JP3799599B2 - Welding apparatus and welding method - Google Patents

Welding apparatus and welding method Download PDF

Info

Publication number
JP3799599B2
JP3799599B2 JP2002011556A JP2002011556A JP3799599B2 JP 3799599 B2 JP3799599 B2 JP 3799599B2 JP 2002011556 A JP2002011556 A JP 2002011556A JP 2002011556 A JP2002011556 A JP 2002011556A JP 3799599 B2 JP3799599 B2 JP 3799599B2
Authority
JP
Japan
Prior art keywords
welding
cylindrical member
cylindrical
members
energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002011556A
Other languages
Japanese (ja)
Other versions
JP2002321077A (en
Inventor
秀彰 白井
浩二 村上
則男 田中
佳希 狩谷
浩行 仁科
隆幸 外尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2002011556A priority Critical patent/JP3799599B2/en
Priority to US10/081,239 priority patent/US6919528B2/en
Priority to DE10207946A priority patent/DE10207946B4/en
Publication of JP2002321077A publication Critical patent/JP2002321077A/en
Priority to US11/121,915 priority patent/US20050205535A1/en
Application granted granted Critical
Publication of JP3799599B2 publication Critical patent/JP3799599B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/067Dividing the beam into multiple beams, e.g. multifocusing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0604Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams
    • B23K26/0619Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams with spots located on opposed surfaces of the workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • B23K26/24Seam welding
    • B23K26/28Seam welding of curved planar seams
    • B23K26/282Seam welding of curved planar seams of tube sections

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Laser Beam Processing (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、2個以上の印加手段から加わるエネルギーにより、円筒部材の内側に他の円筒部材を挿入した状態で円筒部材同士を周方向に溶融して溶接する溶接装置および溶接方法に関する。
【0002】
【従来の技術】
従来、2種以上の円筒部材を全周にわたって溶融して溶接する場合、エネルギー源が生成したエネルギーを一方向から加え全周溶接することが一般的である。例えば図8に示すように、円筒状の外筒部材200の内側に外筒部材200と横断面が同形状の内筒部材201を圧入し、外筒部材200の外側に配置した光学ヘッド210からレーザ生成装置で生成したレーザ211を外筒部材200に向けて照射し、両筒部材を回転させながら外筒部材200と内筒部材201とを全周にわたって溶接することが考えられる。しかし、両筒部材の一箇所にだけエネルギーを加え全周にわたって溶接すると、溶融していない部分とエネルギーを加えられ溶融している部分と凝固し始めている部分との相対的な熱歪みバランスにより、図9の(A)に示す両筒部材の溶接前の形状220から、図9に(B)に示すようにエネルギーを加えている方向と直交する方向に両筒部材は変形し、両筒部材の溶接箇所の断面が楕円状に変形する。
【0003】
エネルギー源が生成したエネルギーを一方向から加え全周溶接をする場合に生じる溶接箇所の楕円化の過程を簡単に説明する。
溶接前の円筒部材の変形は、例えば円筒部材の内側に他の円筒部材を圧入して組み付けるときに生じる。そして、溶接による部材の膨張と収縮のバランスによりその変形が大きくなり、楕円形状に変形する。溶接前に図9の(A)に示すように変形がなく真円に近い形状であっても、溶接後に図9の(B)に示すように変形する。溶接後の形状221は、真円に近い溶接前の形状220から溶接開始位置のエネルギー印加方向と交差する方向に楕円状に変形する傾向がある。図9に示す一点鎖線の円は、溶接箇所の内径および外径を示している。
【0004】
溶接前の変形の有無に関わらず、溶接角度が90°の範囲では、加熱膨張により円筒部材が楕円化し、変形量が増加する。溶接が進行し溶接角度が180°の範囲では、溶接の進行に伴う膨張と、溶接前半部分での凝固開始により生じる収縮とにより楕円化が緩和され、変形が減少する。溶接が進み溶接角度が270°の範囲では、溶接の進行に伴う膨張と、溶接前半部分での凝固による収縮とが重なるため、楕円化による変形量が再び増加する。溶接が進み溶接角度が360°の範囲では、溶接の進行に伴う膨張と、溶接前半部分での凝固による収縮とにより楕円化が緩和され、変形量が減少する。溶接角度により変形量は増減するが、溶接することにより、円筒部材は楕円状に変形する。溶接角度を360°以上にし、同じ箇所を複数回溶接しても、溶接箇所は同じような変形過程をたどる。
金属シールを必要とする部材において溶接により形状が変形すると、シール性が悪化するという問題がある。
【0005】
【発明が解決しようとする課題】
一方向からエネルギーを加えることにより両筒部材が変形することを抑制するために、図10に示すように、180°向かい合う方向から両筒部材の2箇所にエネルギーを加えることが考えられる。しかしながら、外筒部材200および内筒部材201の径方向反対側にエネルギーが加わり変形しやすい箇所が2箇所になる。つまり、同一方向に楕円化を引き起こす要因が2箇所になるので、エネルギー印加方向と直交する方向に両筒部材が変形しやすくなる。したがって、図11の(B)に示す溶接後の形状231は、図11の(A)に示す真円に近い溶接前の形状230から溶接開始位置のエネルギー印加方向と交差する方向に楕円状に変形する。図11に示す一点鎖線の円は、変形している溶接箇所の内径および外径を示している。
【0006】
また、エネルギーが加わり溶融する箇所に異物が混入していると、エネルギーが加わることにより異物が蒸発し、溶接部分に気孔が生じることがある。溶接部分に気孔が生じると、溶接不良を招く恐れがある。
【0007】
本発明の目的は、円筒部材同士を周方向に溶融溶接する場合、円筒部材が変形することを防止し、かつ溶接前の溶接箇所の変形を矯正する溶接装置および溶接方法を提供することにある。
本発明の他の目的は、インジェクタの燃料漏れを低減する溶接装置を提供することにある。
本発明の他の目的は、溶接部分に気孔が発生することを防止する溶接方法を提供することにある。
【0008】
【課題を解決するための手段】
本発明の請求項1記載の溶接装置によると、エネルギー源で生成されたエネルギーを円筒部材に加える印加手段を円筒部材の周方向に2箇所配置し、円筒部材を中心として印加手段同士が形成する角度をθ°とすると、80≦θ≦100である。つまり、印加手段は円筒部材の周方向角度位置でほぼ90°離れた箇所を溶融し円筒部材同士を溶接する。円筒部材の周方向角度位置でほぼ90°離れた箇所が溶融するので、円筒部材が互いに直交する方向に変形しようとする。円筒部材の溶接箇所全体の変形が均等になるので、円筒部材の溶接部分の変形を防止できる。また、円筒部材の溶接箇所全体の変形が均等になるので、溶接前に変形していた溶接箇所の形状を矯正できる。例えば、溶接前に円筒部材の内側に他の円筒部材を挿入する作業が圧入である場合、圧入により変形した円筒部材の変形を溶接により矯正できる。
【0014】
本発明の請求項記載の溶接方法によると、請求項1に記載の溶接装置を用いて円筒部材同士を溶接するので、溶接による変形を防止し、かつ溶接前に変形していた溶接箇所の形状を矯正できる。
また、円筒部材の中心軸を回転軸とし、印加手段に対し円筒部材を相対回転させながら円筒部材同士を溶接し、周方向に隣接する印加手段の一方から加わるエネルギーにより溶融した円筒部材の箇所が、周方向に隣接する印加手段の他方から加わるエネルギーにより再び溶融する。隣接する一方の印加手段から加わるエネルギーにより溶融して溶接された円筒部材の溶接部分に気孔が発生しても、隣接する他方の印加手段から加わるエネルギーにより気孔が生じている溶接部分が再度溶融して溶接されるので、2度目の溶融で気孔が消失する。
【0015】
【発明の実施の形態】
以下、本発明の実施の形態を示す実施例を図に基づいて説明する。
本発明の一実施例による溶接装置を図1に示す。
外筒部材10および内筒部材11は横断面が同形状の円筒部材であり、外筒部材10の内側に内筒部材11が圧入されている。外筒部材10および内筒部材11として、例えばインジェクタのハウジングとノズルボディの組み合わせが考えられる。
【0016】
エネルギー源としてのレーザ生成装置1はYAGまたはCO2等の高エネルギーのレーザを生成する。分光器2はレーザ生成装置1で生成されたレーザを二方向に分光する。分光されたレーザは印加手段としての2個の光学ヘッド20から外筒部材10に向け照射される。光学ヘッド20は、外筒部材10および内筒部材11の外側に、両筒部材の中心軸と直交する平面上に、両筒部材の長手方向の中心軸を中心として周方向にほぼ90°離れて配置されている。光学ヘッド20から外筒部材10に向けて照射されるレーザ30は、両筒部材の中心軸と直交する平面に沿って照射される。光学ヘッド20から照射されるレーザ30により外筒部材10および内筒部材11は全周にわたり溶融溶接される。両筒部材を溶融溶接する高エネルギーとして、アーク放電または電子ビームを用いてもよい。
【0017】
外筒部材10と内筒部材11とを全周にわたって溶融溶接するとき、光学ヘッド20に対し被溶接部材である外筒部材10および内筒部材11を回転させる。可能であれば、両筒部材を中心として光学ヘッド20を回転してもよい。回転方向前方のレーザ30が溶融した部分を回転方向後方のレーザ30が再度溶融するように、少なくとも1回転以上外筒部材10および内筒部材11を回転させる。
【0018】
次に、本実施例の溶接装置による溶融溶接について説明する。図3および図4に示す一点鎖線の円は、変形している溶接箇所の内径および外径を示している。
外筒部材10の外側にほぼ90°間隔に光学ヘッド20を配置し、外筒部材10および内筒部材11の周方向にほぼ90°離れた2箇所を溶融して溶接する。一方向からだけレーザ30を加えて溶融溶接する場合、溶融していない部分と、レーザ30が照射され溶融している部分と、凝固し始めている部分との相対的な熱歪みバランスにより、両筒部材はレーザ30の照射方向と直交する方向に変形しようとする。
【0019】
本実施例では、外筒部材10のほぼ90°離れた箇所にレーザを照射するので、一方の光学ヘッド20から照射されるレーザ30により外筒部材10および内筒部材11が変形しようとする方向から他方の光学ヘッド20によりレーザ30が照射される。したがって、図2に示すように外筒部材10および内筒部材11が変形しようとする方向が直交し、全体として均等に変形する。
【0020】
図3の(A)に示すように両筒部材の加工精度が高く溶接前の形状50が真円に近い状態であれば、図3の(B)に示す溶接後の形状51も真円に近い形状を維持する。また、図4の(A)に示すよう、両筒部材の加工精度が低く溶接前の形状60が変形していても、両筒部材が直交する方向に均等に変形するので、図4の(B)に示す溶接後の形状61は変形を矯正され、真円に近い形状になる。
【0021】
外筒部材10および内筒部材11の溶接箇所に異物等が混入していると、一方の光学ヘッド20から照射されるレーザ30により異物を含む溶接部分が溶融するので、図5の(A)に示すように溶接箇所70の異物が混入していた部分が気孔71となって残る。この溶接箇所70に他方の光学ヘッド20からレーザ30が照射され再び溶接箇所70が溶融すると、気孔71が消失する。
【0022】
本実施例の溶接装置は、例えば図6に示すインジェクタ100の円筒部材同士を溶接するために用いられる。インジェクタ100を構成する部材のうち、弁ハウジング101、弁ボディ110、弁部材120、可動コア122および磁性部材135は、特許請求の範囲で述べた円筒部材に該当する。図6において、黒く塗りつぶした三角150は、円筒部材同士を全周溶接した箇所である。まず、インジェクタ100の構成について説明する。
【0023】
インジェクタ100のハウジング部材である弁ハウジング101は、図6において下方の燃料噴射側から第1磁性部102、磁気抵抗部としての非磁性部103、第2磁性部104の順で一体成形されている。第1磁性部102および第2磁性部104は磁性化されており、非磁性部103は弁ハウジング101の一部を加熱して非磁性化されている。第1磁性部102の燃料噴射側内周壁は、溶接により弁ボディ110の外周壁と結合している。弁ハウジング101は、弁部材120および可動コア122を往復移動可能に収容している。
カップ状の噴孔プレート112は弁ボディ110の外周壁に溶接により結合され、弁ボディ110と支持部材114との間に挟持されている。噴孔プレート112は薄板状に形成されており、中央部に複数の噴孔112aが形成されている。
【0024】
弁部材120は有底円筒状に形成されており、弁部材120の底側に当接部121が形成されている。当接部121は弁ボディ110の内周壁に形成されている弁座111に着座可能である。弁部材120の反噴孔側に円筒状の可動コア122が溶接により弁部材120に固定されている。当接部121の上流側に弁部材120の側壁を貫通する燃料孔120aが複数形成されている。弁部材120内に流入した燃料は、燃料孔120aを内から外に通過し、当接部121と弁座111とが形成するシート部に向かう。
【0025】
スプリング125の付勢力により当接部121が弁座111に着座すると、噴孔112aが閉塞され燃料噴射が遮断される。電磁駆動手段としてのコイル140に通電することにより可動コア122が固定コア130に吸引され可動コア122とともに弁部材120が弁座111から離座すると、噴孔112aが開放され燃料噴射が許容される。
【0026】
固定コア130は可動コア122の反噴孔側に設置され可動コア122と向き合っている。スプリング125は一方の端部をアジャスティングパイプ131に係止され、他方の端部を可動コア122に係止されている。スプリング125は弁座111に向け弁部材120を付勢している。
【0027】
磁性部材135、136は電磁駆動手段としてのコイル140の外周側に設置されている。磁性部材135、136は、第2磁性部104を介し、第1磁性部102と固定コア130とを磁気的に接続している。固定コア130、可動コア122、第1磁性部102、第2磁性部104および磁性部材135、136は磁気回路を構成している。
【0028】
第1磁性部102と弁ボディ110とは、第1磁性部102の内側に弁ボディ110を挿入し、図1に示す溶接装置により前述した溶接方法で溶接されている。磁性部材135と第1磁性部102とは、磁性部材135の内側に第1磁性部102を挿入し、図1に示す溶接装置により前述した溶接方法で溶接されている。可動コア122と弁部材120とは、可動コア122の内側に弁部材120を挿入し、図1に示す溶接装置により前述した溶接方法で溶接されている。
【0029】
インジェクタ100を構成する前述した各円筒部材の溶接箇所の真円度が向上するので、弁ボディ110と弁部材120との心ずれが低減するとともに、弁部材120が弁座111に着座しているときに弁座111と弁部材120との間に形成される隙間が小さくなる。弁座111と弁部材120とのシート性が向上するので、図7に示すように油密性が向上する。図7において油密は、弁座111に弁部材120が着座しているときに弁座111と弁部材120との間から漏れる燃料量を表している。
【0030】
以上説明した本発明の上記実施例では、印加手段として2個の光学ヘッド20を外筒部材10の外周に90°離れて配置した。光学ヘッド20同士が形成する角度は90°に限らず、両筒部材を中心として光学ヘッド20同士が形成する角度をθ°とすると80≦θ≦100であればよい。また、レーザ30は両筒部材の中心軸と直交する平面に沿って照射されたが、中心軸に対し斜めに照射してもよい。
【0031】
また光学ヘッド20の個数は2個に限らず、3個以上の光学ヘッド20を外筒部材10の外側にほぼ等角度間隔に配置し、外筒部材10と内筒部材11とを溶融溶接してもよい。3個以上印加手段を配置する場合、印加手段の個数をn、周方向に隣接している光学ヘッド20同士が両筒部材を中心として形成する角度をθ°とすると、(360/n)−10≦θ≦(360/n)+10を満たすように光学ヘッド20を配置する。ただし溶接装置の構成上、光学ヘッド20を配置できる個数は10個程度が限度である。
【図面の簡単な説明】
【図1】本発明の一実施例による溶接装置を示す模式的斜視図である。
【図2】本実施例による両筒部材の溶接による変形を説明する説明図である。
【図3】本実施例による加工精度の高い両筒部材の断面形状変化を示す模式的説明図であり、(A)は溶接前、(B)は溶接後の断面形状を示している。
【図4】本実施例による加工精度の低い両筒部材の断面形状変化を示す模式的説明図であり、(A)は溶接前、(B)は溶接後の断面形状を示している。
【図5】2度溶接による溶接部分の変化を示す模式的断面図である。
【図6】本実施例の溶接装置を用いて溶接するインジェクタを示す断面図である。
【図7】インジェクタを構成する円筒部材の真円度と油密との関係を示す特性図である。
【図8】従来例1による溶接装置を示す模式的斜視図である。
【図9】従来例1による両筒部材の断面形状変化を示す模式的説明図であり、(A)は溶接前、(B)は溶接後の断面形状を示している。
【図10】従来例2による溶接装置を示す模式的斜視図である。
【図11】従来例2による両筒部材の断面形状変化を示す模式的説明図であり、(A)は溶接前、(B)は溶接後の断面形状を示している。
【符号の説明】
1 レーザ生成装置(エネルギー源)
2 分光器
10 外筒部材(円筒部材)
11 内筒部材(円筒部材)
20 光学ヘッド(印加手段)
30 レーザ
100 インジェクタ
101 弁ハウジング(ハウジング部材、円筒部材)
110 弁ボディ(円筒部材)
120 弁部材(円筒部材)
122 可動コア(円筒部材)
135、136 磁性部材(円筒部材)
140 コイル(電磁駆動手段)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a welding apparatus and a welding method for melting and welding cylindrical members in a circumferential direction with another cylindrical member inserted inside the cylindrical member by energy applied from two or more applying means.
[0002]
[Prior art]
Conventionally, when two or more types of cylindrical members are melted and welded over the entire circumference, it is common to apply the energy generated by the energy source from one direction and perform the entire circumference welding. For example, as shown in FIG. 8, an inner cylinder member 201 having the same cross-sectional shape as the outer cylinder member 200 is press-fitted inside the cylindrical outer cylinder member 200, and the optical head 210 is disposed outside the outer cylinder member 200. It is conceivable to irradiate the outer cylinder member 200 with the laser 211 generated by the laser generator and weld the outer cylinder member 200 and the inner cylinder member 201 over the entire circumference while rotating both the cylinder members. However, when energy is applied to only one part of both tube members and welding is performed over the entire circumference, the relative thermal strain balance between the unmelted part, the part to which energy is applied and the part that has been melted, and the part that has started to solidify, Both cylindrical members are deformed from the shape 220 before welding of both cylindrical members shown in FIG. 9A in a direction orthogonal to the direction in which energy is applied as shown in FIG. 9B. The cross section of the welded portion of the wire is deformed into an ellipse.
[0003]
The process of ovalization of the welded portion that occurs when all-around welding is performed by adding the energy generated by the energy source from one direction will be briefly described.
The deformation of the cylindrical member before welding occurs, for example, when another cylindrical member is press-fitted and assembled inside the cylindrical member. And the deformation | transformation becomes large with the balance of the expansion | swelling and shrinkage | contraction of the member by welding, and it deform | transforms into an elliptical shape. Even if it is a shape close to a perfect circle without deformation as shown in FIG. 9A before welding, it is deformed as shown in FIG. 9B after welding. The shape 221 after welding tends to be deformed into an oval shape from the shape 220 before welding close to a perfect circle in a direction intersecting the energy application direction at the welding start position. The dashed-dotted circles shown in FIG. 9 indicate the inner diameter and outer diameter of the welded part.
[0004]
Regardless of the presence or absence of deformation before welding, when the welding angle is in the range of 90 °, the cylindrical member becomes elliptic due to thermal expansion, and the amount of deformation increases. In the range where the welding progresses and the welding angle is 180 °, the ovalization is alleviated and the deformation is reduced by the expansion accompanying the progress of the welding and the shrinkage caused by the start of solidification in the first half of the welding. When welding progresses and the welding angle is in the range of 270 °, the expansion accompanying the progress of welding overlaps with the shrinkage caused by solidification in the first half of the welding, so that the deformation due to ovalization increases again. When the welding progresses and the welding angle is in the range of 360 °, the ovalization is mitigated by the expansion accompanying the progress of the welding and the shrinkage due to the solidification in the first half of the welding, and the deformation amount is reduced. Although the amount of deformation increases or decreases depending on the welding angle, the cylindrical member is deformed into an elliptical shape by welding. Even if the welding angle is set to 360 ° or more and the same portion is welded a plurality of times, the welded portion follows the same deformation process.
If the shape of a member that requires a metal seal is deformed by welding, there is a problem that the sealing performance is deteriorated.
[0005]
[Problems to be solved by the invention]
In order to suppress the deformation of both cylinder members by applying energy from one direction, it is conceivable to apply energy to two locations of both cylinder members from a direction facing 180 ° as shown in FIG. However, there are two places where energy is applied to the outer side of the outer cylinder member 200 and the inner cylinder member 201 on the opposite side in the radial direction and are easily deformed. That is, since there are two factors that cause ovalization in the same direction, both the cylindrical members are easily deformed in a direction orthogonal to the energy application direction. Therefore, the shape 231 after welding shown in FIG. 11B is elliptical in the direction intersecting the energy application direction at the welding start position from the shape 230 before welding shown in FIG. Deform. The circles shown by alternate long and short dashed lines in FIG. 11 indicate the inner diameter and outer diameter of the welded portion being deformed.
[0006]
Moreover, when the foreign material is mixed in the location where energy is applied and melted, the foreign material may evaporate due to the applied energy, and pores may be formed in the welded portion. If pores occur in the welded portion, there is a risk of poor welding.
[0007]
An object of the present invention is to provide a welding apparatus and a welding method for preventing deformation of a cylindrical member and correcting deformation of a welded portion before welding when the cylindrical members are melt-welded in the circumferential direction. .
Another object of the present invention is to provide a welding apparatus that reduces fuel leakage from an injector.
Another object of the present invention is to provide a welding method for preventing the generation of pores in a welded portion.
[0008]
[Means for Solving the Problems]
According to the welding device of the first aspect of the present invention, the application means for applying the energy generated by the energy source to the cylindrical member is arranged at two locations in the circumferential direction of the cylindrical member, and the application means are formed around the cylindrical member. When the angle is θ °, 80 ≦ θ ≦ 100. In other words, the applying means melts the portions that are approximately 90 ° apart at the circumferential angular positions of the cylindrical members and welds the cylindrical members together. Since the portion 90 degrees apart at the circumferential angular position of the cylindrical member melts, the cylindrical member tends to deform in directions orthogonal to each other. Since deformation of the entire welded portion of the cylindrical member is uniform, deformation of the welded portion of the cylindrical member can be prevented. Moreover, since the deformation of the entire welded portion of the cylindrical member becomes uniform, the shape of the welded portion that has been deformed before welding can be corrected. For example, when the operation of inserting another cylindrical member inside the cylindrical member before welding is press-fitting, the deformation of the cylindrical member deformed by the press-fitting can be corrected by welding.
[0014]
According to the welding method of the second aspect of the present invention, since the cylindrical members are welded to each other using the welding apparatus according to the first aspect, deformation due to welding is prevented and the welded portion that has been deformed before welding is prevented. The shape can be corrected.
Also, the cylindrical member is welded by energy applied from one of the application means adjacent in the circumferential direction while the cylindrical member is welded relative to the application means while rotating the cylindrical member relative to the application means. Then, it is melted again by the energy applied from the other of the application means adjacent in the circumferential direction. Even if pores are generated in the welded portion of the cylindrical member that has been melted and welded by the energy applied from one adjacent application means, the welded portion in which the pores are generated by the energy applied from the other adjacent application means is melted again. The pores disappear by the second melting.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, examples showing embodiments of the present invention will be described with reference to the drawings.
A welding apparatus according to an embodiment of the present invention is shown in FIG.
The outer cylinder member 10 and the inner cylinder member 11 are cylindrical members having the same cross section, and the inner cylinder member 11 is press-fitted inside the outer cylinder member 10. As the outer cylinder member 10 and the inner cylinder member 11, for example, a combination of an injector housing and a nozzle body is conceivable.
[0016]
The laser generator 1 as an energy source generates a high energy laser such as YAG or CO 2 . The spectroscope 2 splits the laser generated by the laser generator 1 in two directions. The split laser is emitted toward the outer cylinder member 10 from the two optical heads 20 as application means. The optical head 20 is separated from the outer cylinder member 10 and the inner cylinder member 11 by approximately 90 ° in the circumferential direction on the plane orthogonal to the center axis of both cylinder members and centering on the center axis in the longitudinal direction of both cylinder members. Are arranged. The laser 30 irradiated from the optical head 20 toward the outer cylindrical member 10 is irradiated along a plane orthogonal to the central axis of both cylindrical members. The outer cylinder member 10 and the inner cylinder member 11 are melt-welded over the entire circumference by the laser 30 irradiated from the optical head 20. An arc discharge or an electron beam may be used as high energy for melting and welding both the cylindrical members.
[0017]
When the outer cylinder member 10 and the inner cylinder member 11 are melt welded over the entire circumference, the outer cylinder member 10 and the inner cylinder member 11 which are members to be welded are rotated with respect to the optical head 20. If possible, the optical head 20 may be rotated about both cylinder members. The outer cylinder member 10 and the inner cylinder member 11 are rotated at least once or more so that the laser 30 at the rear in the rotation direction is melted again at the portion where the laser 30 at the front in the rotation direction is melted.
[0018]
Next, the fusion welding by the welding apparatus of a present Example is demonstrated. 3 and 4 indicate the inner and outer diameters of the deformed welded part.
The optical heads 20 are disposed outside the outer cylinder member 10 at approximately 90 ° intervals, and two portions of the outer cylinder member 10 and the inner cylinder member 11 that are approximately 90 ° apart in the circumferential direction are melted and welded. When melt welding is performed by applying the laser 30 only from one direction, both cylinders are caused by the relative thermal strain balance between the unmelted portion, the portion irradiated with the laser 30 and melted, and the portion that has started to solidify. The member tends to deform in a direction perpendicular to the irradiation direction of the laser 30.
[0019]
In the present embodiment, the laser beam is applied to a portion of the outer cylinder member 10 that is approximately 90 ° apart, so that the outer cylinder member 10 and the inner cylinder member 11 are deformed by the laser 30 irradiated from one optical head 20. The laser 30 is irradiated by the other optical head 20. Accordingly, as shown in FIG. 2, the directions in which the outer cylinder member 10 and the inner cylinder member 11 are to be deformed are orthogonal to each other, and are deformed uniformly as a whole.
[0020]
As shown in FIG. 3A, if the processing accuracy of both cylinder members is high and the shape 50 before welding is close to a perfect circle, the shape 51 after welding shown in FIG. 3B is also a perfect circle. Keep close shape. Moreover, as shown to (A) of FIG. 4, even if the process precision of both cylinder members is low and the shape 60 before welding deform | transforms, since both cylinder members deform | transform equally in the orthogonal direction, ( The welded shape 61 shown in B) is corrected for deformation and becomes a shape close to a perfect circle.
[0021]
If foreign matter or the like is mixed in the welded portion of the outer cylindrical member 10 and the inner cylindrical member 11, the welded portion containing the foreign matter is melted by the laser 30 irradiated from one optical head 20, so that FIG. As shown in FIG. 2, the portion where the foreign matter in the welded portion 70 is mixed remains as a pore 71. When this welding spot 70 is irradiated with the laser 30 from the other optical head 20 and the welding spot 70 is melted again, the pores 71 disappear.
[0022]
The welding apparatus of the present embodiment is used, for example, to weld the cylindrical members of the injector 100 shown in FIG. Among the members constituting the injector 100, the valve housing 101, the valve body 110, the valve member 120, the movable core 122, and the magnetic member 135 correspond to the cylindrical members described in the claims. In FIG. 6, black triangles 150 are portions where the cylindrical members are welded all around. First, the configuration of the injector 100 will be described.
[0023]
A valve housing 101 which is a housing member of the injector 100 is integrally formed in order of the first magnetic portion 102, the nonmagnetic portion 103 as the magnetic resistance portion, and the second magnetic portion 104 from the lower fuel injection side in FIG. . The first magnetic part 102 and the second magnetic part 104 are magnetized, and the nonmagnetic part 103 is made nonmagnetic by heating a part of the valve housing 101. The fuel injection side inner peripheral wall of the first magnetic part 102 is coupled to the outer peripheral wall of the valve body 110 by welding. The valve housing 101 accommodates the valve member 120 and the movable core 122 so as to be capable of reciprocating.
The cup-shaped nozzle hole plate 112 is joined to the outer peripheral wall of the valve body 110 by welding, and is sandwiched between the valve body 110 and the support member 114. The nozzle hole plate 112 is formed in a thin plate shape, and a plurality of nozzle holes 112a are formed at the center.
[0024]
The valve member 120 is formed in a bottomed cylindrical shape, and a contact portion 121 is formed on the bottom side of the valve member 120. The contact portion 121 can be seated on a valve seat 111 formed on the inner peripheral wall of the valve body 110. A cylindrical movable core 122 is fixed to the valve member 120 on the side opposite to the injection hole of the valve member 120 by welding. A plurality of fuel holes 120 a penetrating the side wall of the valve member 120 are formed on the upstream side of the contact portion 121. The fuel that has flowed into the valve member 120 passes from the inside to the outside through the fuel hole 120a and travels toward the seat portion formed by the contact portion 121 and the valve seat 111.
[0025]
When the contact portion 121 is seated on the valve seat 111 by the biasing force of the spring 125, the injection hole 112a is closed and the fuel injection is shut off. When the movable core 122 is attracted to the fixed core 130 by energizing the coil 140 as electromagnetic driving means and the valve member 120 is separated from the valve seat 111 together with the movable core 122, the injection hole 112a is opened and fuel injection is allowed. .
[0026]
The fixed core 130 is installed on the side opposite to the injection hole of the movable core 122 and faces the movable core 122. One end of the spring 125 is locked to the adjusting pipe 131, and the other end is locked to the movable core 122. The spring 125 urges the valve member 120 toward the valve seat 111.
[0027]
The magnetic members 135 and 136 are installed on the outer peripheral side of the coil 140 as electromagnetic driving means. The magnetic members 135 and 136 magnetically connect the first magnetic part 102 and the fixed core 130 via the second magnetic part 104. The fixed core 130, the movable core 122, the first magnetic unit 102, the second magnetic unit 104, and the magnetic members 135 and 136 constitute a magnetic circuit.
[0028]
The first magnetic part 102 and the valve body 110 are welded by the above-described welding method using the welding apparatus shown in FIG. 1 with the valve body 110 inserted inside the first magnetic part 102. The magnetic member 135 and the first magnetic part 102 are welded by the above-described welding method using the welding apparatus shown in FIG. 1 with the first magnetic part 102 inserted inside the magnetic member 135. The movable core 122 and the valve member 120 are welded by the welding method described above by inserting the valve member 120 inside the movable core 122 and using the welding apparatus shown in FIG.
[0029]
Since the roundness of the welded portion of each cylindrical member constituting the injector 100 is improved, misalignment between the valve body 110 and the valve member 120 is reduced, and the valve member 120 is seated on the valve seat 111. Sometimes the gap formed between the valve seat 111 and the valve member 120 is reduced. Since the seat property of the valve seat 111 and the valve member 120 is improved, the oil tightness is improved as shown in FIG. In FIG. 7, oil tightness represents the amount of fuel leaking from between the valve seat 111 and the valve member 120 when the valve member 120 is seated on the valve seat 111.
[0030]
In the above-described embodiment of the present invention described above, the two optical heads 20 are arranged on the outer periphery of the outer cylindrical member 10 as 90 degrees apart as application means. The angle formed between the optical heads 20 is not limited to 90 °, and the angle formed between the optical heads 20 around both cylindrical members may be 80 ≦ θ ≦ 100. Moreover, although the laser 30 was irradiated along the plane orthogonal to the central axis of both cylinder members, you may irradiate diagonally with respect to the central axis.
[0031]
The number of optical heads 20 is not limited to two, but three or more optical heads 20 are arranged outside the outer cylindrical member 10 at substantially equal angular intervals, and the outer cylindrical member 10 and the inner cylindrical member 11 are melt welded. May be. When three or more applying means are arranged, assuming that the number of applying means is n and the angle formed by the optical heads 20 adjacent to each other in the circumferential direction around the cylindrical members is θ °, (360 / n) − The optical head 20 is disposed so as to satisfy 10 ≦ θ ≦ (360 / n) +10. However, the number of optical heads 20 that can be arranged is limited to about 10 due to the configuration of the welding apparatus.
[Brief description of the drawings]
FIG. 1 is a schematic perspective view showing a welding apparatus according to an embodiment of the present invention.
FIG. 2 is an explanatory view for explaining deformation due to welding of both cylindrical members according to the present embodiment.
FIGS. 3A and 3B are schematic explanatory views showing changes in cross-sectional shape of both cylindrical members with high processing accuracy according to the present embodiment, where FIG. 3A shows a cross-sectional shape before welding and FIG. 3B shows a cross-sectional shape after welding.
4A and 4B are schematic explanatory views showing changes in cross-sectional shape of both cylindrical members with low processing accuracy according to the present embodiment, where FIG. 4A shows a cross-sectional shape before welding, and FIG. 4B shows a cross-sectional shape after welding.
FIG. 5 is a schematic cross-sectional view showing a change in a welded part by two-time welding.
FIG. 6 is a cross-sectional view showing an injector for welding using the welding apparatus of the present embodiment.
FIG. 7 is a characteristic diagram showing the relationship between roundness and oil tightness of a cylindrical member constituting the injector.
FIG. 8 is a schematic perspective view showing a welding apparatus according to Conventional Example 1;
FIGS. 9A and 9B are schematic explanatory views showing changes in the cross-sectional shape of both cylindrical members according to Conventional Example 1, FIG. 9A shows a cross-sectional shape before welding, and FIG. 9B shows a cross-sectional shape after welding.
10 is a schematic perspective view showing a welding apparatus according to Conventional Example 2. FIG.
11A and 11B are schematic explanatory views showing changes in cross-sectional shapes of both cylindrical members according to Conventional Example 2, wherein FIG. 11A shows a cross-sectional shape before welding and FIG. 11B shows a cross-sectional shape after welding.
[Explanation of symbols]
1 Laser generator (energy source)
2 Spectrometer 10 Outer cylinder member (cylindrical member)
11 Inner cylinder member (cylindrical member)
20 Optical head (applying means)
30 Laser 100 Injector 101 Valve housing (housing member, cylindrical member)
110 Valve body (cylindrical member)
120 Valve member (cylindrical member)
122 Movable core (cylindrical member)
135, 136 Magnetic member (cylindrical member)
140 coil (electromagnetic drive means)

Claims (2)

円筒部材の内側に他の円筒部材を挿入し、円筒部材同士を周方向に溶融して溶接する溶接装置であって、
円筒部材同士を溶融して溶接するためのエネルギーを生成するエネルギー源と、前記エネルギー源で生成されたエネルギーを前記円筒部材に加える印加手段とを備え、
前記印加手段は前記円筒部材の中心軸と直交する平面上の周方向に2箇所配置され、前記円筒部材の周方向に離れた2箇所を溶融して溶接する前記印加手段同士が前記円筒部材を中心として形成する角度をθ°とすると、80≦θ≦100であることを特徴とする溶接装置。
It is a welding apparatus that inserts another cylindrical member inside the cylindrical member and melts and welds the cylindrical members in the circumferential direction,
An energy source that generates energy for melting and welding the cylindrical members, and an application unit that applies energy generated by the energy source to the cylindrical member;
The application means is arranged at two places in a circumferential direction on a plane orthogonal to the central axis of the cylindrical member, and the application means for melting and welding two places separated in the circumferential direction of the cylindrical member attach the cylindrical member to each other. A welding apparatus, wherein an angle formed as a center is θ °, and 80 ≦ θ ≦ 100.
請求項1に記載の溶接装置を用いて溶接する溶接方法であって、A welding method for welding using the welding apparatus according to claim 1,
前記円筒部材の中心軸を回転軸とし、前記印加手段に対し前記円筒部材を相対回転させながら前記円筒部材同士を溶接し、前記印加手段の一方から加わるエネルギーにより溶融した前記円筒部材の箇所が、前記印加手段の他方から加わるエネルギーにより再び溶融することを特徴とする溶接方法。With the central axis of the cylindrical member as the rotation axis, the cylindrical members are welded together while rotating the cylindrical member relative to the application means, and the location of the cylindrical member melted by energy applied from one of the application means is A welding method characterized by melting again by energy applied from the other of the application means.
JP2002011556A 2001-02-26 2002-01-21 Welding apparatus and welding method Expired - Lifetime JP3799599B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2002011556A JP3799599B2 (en) 2001-02-26 2002-01-21 Welding apparatus and welding method
US10/081,239 US6919528B2 (en) 2001-02-26 2002-02-25 Welding machine and welding method for energy welding of cylinder members
DE10207946A DE10207946B4 (en) 2001-02-26 2002-02-25 welding processes
US11/121,915 US20050205535A1 (en) 2001-02-26 2005-05-05 Welding machine and welding method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001050015 2001-02-26
JP2001-50015 2001-02-26
JP2002011556A JP3799599B2 (en) 2001-02-26 2002-01-21 Welding apparatus and welding method

Publications (2)

Publication Number Publication Date
JP2002321077A JP2002321077A (en) 2002-11-05
JP3799599B2 true JP3799599B2 (en) 2006-07-19

Family

ID=26610079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002011556A Expired - Lifetime JP3799599B2 (en) 2001-02-26 2002-01-21 Welding apparatus and welding method

Country Status (3)

Country Link
US (2) US6919528B2 (en)
JP (1) JP3799599B2 (en)
DE (1) DE10207946B4 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019195839A (en) * 2018-05-11 2019-11-14 株式会社デンソー Welding method and welding device

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4176408B2 (en) 2002-07-25 2008-11-05 株式会社アドヴィックス Welding method and cylindrical structure and gear pump using the welding method
US7930825B2 (en) * 2005-06-16 2011-04-26 Continental Automotive Systems Us, Inc. Blowout resistant weld method for laser welds for press-fit parts
DE102007059262B4 (en) 2007-12-10 2015-04-30 Robert Bosch Gmbh Laser peripheral welding process and fuel injection valve
DE102008010976A1 (en) * 2008-02-25 2009-08-27 Robert Bosch Gmbh Method for straightening an elongated component
US20090224079A1 (en) * 2008-03-04 2009-09-10 Caterpillar Inc. Fuel injector, valve body remanufacturing process and machine component manufacturing method
JP4676512B2 (en) * 2008-05-27 2011-04-27 日立オートモティブシステムズ株式会社 Welding method and fuel injection valve
DE102009001986A1 (en) * 2009-03-30 2010-10-07 Robert Bosch Gmbh Welding process, welding device and composite part
WO2011005586A2 (en) * 2009-06-24 2011-01-13 Buttress David G Apparatus and method for joining solar receiver tubes
JP5556205B2 (en) * 2010-02-03 2014-07-23 株式会社Ihi Welding apparatus and welding method
WO2017050521A1 (en) * 2015-09-21 2017-03-30 Continental Automotive Gmbh Valve needle for a fluid injection valve, fluid injection valve and method for manufacturing a valve needle
US10794523B2 (en) * 2015-12-14 2020-10-06 Wilmarc Holdings, Llc Laser induced sealing of concentrically layered materials

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4176269A (en) * 1976-02-03 1979-11-27 Merrick Welding International, Inc. Clamping apparatus for welding circumferential articles
JPS5464046A (en) 1977-11-01 1979-05-23 Babcock Hitachi Kk Two electrode welding of pipe
US4335906A (en) * 1979-07-05 1982-06-22 Parker-Hannifin Corporation Weldable joint
JPS5633187A (en) * 1979-08-28 1981-04-03 Toshiba Corp Welding method for fixing tube using high-energy density heat source
FR2571995B1 (en) * 1984-10-22 1986-12-26 Soudure Autogene Francaise MACHINE FOR THE EXTERNAL WELDING OF TUBES END TO END, BY ELECTRON BEAM
DE4003229A1 (en) * 1990-02-03 1991-08-08 Bosch Gmbh Robert ELECTROMAGNETICALLY ACTUABLE VALVE
DE4003227C1 (en) * 1990-02-03 1991-01-03 Robert Bosch Gmbh, 7000 Stuttgart, De EM fuel injection valve for IC engine - has two overlapping parts welded together as narrowed section of one part
DE4109868A1 (en) * 1991-03-26 1992-10-01 Bosch Gmbh Robert ADJUSTING SOCKET FOR AN ELECTROMAGNETICALLY ACTUABLE VALVE AND METHOD FOR THE PRODUCTION THEREOF
DE4125155C1 (en) * 1991-07-30 1993-02-04 Robert Bosch Gmbh, 7000 Stuttgart, De
US5347101A (en) * 1994-02-07 1994-09-13 Mcdermott International, Inc. Automatic tracking system for pipeline welding
JPH08235517A (en) * 1994-05-10 1996-09-13 Mitsubishi Electric Corp Magnetic head and its production
DE4420176A1 (en) * 1994-06-09 1995-12-14 Bosch Gmbh Robert Valve needle for an electromagnetically actuated valve
JPH10272586A (en) * 1997-03-31 1998-10-13 Nippon Steel Corp Method and device for laser butt welding of metallic tube
JP3849288B2 (en) * 1998-02-27 2006-11-22 株式会社デンソー Welded lap joint and manufacturing method thereof
US6221505B1 (en) * 1997-10-03 2001-04-24 Denso, Corporation Lap joint welding arrangement and a related welding method for forming the same
JP3750313B2 (en) * 1997-10-03 2006-03-01 株式会社デンソー Welded structure
JP3941269B2 (en) * 1997-12-11 2007-07-04 株式会社デンソー Laser welding structure and method of metal member, and fuel injection valve
DE19932763A1 (en) * 1999-07-14 2001-01-18 Bosch Gmbh Robert Fuel injector
AU2001247240A1 (en) * 2000-03-01 2001-09-12 Heraeus Amersil, Inc. Method, apparatus, and article of manufacture for determining an amount of energy needed to bring a quartz workpiece to a fusion weldable condition
US6403916B1 (en) * 2000-05-12 2002-06-11 Isostar International, Inc. System and automated method for producing welded end closures in thin-walled metal tubes
JP4158187B2 (en) * 2000-05-12 2008-10-01 株式会社デンソー Fuel injection valve
US6889919B2 (en) * 2002-01-18 2005-05-10 Denso Corporation Fuel injection device having stationary core and movable core

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019195839A (en) * 2018-05-11 2019-11-14 株式会社デンソー Welding method and welding device
WO2019216041A1 (en) * 2018-05-11 2019-11-14 株式会社デンソー Welding method and welding device

Also Published As

Publication number Publication date
DE10207946A1 (en) 2002-09-05
US6919528B2 (en) 2005-07-19
DE10207946B4 (en) 2008-08-07
US20020117561A1 (en) 2002-08-29
US20050205535A1 (en) 2005-09-22
JP2002321077A (en) 2002-11-05

Similar Documents

Publication Publication Date Title
US20050205535A1 (en) Welding machine and welding method
US7617605B2 (en) Component geometry and method for blowout resistant welds
US7930825B2 (en) Blowout resistant weld method for laser welds for press-fit parts
WO2014141757A1 (en) Electromagnetic fuel injection valve
JP2005153015A (en) Method of manufacturing container by laser welding
WO2012077405A1 (en) Hollow engine valve welding method
JP3528746B2 (en) Welding method and manufacturing method of combination member and manufacturing method of valve structure
KR101563519B1 (en) Method for aligning an elongated component
JP3803539B2 (en) Electromagnetic fuel injection valve
JP2001087882A (en) Beam-welding method of two members having different hardnesses
US10107243B2 (en) Fuel injection valve
US10646955B2 (en) Valve needle for a fluid injection valve
JPH0996264A (en) Solenoid fuel injection valve and manufacture thereof
US11865640B2 (en) Concentric cylindrical member pair welding method and welding device thereof
JP4221542B2 (en) Laser welding method and laser welding apparatus
JP4478907B2 (en) Manufacturing method of valve device
JP4111056B2 (en) Manufacturing method of valve device
JP2006118415A (en) Method for manufacturing electromagnetic fuel injection valve
JP7269155B2 (en) electromagnetic fuel injection valve
JP2623650B2 (en) How to bathe a thin pipe
JP6234839B2 (en) Delivery pipe
JPS6060497A (en) Airtight securing process of dual tube plate type heat exchanger
WO2016175184A1 (en) Butterfly valve and manufacturing method therefor
JP6797697B2 (en) Manufacturing method of fuel injection valve and fuel injection valve
JP2674138B2 (en) Method for manufacturing frame for rotating electric machine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060416

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3799599

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090512

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130512

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140512

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term