JP3795721B2 - Small automatic repetitive one side shear test equipment - Google Patents

Small automatic repetitive one side shear test equipment Download PDF

Info

Publication number
JP3795721B2
JP3795721B2 JP2000009637A JP2000009637A JP3795721B2 JP 3795721 B2 JP3795721 B2 JP 3795721B2 JP 2000009637 A JP2000009637 A JP 2000009637A JP 2000009637 A JP2000009637 A JP 2000009637A JP 3795721 B2 JP3795721 B2 JP 3795721B2
Authority
JP
Japan
Prior art keywords
shear
force
specimen
vertical
load cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000009637A
Other languages
Japanese (ja)
Other versions
JP2001201446A (en
Inventor
正文 大河原
利之 三田地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2000009637A priority Critical patent/JP3795721B2/en
Publication of JP2001201446A publication Critical patent/JP2001201446A/en
Application granted granted Critical
Publication of JP3795721B2 publication Critical patent/JP3795721B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、地すべりの安定解析に用いる地盤材料の物性値である「せん断力」を求めるための小型自動繰り返し一面せん断試験装置に関するものである。
【0002】
【従来の技術】
土質試験において、せん断力を求めるためのせん断試験として、三軸試験、リングせん断試験、繰り返し一面せん断試験等が実施されている。このうち繰り返し一面せん断試験は、地盤材料のせん断強さを求めるための試験で、不攪乱試料の試験が可能であり、かつ試験が簡便なため実務性に優れている。 この試験では、せん断中にせん断箱が相対変位する特徴をもっており、そのため、せん断中にせん断箱と試料(供試体)のせん断面とが接触し、得られた値は求めるべき供試体せん断面間のせん断力(ピーク強度、完全軟化強度の補正)と摩擦力の合力となっている。また、大変位を要する残留強度を求めるときは、せん断箱と供試体の接触時間が長くなるため、せん断箱のエッジ効果により供試体が鰹節のように削られせん断箱隙間に挟まる。この試料漏れによる摩擦は、求めるべき残留強度に影響を及ぼしていることが指摘されている。
【0003】
このため、従来は、せん断箱のせん断面部分にグリースを塗ることで、せん断箱一供試体せん断面間の摩擦とせん断箱隙間から漏れた試料の摩擦を軽減していた。しかしこの方法では摩擦を軽減することはできても完全に取り除くことができない。また、摩擦軽減用グリースは、繰り返しせん断回数の増加に伴い次第にはがれるため、摩擦軽減効果が徐々に得られなくなる問題がある。さらに従来垂直力の載荷は、“重り”あるいは“ベロフラムシリンダー(空気圧)”を用いた応力制御方式が一般的で、重りは試験時の制御が出来ないこと、ベロフラムシリンダーは、試験開始時の供試体と垂直荷重載荷板との密着に熟練が必要で、空気圧を発生させるためのコンプレッサーが新たに必要となる等の問題がある。
【0004】
【発明が解決しようとする課題】
そこで、本発明は、上下せん断箱間に小型高剛性ロードセルを内蔵することにより、せん断箱−供試体せん断面間あるいは試料漏れによる摩擦力を測定し、水平ロッドに設置された水平ロードセルにより測定された全体のせん断力から測定された摩擦力を差し引き、これにより測定誤差である摩擦力の影響を完全に取り除くことができる小型自動繰り返し一面せん断試験装置を提供し、上記問題点を解決せんとするものである。また、実用範囲(累積水平変位量500mm程度)で摩擦軽減効果の低下しないテフロン加工を施すことにより、繰り返し回数の増加による摩擦軽減効果の減少を防止できる小型自動繰り返し一面せん断試験装置を提供することを目的とする。さらに、 垂直力の載荷をコンピュータにより制御されるデジタルサーボモータを使用することで、従来のようなコンプレッサーを不要とし、試験開始時の供試体と垂直荷重載荷板との密着に熟練が不要、簡単に載荷板の固定を可能とし定体積条件の設定が簡便、さらにはデジタルサーボモータによるロッドの回転数から変位量を求めているので垂直変位測定用の変位計が不要な小型自動繰り返し一面せん断試験装置を提供することを目的とする。
【0005】
【課題を解決するための手段】
このため本発明が採用した技術解決手段は、
水平面内に於いて互いに異なる方向に変位可能な上下せん断箱と、夫々のせん断箱内に対向して4カ所に配置した高剛性ロードセルと、上せん断箱と下せん断箱間に配置された供試体に対してせん断力を付与することができるせん断力付与手段と、前記供試体に発生するせん断力を測定する水平ロードセルと、前記供試体に対して垂直力を付与する垂直力付与手段と、前記供試体に発生する垂直力を測定する垂直ロードセルとを備え、前記水平ロードセルにより測定された全体のせん断力から、前記4ケ所に配置した高剛性ロードセルにより測定された摩擦力を減じることで実際のせん断力を求めるようにしたことを特徴とする小型自動繰り返し一面せん断試験装置である。
また、前記せん断力付与手段は可変モータで構成し、前記垂直力付与手段はデジタルサーボモータで構成してなることを特徴とする小型自動繰り返し一面せん断試験装置である。
また、前記夫々の丸形せん断箱の対向する面にテフロン加工をしてあることを特徴とする小型自動繰り返し一面せん断試験装置である。
【0006】
【実施の形態】
以下、本発明に係る小型の繰り返し一面せん断試験の構成を図面を参照して説明する。図1は実施形態としての繰り返し一面せん断試験機の構成図である。図において、1はコントロールボックス、2はパーソナルコンピュータ、3はA/D変換器、4はロードセルコンバーター、5はデジタルサーボモータ、6は可変モータ、7はせん断力測定用の水平ロードセル、8はスペーサ、9はせん断箱、10は水平変位測定用変位計、11は自動停止装置、12は垂直力を測定する垂直ロードセルであり、これらによって繰り返し一面せん断試験機が構成されている。
【0007】
前記せん断箱9は、角形、丸形の2種類の供試体断面形状での試験が可能なように、角形、丸形のせん断箱として構成されている。角形せん断箱の構成を説明すると、図2は上下せん断箱がずれた状態のせん断箱側断面図(ピーク強度と完全軟化強度測定時)、図3は上下せん断箱が重なっている状態のせん断箱側断面図(残留強度測定時)、図4は図2中のA−A矢視図、図5R>5は図2中のB−B矢視図である。 なお、図2、図3はせん断箱がどのような位置にあるときに「供試体−せん断箱との摩擦」を、また「試料もれによる摩擦」を測定しているのかを説明している図であり、どちらも垂直力が付加されている。上下のせん断箱箱9A、9Bはそれぞれ図に示すようにその中央部に供試体収納スペース9Cを有しており、この収納スペース9Cの4箇所に図4R>4、5に示すように対向して小型の高剛性ロードセル22が内蔵されており、このような構成によってせん断箱が相対変位しているときのせん断箱と供試体せん断面間の摩擦力と試料漏れによる摩擦力とを測定することができる。この高剛性ロードセル22によって測定される摩擦力は、図2に示すようにせん断箱が相対変位しているときはせん断箱と供試体せん断面間の摩擦力であり、図3R>3に示すように相対変位ゼロのときは上下せん断箱の隙間から漏れ出した試料とせん断箱との摩擦力である。前者はピーク強度と完全軟化強度の補正に、後者は残留強度の補正に利用される。
【0008】
また、丸形せん断箱は、図6に示すように角形せん断箱と同様に上下せん断箱9A、9Bからなりそれぞれのせん断箱には所定の直径からなる供試体収納スペース9Cが形成されており、さらに、せん断箱同志の対向面には、せん断箱と供試体せん断面間の摩擦を軽減するために、せん断面部分にテフロン加工が施されている。また、含すべり面試料の試験を実施するために、すべり面とせん断箱のせん断面を一致できるようせん断箱側面をアクリル板9Dで可視化し、せん断箱底板9Eをネジを利用して上下に移動でき る構成としている。
【0009】
なお角形せん断箱、丸形せん断箱の上下間の間隔はともにせん断箱と固定板との間にギャップスペーサーを挟むことで、例えば、0.01mm、0.2mm、0.5mm、1.0mmに調整可能である。また、せん断箱と供試体せん断面間の摩擦を軽減するために塗布する材料はテフロンに限定せず、他の潤滑材を使用することも可能である。
【0010】
本装置では垂直力載荷システムとして、図1に示すようにせん断箱9の上方にせん断箱内の供試体に垂直力を付与することができる高精度デジタルサーボモータ(垂直力付与手段)5を配置し、さらにせん断箱の下方に垂直力測定用の垂直ロードセル12を配置した変位制御方式を採用している。従来の装置は、応力制御方式が一般的であるが、本変位方式は垂直力の測定用の垂直ロードセル12に平板形の高剛性ロードセルを用い、また、パーソナルコンピュータ2によって高精度デジタルサーボモータ5を制御するようにしている。このため、定体積条件の設定が簡便、試験開始時の供試体と垂直荷重載荷板との密着に熟練が不要、ロッドの回転数から変位量を求めているので垂直変位測定用の変位計が不要となる等の種々の利点がある。なお、高剛性ロードセルは、通常の測定範囲(0〜300kgf)において変位量が10μmと極めて小さいものを使用し、下せん断箱9Bを垂直ロードセル12の上に直接取り付けることで他の部分から独立させているため、せん断箱内の周面摩擦の影響を受けることなく測定できる。
【0011】
また供試体に対してせん断力を付与する装置として、可変モータ(せん断力付与手段)6を採用しており、可変モータ6の出力軸がロッド6Aおよびせん断力測定用の水平ロードセル7を介してせん断箱に連結され、このロッド6Aには万が一移動量が設定量を越えても停止しなかったときのために自動停止装置11が設けられている。水平ロードセル7には平板形の高剛性ロードセルを使用しており、せん断箱の水平変位は水平変位測定用変位計10により測定する。可変モータ6はパーソナルコンピュータ2により変位量と回転方向が制御され、せん断時の大変位の水平変位量と連続した繰り返し回数が設定できる。せん断力は、水平ロードセル7により測定されたせん断力から、前述のせん断箱内蔵の高剛性ロードセル22により測定された摩擦力を減じることで求めている。これにより、ピーク強度と完全軟化強度は測定されたせん断力からせん断箱と供試体せん断面間の摩擦力を減じた値となり、残留強度は同じく試料漏れ部分の摩擦力を減じた値になっている。
【0012】
上記装置の作動を説明する。せん断箱内に供試体を収納し、パーソナルコンピュータ2によって高精度デジタルサーボモータ5を駆動し、供試体に試験開始時に所定の垂直力を付与し、このときの垂直力を垂直ロードセル12によって測定する。なお本装置では高精度デジタルサーボモータを使用しているために供試体と垂直荷重載荷板との密着が不要であり、ロッドの回転数から変位量を求めているので垂直変位測定用の変位計が不要となっている。またパーソナルコンピュータ2からの制御によって可変モータ6を駆動し、供試体に繰り返しせん断力を付与する。この時のせん断力はせん断力測定用の水平ロードセル7により測定する。また、せん断箱が相対変位しているときのせん断箱と供試体せん断面間の摩擦力と試料漏れによる摩擦力はせん断箱内に配置した前述したせん断箱内蔵の高剛性ロードセル22により測定する。
【0013】
実際のせん断力は、せん断力測定用水平ロードセル7により測定された全体のせん断力から、前述のせん断箱内蔵の高剛性ロードセル22により測定された摩擦力を減じることで求めている。これにより、測定誤差である摩擦力の影響を完全に取り除くことができる。即ちピーク強度と完全軟化強度は測定されたせん断力からせん断箱と供試体せん断面間の摩擦力を減じた値となり、残留強度は同じく試料漏れ部分の摩擦力を減じた値になっている。本装置は上記のようにして、誤差要因をそれぞれ計測して補正することにより、より正しい粘性土および砂質土のピーク強度、完全軟化強度、残留強度を測定することができる。また、最新の計測・制御機器とパソコン制御とを組み合わせることにより、熟練の程度による測定値のバラツキを低減することが可能となる。
【0014】
以上、本発明に係る実施の形態について説明したが、本小型の繰り返し一面せん断試験機において、内蔵ロードセルの使用個数、配置場所などはせん断箱の形状等によって自由に変更することが可能である、またパーソナルコンピュータの代わりに専用の電子制御回路などを使用することも可能である。さらに本発明はその精神または主要な特徴から逸脱することなく、他のいかなる形でも実施できる。そのため、前述の実施形態はあらゆる点で単なる例示にすぎず限定的に解釈してはならない。
【0015】
【発明の効果】
以上の詳細に説明した如く、本発明によれば、従来より繰り返し一面せん断試験機の欠点とされていた上下せん断箱と供試体との間に作用する摩擦力をせん断箱内蔵のロードセルにより測定でき、これにより、供試体せん断面間に作用しているせん断力のみを得ることができる。これら摩擦はせん断箱が相対変位している時はせん断箱と供試体せん断面間に作用している摩擦であり、せん断箱の相対変位ゼロの時は漏れた供試体がとせん断箱間に作用している摩擦である。前者はピーク強度と完全軟化強度の補正に、後者は残留強度の補正に利用される。丸形せん断箱にはせん断面部分にテフロン加工が施されせん断箱と供試体せん断面間の摩擦を軽減することができる。本装置は、軽量かつコンパクトで現場への持込みが可能で、かつデータ収録と試験時(圧密定圧条件・圧密た定体積条件)の制御がパーソナルコンピュータで自動化されている。垂直力載荷システムに変位制御方式(デジタルサーボモーター)を採用することで、装置の構成がシンプルかつ制御精度が格段に向上している。等の優れた効果を奏することができる。
【図面の簡単な説明】
【図1】実施形態としての繰り返し一面せん断試験機の構成図である。
【図2】供試体にせん断力を付与している状態の側断面図である。
【図3】同供試体に垂直力を付与している状態の側断面図である。
【図4】図2中のA−A矢視図である。
【図5】図2中のB−B矢視図である。
【図6】丸形せん断箱の断面図である。
【符号の説明】
1 コントロールボックス
2 パーソナルコンピュータ
3 A/D変換器
4 ロードセルコンバーター
デジタルサーボモータ
可変モータ
7 せん断力測定用の水平ロードセル
8 スペーサ
9 せん断箱
9A 上せん断箱
9B 下せん断箱
9C 供試体収納スペース
9D アクリル板
9E 底板
10 水平変位測定用変位計
11 自動停止装置
12 垂直力を測定する垂直ロードセル
21 供試体
22 高剛性ロードセル
23 テフロン加工部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a small automatic repeated single surface shear test apparatus for obtaining a “shear force” which is a physical property value of a ground material used for stability analysis of a landslide.
[0002]
[Prior art]
In the soil test, a triaxial test, a ring shear test, a repeated one-side shear test, and the like are carried out as a shear test for obtaining a shearing force. Among them, the repeated one-surface shear test is a test for determining the shear strength of the ground material, and it is possible to test an undisturbed sample and is excellent in practicality because the test is simple. In this test, the shear box has a characteristic of relative displacement during shearing. Therefore, the shear box and the shear surface of the sample (specimen) are in contact with each other during shearing, and the obtained value is between the specimen shear planes to be obtained. The shear force (correction of peak strength and complete softening strength) and the resultant force of friction. Further, when the residual strength requiring a large displacement is obtained, the contact time between the shear box and the specimen is lengthened, so that the specimen is cut like a bonito by the edge effect of the shear box and is sandwiched between the shear box gaps. It has been pointed out that friction due to this sample leakage has an influence on the residual strength to be obtained.
[0003]
For this reason, conventionally, grease was applied to the shearing surface portion of the shearing box to reduce the friction between the shearing surfaces of the shear box and the specimen leaked from the clearance of the shearing box. However, this method can reduce friction but cannot completely remove it. In addition, since the friction reducing grease gradually peels off as the number of repeated shears increases, there is a problem that the friction reducing effect cannot be obtained gradually. In addition, the conventional vertical force loading is generally performed using a "weight" or "velopram cylinder (pneumatic)" stress control system, and the weight cannot be controlled during the test. There is a problem that skill is required for close contact between the specimen and the vertical load loading plate, and a compressor for generating air pressure is newly required.
[0004]
[Problems to be solved by the invention]
Therefore, the present invention incorporates a small high-rigidity load cell between the upper and lower shear boxes to measure the frictional force between the shear box and the specimen shear surface or due to sample leakage, and is measured by the horizontal load cell installed on the horizontal rod. In addition, we will provide a compact automatic repeated single-side shear test device that can subtract the measured frictional force from the total shearing force and thereby completely eliminate the influence of frictional force, which is a measurement error, and solve the above problems Is. Also, to provide a small automatic repetitive one-sided shear test device that can prevent a decrease in the friction reduction effect due to an increase in the number of repetitions by applying Teflon processing that does not reduce the friction reduction effect in the practical range (cumulative horizontal displacement amount of about 500 mm). With the goal. In addition, the use of a digital servo motor that controls the loading of vertical force by a computer eliminates the need for a conventional compressor, and requires no skill in the close contact between the specimen and the vertical loading plate at the start of the test. The loading plate can be fixed in a simple manner, and the constant volume condition can be set easily. In addition, the displacement is calculated from the number of rotations of the rod using a digital servo motor, so there is no need for a displacement meter for vertical displacement measurement. An object is to provide an apparatus.
[0005]
[Means for Solving the Problems]
Therefore, the technical solution adopted by the present invention is:
Vertical shear boxes that can be displaced in different directions in a horizontal plane, high-rigidity load cells that are arranged in four locations facing each other, and specimens that are placed between the upper and lower shear boxes A shearing force applying means capable of applying a shearing force, a horizontal load cell for measuring a shearing force generated in the specimen, a vertical force applying means for applying a vertical force to the specimen, A vertical load cell that measures the vertical force generated in the specimen, and by subtracting the frictional force measured by the high-rigidity load cells arranged at the four locations from the total shear force measured by the horizontal load cell , This is a small automatic repeated single-sided shear test apparatus characterized by obtaining a shearing force .
The shearing force applying means is constituted by a variable motor, and the vertical force applying means is constituted by a digital servo motor .
In addition, it is a small automatic repetitive one-side shear test apparatus characterized in that Teflon processing is performed on opposing surfaces of each of the round shear boxes.
[0006]
Embodiment
Hereinafter, a configuration of a small-sized repeated one-surface shear test according to the present invention will be described with reference to the drawings. FIG. 1 is a configuration diagram of a repetitive single surface shear tester as an embodiment. In the figure, 1 is a control box, 2 is a personal computer, 3 is an A / D converter, 4 is a load cell converter, 5 is a digital servo motor, 6 is a variable motor, 7 is a horizontal load cell for measuring shear force, and 8 is a spacer. , 9 is a shear box, 10 is a displacement meter for measuring horizontal displacement, 11 is an automatic stop device, and 12 is a vertical load cell for measuring a vertical force, and these constitute a one-side shear tester.
[0007]
The shear box 9 is configured as a square or round shear box so that a test can be performed with two types of cross-sectional shapes of the specimen, square and round. Explaining the configuration of the square shear box, Fig. 2 is a cross-sectional side view of the shear box with the upper and lower shear boxes displaced (when measuring peak strength and full softening strength), and Fig. 3 is a shear box with the upper and lower shear boxes overlapping. FIG. 4 is a side sectional view (at the time of residual strength measurement), FIG. 4 is an AA arrow view in FIG. 2, and FIG. 5R> 5 is a BB arrow view in FIG. 2 and FIG. 3 explain the position of the shear box when measuring “friction between specimen and shear box” and “friction due to sample leakage”. Both are applied with normal force. Each of the upper and lower shear box boxes 9A and 9B has a specimen storage space 9C at its center as shown in the figure, and is opposed to the four places of the storage space 9C as shown in FIGS. A small high-rigidity load cell 22 is built in, and the frictional force between the shearing box and the specimen shearing surface when the shearing box is relatively displaced and the frictional force due to sample leakage are measured with such a configuration. Can do. The frictional force measured by the high-rigidity load cell 22 is the frictional force between the shearing box and the specimen shear surface when the shearing box is relatively displaced as shown in FIG. 2, and as shown in FIG. When the relative displacement is zero, the frictional force between the sample leaked from the gap between the upper and lower shear boxes and the shear box. The former is used for correction of peak intensity and complete softening intensity, and the latter is used for correction of residual intensity.
[0008]
Further, as shown in FIG. 6, the round shear box is composed of upper and lower shear boxes 9A and 9B as in the case of the square shear box, and a specimen storage space 9C having a predetermined diameter is formed in each shear box, Further, on the opposing surfaces of the shear boxes, a Teflon process is applied to the shear surface portion in order to reduce friction between the shear box and the specimen shear surface. In addition, in order to test the slip surface sample, the side of the shear box is visualized with an acrylic plate 9D so that the slip surface and the shear surface of the shear box can be matched, and the shear box bottom plate 9E is moved up and down using screws. It is set to be Ru configuration.
[0009]
Note that the gap between the upper and lower sides of the square shear box and the round shear box can be set to 0.01 mm, 0.2 mm, 0.5 mm, 1.0 mm, for example, by sandwiching a gap spacer between the shear box and the fixed plate. It can be adjusted. Further, the material to be applied to reduce the friction between the shear box and the specimen shear surface is not limited to Teflon, and other lubricants can be used.
[0010]
In this apparatus, as a vertical force loading system, as shown in FIG. 1, a high-precision digital servo motor (vertical force applying means) 5 capable of applying a vertical force to the specimen in the shear box is disposed above the shear box 9. Furthermore, a displacement control system is adopted in which a vertical load cell 12 for measuring a vertical force is disposed below the shear box. The conventional apparatus generally uses a stress control system. In this displacement system, a flat high-rigidity load cell is used as the vertical load cell 12 for measuring the vertical force, and a high-precision digital servo motor 5 is used by the personal computer 2. To control. For this reason, setting of constant volume conditions is simple, no skill is required for the close contact between the test specimen and the vertical load loading plate at the start of the test, and the displacement amount is determined from the number of rotations of the rod. There are various advantages such as being unnecessary. The high-rigidity load cell uses a very small displacement of 10 μm in the normal measurement range (0 to 300 kgf), and the lower shear box 9B is mounted directly on the vertical load cell 12 to make it independent from other parts. Therefore, measurement can be performed without being affected by peripheral friction in the shear box.
[0011]
Moreover, a variable motor (shearing force applying means) 6 is employed as a device for applying a shearing force to the specimen, and the output shaft of the variable motor 6 is connected via a rod 6A and a horizontal load cell 7 for measuring the shearing force. The rod 6A is connected to a shear box, and an automatic stop device 11 is provided for the case where the rod 6A does not stop even if the moving amount exceeds the set amount. The horizontal load cell 7 uses a flat high-rigidity load cell, and the horizontal displacement of the shear box is measured by a displacement meter 10 for measuring horizontal displacement. The variable motor 6 has a displacement amount and a rotation direction controlled by the personal computer 2 and can set a horizontal displacement amount of a large displacement at the time of shearing and a continuous repetition number. The shear force is obtained by subtracting the friction force measured by the above-described high-rigidity load cell 22 built in the shear box from the shear force measured by the horizontal load cell 7. As a result, the peak strength and the fully softened strength are the values obtained by subtracting the friction force between the shear box and the specimen shear surface from the measured shear force, and the residual strength is also the value obtained by subtracting the friction force at the sample leakage part. Yes.
[0012]
The operation of the above apparatus will be described. The specimen is stored in the shear box, the high-precision digital servo motor 5 is driven by the personal computer 2, a predetermined vertical force is applied to the specimen at the start of the test, and the vertical force at this time is measured by the vertical load cell 12. . Since this device uses a high-precision digital servo motor, there is no need for close contact between the specimen and the vertical load loading plate, and the displacement is determined from the number of rotations of the rod. Is no longer needed. Further, the variable motor 6 is driven by control from the personal computer 2 to repeatedly apply a shearing force to the specimen. The shear force at this time is measured by a horizontal load cell 7 for measuring the shear force. Further, the frictional force between the shearing box and the specimen shear surface when the shearing box is relatively displaced and the frictional force due to sample leakage are measured by the above-described high-rigidity load cell 22 built in the shearing box.
[0013]
The actual shearing force is obtained by subtracting the frictional force measured by the high-rigidity load cell 22 built in the aforementioned shear box from the total shearing force measured by the horizontal load cell 7 for measuring shearing force. Thereby, the influence of the frictional force which is a measurement error can be completely removed. That is, the peak strength and the full softening strength are values obtained by subtracting the frictional force between the shear box and the specimen shear surface from the measured shearing force, and the residual strength is a value obtained by subtracting the frictional force at the sample leakage portion. As described above, the present apparatus can measure and correct the error factors, thereby more accurately measuring the peak strength, complete softening strength, and residual strength of viscous soil and sandy soil. Further, by combining the latest measurement / control equipment and personal computer control, it becomes possible to reduce variations in measured values depending on the degree of skill.
[0014]
As described above, the embodiment according to the present invention has been described, but in the small-sized repetitive single-surface shear tester, the number of built-in load cells, the arrangement location, and the like can be freely changed depending on the shape of the shear box, etc. It is also possible to use a dedicated electronic control circuit or the like instead of the personal computer. Furthermore, the present invention may be implemented in any other form without departing from the spirit or main features thereof. Therefore, the above-described embodiment is merely an example in all respects and should not be interpreted in a limited manner.
[0015]
【The invention's effect】
As described in detail above, according to the present invention, the frictional force acting between the upper and lower shear boxes and the specimen, which has been a drawback of the conventional single-surface shear tester, can be measured by a load cell built in the shear box. Thus, only the shearing force acting between the specimen shear surfaces can be obtained. These frictions are friction acting between the shear box and the specimen shear surface when the shear box is relatively displaced, and when the relative displacement of the shear box is zero, the leaked specimen acts between the shear box and the shear box. Friction. The former is used for correction of peak intensity and complete softening intensity, and the latter is used for correction of residual intensity. The round shear box is subjected to Teflon processing on the shear surface portion, and friction between the shear box and the specimen shear surface can be reduced. This device is lightweight and compact and can be brought into the field. Data recording and control during testing (consolidation constant pressure condition / consolidation constant volume condition) are automated by a personal computer. By adopting the displacement control method (digital servo motor) in the vertical force loading system, the configuration of the device is simple and the control accuracy is greatly improved . And the like.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a repetitive single surface shear tester as an embodiment.
FIG. 2 is a side sectional view showing a state in which a shearing force is applied to a specimen.
FIG. 3 is a side sectional view showing a state in which a vertical force is applied to the specimen.
4 is an AA arrow view in FIG. 2. FIG.
FIG. 5 is a view taken along arrow BB in FIG. 2;
FIG. 6 is a cross-sectional view of a round shear box.
[Explanation of symbols]
1 Control Box 2 Personal Computer 3 A / D Converter 4 Load Cell Converter 5 Digital Servo Motor 6 Variable Motor 7 Horizontal Load Cell for Measuring Shear Force 8 Spacer 9 Shear Box 9A Upper Shear Box 9B Lower Shear Box 9C Specimen Storage Space 9D Acrylic Plate 9E Bottom plate 10 Displacement meter for horizontal displacement measurement 11 Automatic stop device 12 Vertical load cell for measuring vertical force 21 Specimen 22 High-rigidity load cell 23 Teflon machined part

Claims (3)

水平面内に於いて互いに異なる方向に変位可能な上下せん断箱と、夫々のせん断箱内に対向して4カ所に配置した高剛性ロードセルと、上せん断箱と下せん断箱間に配置された供試体に対してせん断力を付与することができるせん断力付与手段と、前記供試体に発生するせん断力を測定する水平ロードセルと、前記供試体に対して垂直力を付与する垂直力付与手段と、前記供試体に発生する垂直力を測定する垂直ロードセルとを備え、前記水平ロードセルにより測定された全体のせん断力から、前記4ケ所に配置した高剛性ロードセルにより測定された摩擦力を減じることで実際のせん断力を求めるようにしたことを特徴とする小型自動繰り返し一面せん断試験装置。 Vertical shear boxes that can be displaced in different directions in a horizontal plane, high-rigidity load cells that are arranged in four locations facing each other, and specimens that are placed between the upper and lower shear boxes A shearing force applying means capable of applying a shearing force, a horizontal load cell for measuring a shearing force generated in the specimen, a vertical force applying means for applying a vertical force to the specimen, A vertical load cell that measures the vertical force generated in the specimen, and by subtracting the frictional force measured by the high-rigidity load cells arranged at the four locations from the total shear force measured by the horizontal load cell , A small automatic repetitive one-sided shear tester characterized by determining the shear force. 前記せん断力付与手段は可変モータで構成し、前記垂直力付与手段はデジタルサーボモータで構成してなることを特徴とする請求項1に記載の小型自動繰り返し一面せん断試験装置。2. The small automatic repetitive one-side shear test apparatus according to claim 1, wherein the shearing force applying means is constituted by a variable motor, and the vertical force applying means is constituted by a digital servo motor. 前記夫々の丸形せん断箱の対向する面にテフロン加工をしてあることを特徴とする請求項1または請求項2に記載の小型自動繰り返し一面せん断試験装置。3. The small automatic repeated single face shear test apparatus according to claim 1 or 2, wherein the opposing faces of each of the round shear boxes are teflon processed.
JP2000009637A 2000-01-19 2000-01-19 Small automatic repetitive one side shear test equipment Expired - Fee Related JP3795721B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000009637A JP3795721B2 (en) 2000-01-19 2000-01-19 Small automatic repetitive one side shear test equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000009637A JP3795721B2 (en) 2000-01-19 2000-01-19 Small automatic repetitive one side shear test equipment

Publications (2)

Publication Number Publication Date
JP2001201446A JP2001201446A (en) 2001-07-27
JP3795721B2 true JP3795721B2 (en) 2006-07-12

Family

ID=18537764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000009637A Expired - Fee Related JP3795721B2 (en) 2000-01-19 2000-01-19 Small automatic repetitive one side shear test equipment

Country Status (1)

Country Link
JP (1) JP3795721B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014044086A (en) * 2012-08-24 2014-03-13 Chugoku Electric Power Co Inc:The Dynamic test device
CN103884608A (en) * 2014-04-05 2014-06-25 湖南科技大学 Rock structure surface shearing device and method
CN108871893A (en) * 2016-04-07 2018-11-23 三峡大学 A kind of method that scene Soil Direct Shear test prepares the soil body with soil body preparation device
WO2019223017A1 (en) * 2018-05-23 2019-11-28 同济大学 Large-size multifunctional interface power shear tester and test method
KR20220019451A (en) * 2020-08-10 2022-02-17 이천주 Apparatus for testing compacting test piece

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101373174B (en) * 2008-07-16 2010-08-04 中国科学院武汉岩土力学研究所 Direct shear apparatus capable of directly measuring interface friction force
JP5403609B2 (en) * 2009-09-29 2014-01-29 ダイプラ・ウィンテス株式会社 Surface layer adhesion strength measuring method and apparatus
KR101163117B1 (en) * 2010-02-26 2012-07-06 건국대학교 산학협력단 Direct shear test apparatus
CN104142276A (en) * 2014-07-15 2014-11-12 长江勘测规划设计研究有限责任公司 On-site large-scale direct shear test device for detecting shear strength of cohesive soil
JP6103658B2 (en) * 2015-09-16 2017-03-29 国土防災技術株式会社 Triaxial testing equipment with pressure chamber of undrained one-side shear mechanism
CN105758738A (en) * 2016-04-22 2016-07-13 西安石油大学 Electric double-surface shear apparatus
CN108020463A (en) * 2017-05-25 2018-05-11 南京航空航天大学 A kind of fixture for being used to test reinforced plastics interlayer shear strength
CN107621422A (en) * 2017-10-25 2018-01-23 北京富力通达科技有限公司 Big load multi dimension load transducer and its demarcation metering method
CN107843505B (en) * 2017-12-04 2023-06-13 辽宁科技大学 High-temperature shear strength test method and device for high-temperature furnace lining repair material or fireclay
CN108645718A (en) * 2018-03-20 2018-10-12 山东科技大学 A kind of rock multi-function scissor cuts experiment test device
CN111208019B (en) * 2020-01-16 2022-06-10 西安近代化学研究所 Shearing friction force testing device
CN111272583B (en) * 2020-03-31 2023-05-23 河南牛帕力学工程研究院 Pressure shear testing machine
CN111307618A (en) * 2020-04-17 2020-06-19 上海金地工程勘察有限公司 Soil shear strength testing equipment and testing method
CN113804560B (en) * 2021-07-30 2023-09-26 南华大学 Unsaturated soil and structure interface shear visualization test device and method
WO2023071315A1 (en) * 2021-10-30 2023-05-04 福州大学 Large-scale direct shear apparatus for direct shear test of multi-size cylindrical undisturbed soil samples
CN114397197A (en) * 2021-12-23 2022-04-26 东南大学 Rock-soil micro-mechanical property tester

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014044086A (en) * 2012-08-24 2014-03-13 Chugoku Electric Power Co Inc:The Dynamic test device
CN103884608A (en) * 2014-04-05 2014-06-25 湖南科技大学 Rock structure surface shearing device and method
CN103884608B (en) * 2014-04-05 2016-03-30 湖南科技大学 A kind of rock structural face shear and method
CN108871893A (en) * 2016-04-07 2018-11-23 三峡大学 A kind of method that scene Soil Direct Shear test prepares the soil body with soil body preparation device
CN108871893B (en) * 2016-04-07 2021-01-26 三峡大学 Method for preparing soil body by soil body preparation device for on-site soil body direct shear test
WO2019223017A1 (en) * 2018-05-23 2019-11-28 同济大学 Large-size multifunctional interface power shear tester and test method
KR20220019451A (en) * 2020-08-10 2022-02-17 이천주 Apparatus for testing compacting test piece
KR102365723B1 (en) 2020-08-10 2022-02-18 이천주 Apparatus for testing compacting test piece

Also Published As

Publication number Publication date
JP2001201446A (en) 2001-07-27

Similar Documents

Publication Publication Date Title
JP3795721B2 (en) Small automatic repetitive one side shear test equipment
US5999887A (en) Method and apparatus for determination of mechanical properties of functionally-graded materials
Hans et al. A new device for investigating the hydro‐mechanical properties of rock joints
US5357786A (en) Device for determining mechanical properties of materials
Tao et al. A non-contact real-time strain measurement and control system for multiaxial cyclic/fatigue tests of polymer materials by digital image correlation method
Phillips Centrifuge modelling: practical considerations
US9983106B2 (en) Determining rock properties
JP3068763B2 (en) Single shear tester
Kolymbas et al. Soft oedometer—a new testing device and its application for the calibration of hypoplastic constitutive laws
Lin et al. Acoustic emission characteristics of a dry sandy soil subjected to drained triaxial compression
CA3057319A1 (en) Determining rock properties
Atkinson et al. A fluid cushion, multiaxial cell for testing cubical rock specimens
Wartman Physical model studies of seismically induced deformations in slopes
Kao et al. Inelastic strain and damage in surface instability tests
Kandpal et al. An Apparatus for Determining Micromechanical Interface Shear Properties of Geomaterial Contacts
CN209446398U (en) A kind of multiple dimensioned in situ strength test device of coarse-grained soil
Niktabar et al. Automatic static and cyclic shear testing machine under constant normal stiffness boundary conditions
CN104977217B (en) A kind of soil body triaxial extension test instrument
DeGroot et al. The multidirectional direct simple shear apparatus
Fahimifar et al. Effect of time on the stress–strain behaviour of a single rock joint
Panek Centrifugal testing apparatus for mine-structure stress analysis
Kabir et al. Measurement of specimen dimensions and dynamic pressure in dynamic triaxial experiments
CN111999165A (en) Deep high-stress rock elastic strain recovery monitoring device and method
Farr et al. A device for evaluating one-dimensional compressive loading rate effects
CN109387439A (en) A kind of multiple dimensioned in situ strength test device of coarse-grained soil and test method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060413

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090421

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100421

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees