]
FIG. 1 is an overall side view of a self-removing combine seen from the left side of the fuselage. FIG. 2 is a front view showing a schematic configuration of a transmission structure. FIG. 3 is a vertical front view of a transmission case. FIG. Front view [Fig. 5] Side view of the shaft arrangement of the transmission case viewed from the left side of the machine [Fig. 6] Hydraulic circuit diagram [Fig. 7] Hydraulic circuit diagram for operating the sub-transmission mechanism and the straight-line clutch [Fig. FIG. 9 is a block diagram showing a control system of the continuously variable transmission. FIG. 10 is a characteristic diagram showing a relationship between a traveling speed and a driving speed of a mowing work unit. FIG. 12 is a diagram showing a check characteristic in turning control.
1 Crawler traveling device 3 Harvesting work part (rearing part)
21 Hydraulic Stepless Transmission 22 Hydraulic Stepless Transmission 23 Hydraulic Stepless Transmission 63 Servo Cylinder 64 Servo Cylinder CP (1) Traveling Charge Pump CP (2) Working Charge Pump T Oil tank

Claims (2)

左右のクローラ走行装置を油圧式の無段変速装置によって駆動するよう構成するととともに、収穫作業部を別の油圧式の無段変速装置によって駆動するよう構成し、
走行系の前記無段変速装置のチャージポンプと、作業系の前記無段変速装置のチャージポンプとを別個に備え、
走行系の無段変速装置をサーボシリンダで変速操作するよう構成するとともに、このサーボシリンダを走行系の前記チャージポンプからの圧油で駆動するよう構成してあることを特徴とする収穫機の駆動構造。
The left and right crawler traveling devices are configured to be driven by a hydraulic continuously variable transmission, and the harvesting unit is configured to be driven by another hydraulic continuously variable transmission,
A charge pump for the continuously variable transmission of the traveling system and a charge pump for the continuously variable transmission of the working system are separately provided,
A drive of the harvester, wherein the continuously variable transmission of the traveling system is configured to perform a shift operation by a servo cylinder, and the servo cylinder is configured to be driven by pressure oil from the charge pump of the traveling system. Construction.
走行系の前記無段変速装置を一対備えて左右のクローラ走行装置を独立して変速駆動するよう構成し、走行系および作業系の前記無段変速装置の作動油を専用の作動油タンクに貯留し、走行系の両無段変速装置のドレン回路を連通接続するとともに、走行系の一方の無段変速装置から前記作動油タンクに排油するよう構成してある請求項1記載の収穫機の駆動構造。A pair of the continuously variable transmissions of the traveling system is provided so that the left and right crawler traveling devices are independently driven for speed change, and the hydraulic oil of the continuously variable transmission of the traveling system and the working system is stored in a dedicated hydraulic oil tank. The harvester according to claim 1, wherein the drain circuits of both continuously variable transmissions of the traveling system are connected to each other, and oil is discharged from one of the continuously variable transmissions of the traveling system to the hydraulic oil tank. Drive structure.
JP2002224979A 2002-08-01 2002-08-01 Driving structure for harvester Pending JP2004066859A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002224979A JP2004066859A (en) 2002-08-01 2002-08-01 Driving structure for harvester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002224979A JP2004066859A (en) 2002-08-01 2002-08-01 Driving structure for harvester

Publications (1)

Publication Number Publication Date
JP2004066859A true JP2004066859A (en) 2004-03-04

Family

ID=32012791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002224979A Pending JP2004066859A (en) 2002-08-01 2002-08-01 Driving structure for harvester

Country Status (1)

Country Link
JP (1) JP2004066859A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008118885A (en) * 2006-11-09 2008-05-29 Yanmar Co Ltd Hydraulic structure of combine harvester
JP2013512829A (en) * 2010-11-25 2013-04-18 金華職業技術学院 Spin turn traveling transmission for rice field combine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008118885A (en) * 2006-11-09 2008-05-29 Yanmar Co Ltd Hydraulic structure of combine harvester
JP2013512829A (en) * 2010-11-25 2013-04-18 金華職業技術学院 Spin turn traveling transmission for rice field combine

Similar Documents

Publication Publication Date Title
JP4638901B2 (en) Driving transmission structure of work vehicle
JP2004066859A (en) Driving structure for harvester
KR100506435B1 (en) Harvester
JP3784350B2 (en) Work machine traveling structure
JP3926222B2 (en) Combined transmission structure
JP4182336B2 (en) Hydraulic circuit for powered vehicle
JP2002192972A (en) Traveling transmission for working machine
JP3801543B2 (en) Combined transmission structure
JP3963834B2 (en) Power transmission structure of mowing harvester
JP2007297050A (en) Steering structure for working machine
JP3897702B2 (en) Driving transmission structure of work vehicle
JP4960935B2 (en) Driving transmission structure of work vehicle
JP2004074883A (en) Steering structure of operating machine
JP5108699B2 (en) Mowing harvester
JP2010071389A (en) Hydraulic circuit structure of working vehicle
JP4413169B2 (en) Agricultural vehicle power transmission
JP3765754B2 (en) Work machine operation structure
JP2000104819A (en) Running transmission of working vehicle
JP5543095B2 (en) Mowing harvester
JP2006042605A (en) Self-head-feeding combine harvester
JP2004090799A (en) Steering operation structure for working machine
JP5215196B2 (en) Work vehicle travel control device
JP2647777B2 (en) Steering operation structure of reaper and harvester
JP2001278093A (en) Transmission device of working machine
JP2008237144A (en) Device for changing traveling speed of implement

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040914

A131 Notification of reasons for refusal

Effective date: 20061026

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061222

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070327